Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhre Structured version   Visualization version   GIF version

Theorem qqhre 32665
Description: The ℚHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017.)
Assertion
Ref Expression
qqhre (ℚHom‘ℝfld) = ( I ↾ ℚ)

Proof of Theorem qqhre
StepHypRef Expression
1 resubdrg 21035 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
21simpri 487 . . . . 5 fld ∈ DivRing
3 drngring 20226 . . . . . 6 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
4 f1oi 6826 . . . . . . . . . 10 ( I ↾ ℤ):ℤ–1-1-onto→ℤ
5 f1of1 6787 . . . . . . . . . 10 (( I ↾ ℤ):ℤ–1-1-onto→ℤ → ( I ↾ ℤ):ℤ–1-1→ℤ)
64, 5ax-mp 5 . . . . . . . . 9 ( I ↾ ℤ):ℤ–1-1→ℤ
7 zssre 12514 . . . . . . . . 9 ℤ ⊆ ℝ
8 f1ss 6748 . . . . . . . . 9 ((( I ↾ ℤ):ℤ–1-1→ℤ ∧ ℤ ⊆ ℝ) → ( I ↾ ℤ):ℤ–1-1→ℝ)
96, 7, 8mp2an 691 . . . . . . . 8 ( I ↾ ℤ):ℤ–1-1→ℝ
10 zrhre 32664 . . . . . . . . 9 (ℤRHom‘ℝfld) = ( I ↾ ℤ)
11 f1eq1 6737 . . . . . . . . 9 ((ℤRHom‘ℝfld) = ( I ↾ ℤ) → ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ( I ↾ ℤ):ℤ–1-1→ℝ))
1210, 11ax-mp 5 . . . . . . . 8 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ( I ↾ ℤ):ℤ–1-1→ℝ)
139, 12mpbir 230 . . . . . . 7 (ℤRHom‘ℝfld):ℤ–1-1→ℝ
14 rebase 21033 . . . . . . . 8 ℝ = (Base‘ℝfld)
15 eqid 2733 . . . . . . . 8 (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld)
16 re0g 21039 . . . . . . . 8 0 = (0g‘ℝfld)
1714, 15, 16zrhchr 32621 . . . . . . 7 (ℝfld ∈ Ring → ((chr‘ℝfld) = 0 ↔ (ℤRHom‘ℝfld):ℤ–1-1→ℝ))
1813, 17mpbiri 258 . . . . . 6 (ℝfld ∈ Ring → (chr‘ℝfld) = 0)
192, 3, 18mp2b 10 . . . . 5 (chr‘ℝfld) = 0
20 eqid 2733 . . . . . 6 (/r‘ℝfld) = (/r‘ℝfld)
2114, 20, 15qqhvval 32628 . . . . 5 (((ℝfld ∈ DivRing ∧ (chr‘ℝfld) = 0) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘ℝfld)‘𝑞) = (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))))
222, 19, 21mpanl12 701 . . . 4 (𝑞 ∈ ℚ → ((ℚHom‘ℝfld)‘𝑞) = (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))))
23 f1f 6742 . . . . . . . 8 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ → (ℤRHom‘ℝfld):ℤ⟶ℝ)
2413, 23ax-mp 5 . . . . . . 7 (ℤRHom‘ℝfld):ℤ⟶ℝ
2524a1i 11 . . . . . 6 (𝑞 ∈ ℚ → (ℤRHom‘ℝfld):ℤ⟶ℝ)
26 qnumcl 16623 . . . . . 6 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
2725, 26ffvelcdmd 7040 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) ∈ ℝ)
28 qdencl 16624 . . . . . . 7 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
2928nnzd 12534 . . . . . 6 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℤ)
3025, 29ffvelcdmd 7040 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ∈ ℝ)
3129anim1i 616 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
3214, 15, 16zrhf1ker 32620 . . . . . . . . . . . 12 (ℝfld ∈ Ring → ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ((ℤRHom‘ℝfld) “ {0}) = {0}))
332, 3, 32mp2b 10 . . . . . . . . . . 11 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ((ℤRHom‘ℝfld) “ {0}) = {0})
3413, 33mpbi 229 . . . . . . . . . 10 ((ℤRHom‘ℝfld) “ {0}) = {0}
3534eleq2i 2826 . . . . . . . . 9 ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ (denom‘𝑞) ∈ {0})
36 ffn 6672 . . . . . . . . . 10 ((ℤRHom‘ℝfld):ℤ⟶ℝ → (ℤRHom‘ℝfld) Fn ℤ)
37 fniniseg 7014 . . . . . . . . . 10 ((ℤRHom‘ℝfld) Fn ℤ → ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)))
3824, 36, 37mp2b 10 . . . . . . . . 9 ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
39 fvex 6859 . . . . . . . . . 10 (denom‘𝑞) ∈ V
4039elsn 4605 . . . . . . . . 9 ((denom‘𝑞) ∈ {0} ↔ (denom‘𝑞) = 0)
4135, 38, 403bitr3ri 302 . . . . . . . 8 ((denom‘𝑞) = 0 ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
4231, 41sylibr 233 . . . . . . 7 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → (denom‘𝑞) = 0)
4328nnne0d 12211 . . . . . . . . 9 (𝑞 ∈ ℚ → (denom‘𝑞) ≠ 0)
4443adantr 482 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → (denom‘𝑞) ≠ 0)
4544neneqd 2945 . . . . . . 7 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → ¬ (denom‘𝑞) = 0)
