Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhre Structured version   Visualization version   GIF version

Theorem qqhre 34031
Description: The ℚHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017.)
Assertion
Ref Expression
qqhre (ℚHom‘ℝfld) = ( I ↾ ℚ)

Proof of Theorem qqhre
StepHypRef Expression
1 resubdrg 21546 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
21simpri 485 . . . . 5 fld ∈ DivRing
3 drngring 20652 . . . . . 6 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
4 f1oi 6801 . . . . . . . . . 10 ( I ↾ ℤ):ℤ–1-1-onto→ℤ
5 f1of1 6762 . . . . . . . . . 10 (( I ↾ ℤ):ℤ–1-1-onto→ℤ → ( I ↾ ℤ):ℤ–1-1→ℤ)
64, 5ax-mp 5 . . . . . . . . 9 ( I ↾ ℤ):ℤ–1-1→ℤ
7 zssre 12475 . . . . . . . . 9 ℤ ⊆ ℝ
8 f1ss 6724 . . . . . . . . 9 ((( I ↾ ℤ):ℤ–1-1→ℤ ∧ ℤ ⊆ ℝ) → ( I ↾ ℤ):ℤ–1-1→ℝ)
96, 7, 8mp2an 692 . . . . . . . 8 ( I ↾ ℤ):ℤ–1-1→ℝ
10 zrhre 34030 . . . . . . . . 9 (ℤRHom‘ℝfld) = ( I ↾ ℤ)
11 f1eq1 6714 . . . . . . . . 9 ((ℤRHom‘ℝfld) = ( I ↾ ℤ) → ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ( I ↾ ℤ):ℤ–1-1→ℝ))
1210, 11ax-mp 5 . . . . . . . 8 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ( I ↾ ℤ):ℤ–1-1→ℝ)
139, 12mpbir 231 . . . . . . 7 (ℤRHom‘ℝfld):ℤ–1-1→ℝ
14 rebase 21544 . . . . . . . 8 ℝ = (Base‘ℝfld)
15 eqid 2731 . . . . . . . 8 (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld)
16 re0g 21550 . . . . . . . 8 0 = (0g‘ℝfld)
1714, 15, 16zrhchr 33985 . . . . . . 7 (ℝfld ∈ Ring → ((chr‘ℝfld) = 0 ↔ (ℤRHom‘ℝfld):ℤ–1-1→ℝ))
1813, 17mpbiri 258 . . . . . 6 (ℝfld ∈ Ring → (chr‘ℝfld) = 0)
192, 3, 18mp2b 10 . . . . 5 (chr‘ℝfld) = 0
20 eqid 2731 . . . . . 6 (/r‘ℝfld) = (/r‘ℝfld)
2114, 20, 15qqhvval 33994 . . . . 5 (((ℝfld ∈ DivRing ∧ (chr‘ℝfld) = 0) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘ℝfld)‘𝑞) = (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))))
222, 19, 21mpanl12 702 . . . 4 (𝑞 ∈ ℚ → ((ℚHom‘ℝfld)‘𝑞) = (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))))
23 f1f 6719 . . . . . . . 8 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ → (ℤRHom‘ℝfld):ℤ⟶ℝ)
2413, 23ax-mp 5 . . . . . . 7 (ℤRHom‘ℝfld):ℤ⟶ℝ
2524a1i 11 . . . . . 6 (𝑞 ∈ ℚ → (ℤRHom‘ℝfld):ℤ⟶ℝ)
26 qnumcl 16651 . . . . . 6 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
2725, 26ffvelcdmd 7018 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) ∈ ℝ)
28 qdencl 16652 . . . . . . 7 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
2928nnzd 12495 . . . . . 6 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℤ)
3025, 29ffvelcdmd 7018 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ∈ ℝ)
3129anim1i 615 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
3214, 15, 16zrhf1ker 33984 . . . . . . . . . . . 12 (ℝfld ∈ Ring → ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ((ℤRHom‘ℝfld) “ {0}) = {0}))
332, 3, 32mp2b 10 . . . . . . . . . . 11 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ((ℤRHom‘ℝfld) “ {0}) = {0})
3413, 33mpbi 230 . . . . . . . . . 10 ((ℤRHom‘ℝfld) “ {0}) = {0}
3534eleq2i 2823 . . . . . . . . 9 ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ (denom‘𝑞) ∈ {0})
36 ffn 6651 . . . . . . . . . 10 ((ℤRHom‘ℝfld):ℤ⟶ℝ → (ℤRHom‘ℝfld) Fn ℤ)
37 fniniseg 6993 . . . . . . . . . 10 ((ℤRHom‘ℝfld) Fn ℤ → ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)))
3824, 36, 37mp2b 10 . . . . . . . . 9 ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
39 fvex 6835 . . . . . . . . . 10 (denom‘𝑞) ∈ V
4039elsn 4591 . . . . . . . . 9 ((denom‘𝑞) ∈ {0} ↔ (denom‘𝑞) = 0)
4135, 38, 403bitr3ri 302 . . . . . . . 8 ((denom‘𝑞) = 0 ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
