Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaeqsexv Structured version   Visualization version   GIF version

Theorem imaeqsexv 33924
Description: Substitute a function value into an existential quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.)
Hypothesis
Ref Expression
imaeqsex.1 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
imaeqsexv ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)

Proof of Theorem imaeqsexv
StepHypRef Expression
1 df-rex 3071 . . 3 (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹𝐵) ∧ 𝜑))
2 fvelimab 6891 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
32anbi1d 630 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑥 ∈ (𝐹𝐵) ∧ 𝜑) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑)))
43exbidv 1923 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥(𝑥 ∈ (𝐹𝐵) ∧ 𝜑) ↔ ∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑)))
51, 4bitrid 282 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑)))
6 rexcom4 3267 . . 3 (∃𝑦𝐵𝑥((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑥𝑦𝐵 ((𝐹𝑦) = 𝑥𝜑))
7 eqcom 2743 . . . . . . 7 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
87anbi1i 624 . . . . . 6 (((𝐹𝑦) = 𝑥𝜑) ↔ (𝑥 = (𝐹𝑦) ∧ 𝜑))
98exbii 1849 . . . . 5 (∃𝑥((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑥(𝑥 = (𝐹𝑦) ∧ 𝜑))
10 fvex 6832 . . . . . 6 (𝐹𝑦) ∈ V
11 imaeqsex.1 . . . . . 6 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
1210, 11ceqsexv 3488 . . . . 5 (∃𝑥(𝑥 = (𝐹𝑦) ∧ 𝜑) ↔ 𝜓)
139, 12bitri 274 . . . 4 (∃𝑥((𝐹𝑦) = 𝑥𝜑) ↔ 𝜓)
1413rexbii 3093 . . 3 (∃𝑦𝐵𝑥((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑦𝐵 𝜓)
15 r19.41v 3181 . . . 4 (∃𝑦𝐵 ((𝐹𝑦) = 𝑥𝜑) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑))
1615exbii 1849 . . 3 (∃𝑥𝑦𝐵 ((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑))
176, 14, 163bitr3ri 301 . 2 (∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑦𝐵 𝜓)
185, 17bitrdi 286 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wex 1780  wcel 2105  wrex 3070  wss 3897  cima 5617   Fn wfn 6468  cfv 6473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-fv 6481
This theorem is referenced by:  imaeqsalv  33925
  Copyright terms: Public domain W3C validator