Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhre Structured version   Visualization version   GIF version

Theorem qqhre 31254
Description: The ℚHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017.)
Assertion
Ref Expression
qqhre (ℚHom‘ℝfld) = ( I ↾ ℚ)

Proof of Theorem qqhre
StepHypRef Expression
1 resubdrg 20744 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
21simpri 488 . . . . 5 fld ∈ DivRing
3 drngring 19501 . . . . . 6 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
4 f1oi 6645 . . . . . . . . . 10 ( I ↾ ℤ):ℤ–1-1-onto→ℤ
5 f1of1 6607 . . . . . . . . . 10 (( I ↾ ℤ):ℤ–1-1-onto→ℤ → ( I ↾ ℤ):ℤ–1-1→ℤ)
64, 5ax-mp 5 . . . . . . . . 9 ( I ↾ ℤ):ℤ–1-1→ℤ
7 zssre 11980 . . . . . . . . 9 ℤ ⊆ ℝ
8 f1ss 6573 . . . . . . . . 9 ((( I ↾ ℤ):ℤ–1-1→ℤ ∧ ℤ ⊆ ℝ) → ( I ↾ ℤ):ℤ–1-1→ℝ)
96, 7, 8mp2an 690 . . . . . . . 8 ( I ↾ ℤ):ℤ–1-1→ℝ
10 zrhre 31253 . . . . . . . . 9 (ℤRHom‘ℝfld) = ( I ↾ ℤ)
11 f1eq1 6563 . . . . . . . . 9 ((ℤRHom‘ℝfld) = ( I ↾ ℤ) → ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ( I ↾ ℤ):ℤ–1-1→ℝ))
1210, 11ax-mp 5 . . . . . . . 8 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ( I ↾ ℤ):ℤ–1-1→ℝ)
139, 12mpbir 233 . . . . . . 7 (ℤRHom‘ℝfld):ℤ–1-1→ℝ
14 rebase 20742 . . . . . . . 8 ℝ = (Base‘ℝfld)
15 eqid 2819 . . . . . . . 8 (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld)
16 re0g 20748 . . . . . . . 8 0 = (0g‘ℝfld)
1714, 15, 16zrhchr 31210 . . . . . . 7 (ℝfld ∈ Ring → ((chr‘ℝfld) = 0 ↔ (ℤRHom‘ℝfld):ℤ–1-1→ℝ))
1813, 17mpbiri 260 . . . . . 6 (ℝfld ∈ Ring → (chr‘ℝfld) = 0)
192, 3, 18mp2b 10 . . . . 5 (chr‘ℝfld) = 0
20 eqid 2819 . . . . . 6 (/r‘ℝfld) = (/r‘ℝfld)
2114, 20, 15qqhvval 31217 . . . . 5 (((ℝfld ∈ DivRing ∧ (chr‘ℝfld) = 0) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘ℝfld)‘𝑞) = (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))))
222, 19, 21mpanl12 700 . . . 4 (𝑞 ∈ ℚ → ((ℚHom‘ℝfld)‘𝑞) = (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))))
23 f1f 6568 . . . . . . . 8 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ → (ℤRHom‘ℝfld):ℤ⟶ℝ)
2413, 23ax-mp 5 . . . . . . 7 (ℤRHom‘ℝfld):ℤ⟶ℝ
2524a1i 11 . . . . . 6 (𝑞 ∈ ℚ → (ℤRHom‘ℝfld):ℤ⟶ℝ)
26 qnumcl 16072 . . . . . 6 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
2725, 26ffvelrnd 6845 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) ∈ ℝ)
28 qdencl 16073 . . . . . . 7 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
2928nnzd 12078 . . . . . 6 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℤ)
3025, 29ffvelrnd 6845 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ∈ ℝ)
3129anim1i 616 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
3214, 15, 16zrhf1ker 31209 . . . . . . . . . . . 12 (ℝfld ∈ Ring → ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ((ℤRHom‘ℝfld) “ {0}) = {0}))
332, 3, 32mp2b 10 . . . . . . . . . . 11 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ((ℤRHom‘ℝfld) “ {0}) = {0})
3413, 33mpbi 232 . . . . . . . . . 10 ((ℤRHom‘ℝfld) “ {0}) = {0}
3534eleq2i 2902 . . . . . . . . 9 ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ (denom‘𝑞) ∈ {0})
36 ffn 6507 . . . . . . . . . 10 ((ℤRHom‘ℝfld):ℤ⟶ℝ → (ℤRHom‘ℝfld) Fn ℤ)
37 fniniseg 6823 . . . . . . . . . 10 ((ℤRHom‘ℝfld) Fn ℤ → ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)))
3824, 36, 37mp2b 10 . . . . . . . . 9 ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
39 fvex 6676 . . . . . . . . . 10 (denom‘𝑞) ∈ V
4039elsn 4574 . . . . . . . . 9 ((denom‘𝑞) ∈ {0} ↔ (denom‘𝑞) = 0)
4135, 38, 403bitr3ri 304 . . . . . . . 8 ((denom‘𝑞) = 0 ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
4231, 41sylibr 236 . . . . . . 7 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → (denom‘𝑞) = 0)
