MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqsexv Structured version   Visualization version   GIF version

Theorem imaeqsexv 7362
Description: Substitute a function value into an existential quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.)
Hypothesis
Ref Expression
imaeqsex.1 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
imaeqsexv ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)

Proof of Theorem imaeqsexv
StepHypRef Expression
1 df-rex 3071 . . 3 (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹𝐵) ∧ 𝜑))
2 fvelimab 6964 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
32anbi1d 630 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑥 ∈ (𝐹𝐵) ∧ 𝜑) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑)))
43exbidv 1924 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥(𝑥 ∈ (𝐹𝐵) ∧ 𝜑) ↔ ∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑)))
51, 4bitrid 282 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑)))
6 rexcom4 3285 . . 3 (∃𝑦𝐵𝑥((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑥𝑦𝐵 ((𝐹𝑦) = 𝑥𝜑))
7 eqcom 2739 . . . . . . 7 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
87anbi1i 624 . . . . . 6 (((𝐹𝑦) = 𝑥𝜑) ↔ (𝑥 = (𝐹𝑦) ∧ 𝜑))
98exbii 1850 . . . . 5 (∃𝑥((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑥(𝑥 = (𝐹𝑦) ∧ 𝜑))
10 fvex 6904 . . . . . 6 (𝐹𝑦) ∈ V
11 imaeqsex.1 . . . . . 6 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
1210, 11ceqsexv 3525 . . . . 5 (∃𝑥(𝑥 = (𝐹𝑦) ∧ 𝜑) ↔ 𝜓)
139, 12bitri 274 . . . 4 (∃𝑥((𝐹𝑦) = 𝑥𝜑) ↔ 𝜓)
1413rexbii 3094 . . 3 (∃𝑦𝐵𝑥((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑦𝐵 𝜓)
15 r19.41v 3188 . . . 4 (∃𝑦𝐵 ((𝐹𝑦) = 𝑥𝜑) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑))
1615exbii 1850 . . 3 (∃𝑥𝑦𝐵 ((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑))
176, 14, 163bitr3ri 301 . 2 (∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑦𝐵 𝜓)
185, 17bitrdi 286 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wrex 3070  wss 3948  cima 5679   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  imaeqsalv  7363  negsid  27742  negsunif  27756
  Copyright terms: Public domain W3C validator