4231, 41sylibr 234 . . . . . . 7 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → (denom‘𝑞) = 0)
4328nnne0d 12175 . . . . . . . . 9 (𝑞 ∈ ℚ → (denom‘𝑞) ≠ 0)
4443adantr 480 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → (denom‘𝑞) ≠ 0)
4544neneqd 2933 . . . . . . 7 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → ¬ (denom‘𝑞) = 0)
4642, 45pm2.65da 816 . . . . . 6 (𝑞 ∈ ℚ → ¬ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)
4746neqned 2935 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ≠ 0)
48 redvr 21555 . . . . 5 ((((ℤRHom‘ℝfld)‘(numer‘𝑞)) ∈ ℝ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ∈ ℝ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ≠ 0) → (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))) = (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))))
4927, 30, 47, 48syl3anc 1373 . . . 4 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))) = (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))))
5010fveq1i 6823 . . . . . . . 8 ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (( I ↾ ℤ)‘(numer‘𝑞))
51 fvresi 7107 . . . . . . . 8 ((numer‘𝑞) ∈ ℤ → (( I ↾ ℤ)‘(numer‘𝑞)) = (numer‘𝑞))
5250, 51eqtrid 2778 . . . . . . 7 ((numer‘𝑞) ∈ ℤ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (numer‘𝑞))
5326, 52syl 17 . . . . . 6 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (numer‘𝑞))
5410fveq1i 6823 . . . . . . . 8 ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (( I ↾ ℤ)‘(denom‘𝑞))
55 fvresi 7107 . . . . . . . 8 ((denom‘𝑞) ∈ ℤ → (( I ↾ ℤ)‘(denom‘𝑞)) = (denom‘𝑞))
5654, 55eqtrid 2778 . . . . . . 7 ((denom‘𝑞) ∈ ℤ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (denom‘𝑞))
5729, 56syl 17 . . . . . 6 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (denom‘𝑞))
5853, 57oveq12d 7364 . . . . 5 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))) = ((numer‘𝑞) / (denom‘𝑞)))
59 qeqnumdivden 16657 . . . . 5 (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
6058, 59eqtr4d 2769 . . . 4 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))) = 𝑞)
6122, 49, 603eqtrd 2770 . . 3 (𝑞 ∈ ℚ → ((ℚHom‘ℝfld)‘𝑞) = 𝑞)
6261mpteq2ia 5186 . 2 (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞)) = (𝑞 ∈ ℚ ↦ 𝑞)
6314, 20, 15qqhf 33997 . . . . . 6 ((ℝfld ∈ DivRing ∧ (chr‘ℝfld) = 0) → (ℚHom‘ℝfld):ℚ⟶ℝ)
642, 19, 63mp2an 692 . . . . 5 (ℚHom‘ℝfld):ℚ⟶ℝ
6564a1i 11 . . . 4 (⊤ → (ℚHom‘ℝfld):ℚ⟶ℝ)
6665feqmptd 6890 . . 3 (⊤ → (ℚHom‘ℝfld) = (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞)))
6766mptru 1548 . 2 (ℚHom‘ℝfld) = (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞))
68 mptresid 6000 . 2 ( I ↾ ℚ) = (𝑞 ∈ ℚ ↦ 𝑞)
6962, 67, 683eqtr4i 2764 1 (ℚHom‘ℝfld) = ( I ↾ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2111  wne 2928  wss 3902  {csn 4576  cmpt 5172   I cid 5510  ccnv 5615  cres 5618  cima 5619   Fn wfn 6476  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006   / cdiv 11774  cz 12468  cq 12846  numercnumer 16644  denomcdenom 16645  Ringcrg 20152  /rcdvr 20319  SubRingcsubrg 20485  DivRingcdr 20645  fldccnfld 21292  ℤRHomczrh 21437  chrcchr 21439  fldcrefld 21542  ℚHomcqqh 33981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647  df-gz 16842  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19126  df-od 19441  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-cring 20155  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-rhm 20391  df-subrng 20462  df-subrg 20486  df-drng 20647  df-cnfld 21293  df-zring 21385  df-zrh 21441  df-chr 21443  df-refld 21543  df-qqh 33982
This theorem is referenced by:  rrhre  34032
  Copyright terms: Public domain W3C validator