Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaeqsexv | Structured version Visualization version GIF version |
Description: Substitute a function value into an existential quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.) |
Ref | Expression |
---|---|
imaeqsex.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
imaeqsexv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3071 | . . 3 ⊢ (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑)) | |
2 | fvelimab 6891 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) | |
3 | 2 | anbi1d 630 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
4 | 3 | exbidv 1923 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑) ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
5 | 1, 4 | bitrid 282 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
6 | rexcom4 3267 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑)) | |
7 | eqcom 2743 | . . . . . . 7 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
8 | 7 | anbi1i 624 | . . . . . 6 ⊢ (((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ (𝑥 = (𝐹‘𝑦) ∧ 𝜑)) |
9 | 8 | exbii 1849 | . . . . 5 ⊢ (∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝑥 = (𝐹‘𝑦) ∧ 𝜑)) |
10 | fvex 6832 | . . . . . 6 ⊢ (𝐹‘𝑦) ∈ V | |
11 | imaeqsex.1 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
12 | 10, 11 | ceqsexv 3488 | . . . . 5 ⊢ (∃𝑥(𝑥 = (𝐹‘𝑦) ∧ 𝜑) ↔ 𝜓) |
13 | 9, 12 | bitri 274 | . . . 4 ⊢ (∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ 𝜓) |
14 | 13 | rexbii 3093 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓) |
15 | r19.41v 3181 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑)) | |
16 | 15 | exbii 1849 | . . 3 ⊢ (∃𝑥∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑)) |
17 | 6, 14, 16 | 3bitr3ri 301 | . 2 ⊢ (∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓) |
18 | 5, 17 | bitrdi 286 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∃wrex 3070 ⊆ wss 3897 “ cima 5617 Fn wfn 6468 ‘cfv 6473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-fv 6481 |
This theorem is referenced by: imaeqsalv 33925 |
Copyright terms: Public domain | W3C validator |