![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaeqsexv | Structured version Visualization version GIF version |
Description: Substitute a function value into an existential quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.) |
Ref | Expression |
---|---|
imaeqsex.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
imaeqsexv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3071 | . . 3 ⊢ (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑)) | |
2 | fvelimab 6964 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) | |
3 | 2 | anbi1d 630 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
4 | 3 | exbidv 1924 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑) ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
5 | 1, 4 | bitrid 282 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
6 | rexcom4 3285 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑)) | |
7 | eqcom 2739 | . . . . . . 7 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
8 | 7 | anbi1i 624 | . . . . . 6 ⊢ (((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ (𝑥 = (𝐹‘𝑦) ∧ 𝜑)) |
9 | 8 | exbii 1850 | . . . . 5 ⊢ (∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝑥 = (𝐹‘𝑦) ∧ 𝜑)) |
10 | fvex 6904 | . . . . . 6 ⊢ (𝐹‘𝑦) ∈ V | |
11 | imaeqsex.1 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
12 | 10, 11 | ceqsexv 3525 | . . . . 5 ⊢ (∃𝑥(𝑥 = (𝐹‘𝑦) ∧ 𝜑) ↔ 𝜓) |
13 | 9, 12 | bitri 274 | . . . 4 ⊢ (∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ 𝜓) |
14 | 13 | rexbii 3094 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓) |
15 | r19.41v 3188 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑)) | |
16 | 15 | exbii 1850 | . . 3 ⊢ (∃𝑥∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑)) |
17 | 6, 14, 16 | 3bitr3ri 301 | . 2 ⊢ (∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓) |
18 | 5, 17 | bitrdi 286 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∃wrex 3070 ⊆ wss 3948 “ cima 5679 Fn wfn 6538 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: imaeqsalv 7363 negsid 27742 negsunif 27756 |
Copyright terms: Public domain | W3C validator |