4328nnne0d 11679 . . . . . . . . 9 (𝑞 ∈ ℚ → (denom‘𝑞) ≠ 0)
4443adantr 483 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → (denom‘𝑞) ≠ 0)
4544neneqd 3019 . . . . . . 7 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → ¬ (denom‘𝑞) = 0)
4642, 45pm2.65da 815 . . . . . 6 (𝑞 ∈ ℚ → ¬ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)
4746neqned 3021 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ≠ 0)
48 redvr 20753 . . . . 5 ((((ℤRHom‘ℝfld)‘(numer‘𝑞)) ∈ ℝ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ∈ ℝ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ≠ 0) → (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))) = (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))))
4927, 30, 47, 48syl3anc 1365 . . . 4 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))) = (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))))
5010fveq1i 6664 . . . . . . . 8 ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (( I ↾ ℤ)‘(numer‘𝑞))
51 fvresi 6928 . . . . . . . 8 ((numer‘𝑞) ∈ ℤ → (( I ↾ ℤ)‘(numer‘𝑞)) = (numer‘𝑞))
5250, 51syl5eq 2866 . . . . . . 7 ((numer‘𝑞) ∈ ℤ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (numer‘𝑞))
5326, 52syl 17 . . . . . 6 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (numer‘𝑞))
5410fveq1i 6664 . . . . . . . 8 ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (( I ↾ ℤ)‘(denom‘𝑞))
55 fvresi 6928 . . . . . . . 8 ((denom‘𝑞) ∈ ℤ → (( I ↾ ℤ)‘(denom‘𝑞)) = (denom‘𝑞))
5654, 55syl5eq 2866 . . . . . . 7 ((denom‘𝑞) ∈ ℤ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (denom‘𝑞))
5729, 56syl 17 . . . . . 6 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (denom‘𝑞))
5853, 57oveq12d 7166 . . . . 5 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))) = ((numer‘𝑞) / (denom‘𝑞)))
59 qeqnumdivden 16078 . . . . 5 (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
6058, 59eqtr4d 2857 . . . 4 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))) = 𝑞)
6122, 49, 603eqtrd 2858 . . 3 (𝑞 ∈ ℚ → ((ℚHom‘ℝfld)‘𝑞) = 𝑞)
6261mpteq2ia 5148 . 2 (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞)) = (𝑞 ∈ ℚ ↦ 𝑞)
6314, 20, 15qqhf 31220 . . . . . 6 ((ℝfld ∈ DivRing ∧ (chr‘ℝfld) = 0) → (ℚHom‘ℝfld):ℚ⟶ℝ)
642, 19, 63mp2an 690 . . . . 5 (ℚHom‘ℝfld):ℚ⟶ℝ
6564a1i 11 . . . 4 (⊤ → (ℚHom‘ℝfld):ℚ⟶ℝ)
6665feqmptd 6726 . . 3 (⊤ → (ℚHom‘ℝfld) = (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞)))
6766mptru 1537 . 2 (ℚHom‘ℝfld) = (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞))
68 mptresid 5911 . 2 ( I ↾ ℚ) = (𝑞 ∈ ℚ ↦ 𝑞)
6962, 67, 683eqtr4i 2852 1 (ℚHom‘ℝfld) = ( I ↾ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1530  wtru 1531  wcel 2107  wne 3014  wss 3934  {csn 4559  cmpt 5137   I cid 5452  ccnv 5547  cres 5550  cima 5551   Fn wfn 6343  wf 6344  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  cr 10528  0cc0 10529   / cdiv 11289  cz 11973  cq 12340  numercnumer 16065  denomcdenom 16066  Ringcrg 19289  /rcdvr 19424  DivRingcdr 19494  SubRingcsubrg 19523  fldccnfld 20537  ℤRHomczrh 20639  chrcchr 20641  fldcrefld 20740  ℚHomcqqh 31206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12885  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15836  df-numer 16067  df-denom 16068  df-gz 16258  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-od 18648  df-cmn 18900  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-dvr 19425  df-rnghom 19459  df-drng 19496  df-subrg 19525  df-cnfld 20538  df-zring 20610  df-zrh 20643  df-chr 20645  df-refld 20741  df-qqh 31207
This theorem is referenced by:  rrhre  31255
  Copyright terms: Public domain W3C validator