Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaeqsexv Structured version   Visualization version   GIF version

Theorem imaeqsexv 33593
Description: Substitute a function value into an existential quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.)
Hypothesis
Ref Expression
imaeqsex.1 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
imaeqsexv ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)

Proof of Theorem imaeqsexv
StepHypRef Expression
1 df-rex 3069 . . 3 (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹𝐵) ∧ 𝜑))
2 fvelimab 6823 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
32anbi1d 629 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑥 ∈ (𝐹𝐵) ∧ 𝜑) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑)))
43exbidv 1925 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥(𝑥 ∈ (𝐹𝐵) ∧ 𝜑) ↔ ∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑)))
51, 4syl5bb 282 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑)))
6 rexcom4 3179 . . 3 (∃𝑦𝐵𝑥((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑥𝑦𝐵 ((𝐹𝑦) = 𝑥𝜑))
7 eqcom 2745 . . . . . . 7 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
87anbi1i 623 . . . . . 6 (((𝐹𝑦) = 𝑥𝜑) ↔ (𝑥 = (𝐹𝑦) ∧ 𝜑))
98exbii 1851 . . . . 5 (∃𝑥((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑥(𝑥 = (𝐹𝑦) ∧ 𝜑))
10 fvex 6769 . . . . . 6 (𝐹𝑦) ∈ V
11 imaeqsex.1 . . . . . 6 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
1210, 11ceqsexv 3469 . . . . 5 (∃𝑥(𝑥 = (𝐹𝑦) ∧ 𝜑) ↔ 𝜓)
139, 12bitri 274 . . . 4 (∃𝑥((𝐹𝑦) = 𝑥𝜑) ↔ 𝜓)
1413rexbii 3177 . . 3 (∃𝑦𝐵𝑥((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑦𝐵 𝜓)
15 r19.41v 3273 . . . 4 (∃𝑦𝐵 ((𝐹𝑦) = 𝑥𝜑) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑))
1615exbii 1851 . . 3 (∃𝑥𝑦𝐵 ((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑))
176, 14, 163bitr3ri 301 . 2 (∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑦𝐵 𝜓)
185, 17bitrdi 286 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  wss 3883  cima 5583   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  imaeqsalv  33594
  Copyright terms: Public domain W3C validator