4642, 45pm2.65da 816 . . . . . 6 (𝑞 ∈ ℚ → ¬ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)
4746neqned 2947 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ≠ 0)
48 redvr 21044 . . . . 5 ((((ℤRHom‘ℝfld)‘(numer‘𝑞)) ∈ ℝ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ∈ ℝ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ≠ 0) → (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))) = (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))))
4927, 30, 47, 48syl3anc 1372 . . . 4 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))) = (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))))
5010fveq1i 6847 . . . . . . . 8 ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (( I ↾ ℤ)‘(numer‘𝑞))
51 fvresi 7123 . . . . . . . 8 ((numer‘𝑞) ∈ ℤ → (( I ↾ ℤ)‘(numer‘𝑞)) = (numer‘𝑞))
5250, 51eqtrid 2785 . . . . . . 7 ((numer‘𝑞) ∈ ℤ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (numer‘𝑞))
5326, 52syl 17 . . . . . 6 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (numer‘𝑞))
5410fveq1i 6847 . . . . . . . 8 ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (( I ↾ ℤ)‘(denom‘𝑞))
55 fvresi 7123 . . . . . . . 8 ((denom‘𝑞) ∈ ℤ → (( I ↾ ℤ)‘(denom‘𝑞)) = (denom‘𝑞))
5654, 55eqtrid 2785 . . . . . . 7 ((denom‘𝑞) ∈ ℤ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (denom‘𝑞))
5729, 56syl 17 . . . . . 6 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (denom‘𝑞))
5853, 57oveq12d 7379 . . . . 5 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))) = ((numer‘𝑞) / (denom‘𝑞)))
59 qeqnumdivden 16629 . . . . 5 (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
6058, 59eqtr4d 2776 . . . 4 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))) = 𝑞)
6122, 49, 603eqtrd 2777 . . 3 (𝑞 ∈ ℚ → ((ℚHom‘ℝfld)‘𝑞) = 𝑞)
6261mpteq2ia 5212 . 2 (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞)) = (𝑞 ∈ ℚ ↦ 𝑞)
6314, 20, 15qqhf 32631 . . . . . 6 ((ℝfld ∈ DivRing ∧ (chr‘ℝfld) = 0) → (ℚHom‘ℝfld):ℚ⟶ℝ)
642, 19, 63mp2an 691 . . . . 5 (ℚHom‘ℝfld):ℚ⟶ℝ
6564a1i 11 . . . 4 (⊤ → (ℚHom‘ℝfld):ℚ⟶ℝ)
6665feqmptd 6914 . . 3 (⊤ → (ℚHom‘ℝfld) = (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞)))
6766mptru 1549 . 2 (ℚHom‘ℝfld) = (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞))
68 mptresid 6008 . 2 ( I ↾ ℚ) = (𝑞 ∈ ℚ ↦ 𝑞)
6962, 67, 683eqtr4i 2771 1 (ℚHom‘ℝfld) = ( I ↾ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wtru 1543  wcel 2107  wne 2940  wss 3914  {csn 4590  cmpt 5192   I cid 5534  ccnv 5636  cres 5639  cima 5640   Fn wfn 6495  wf 6496  1-1wf1 6497  1-1-ontowf1o 6499  cfv 6500  (class class class)co 7361  cr 11058  0cc0 11059   / cdiv 11820  cz 12507  cq 12881  numercnumer 16616  denomcdenom 16617  Ringcrg 19972  /rcdvr 20119  DivRingcdr 20219  SubRingcsubrg 20260  fldccnfld 20819  ℤRHomczrh 20923  chrcchr 20925  fldcrefld 21031  ℚHomcqqh 32617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137  ax-addf 11138  ax-mulf 11139
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-tpos 8161  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-sup 9386  df-inf 9387  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-dec 12627  df-uz 12772  df-q 12882  df-rp 12924  df-fz 13434  df-fl 13706  df-mod 13784  df-seq 13916  df-exp 13977  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-dvds 16145  df-gcd 16383  df-numer 16618  df-denom 16619  df-gz 16810  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-starv 17156  df-tset 17160  df-ple 17161  df-ds 17163  df-unif 17164  df-0g 17331  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-mhm 18609  df-grp 18759  df-minusg 18760  df-sbg 18761  df-mulg 18881  df-subg 18933  df-ghm 19014  df-od 19318  df-cmn 19572  df-mgp 19905  df-ur 19922  df-ring 19974  df-cring 19975  df-oppr 20057  df-dvdsr 20078  df-unit 20079  df-invr 20109  df-dvr 20120  df-rnghom 20156  df-drng 20221  df-subrg 20262  df-cnfld 20820  df-zring 20893  df-zrh 20927  df-chr 20929  df-refld 21032  df-qqh 32618
This theorem is referenced by:  rrhre  32666
  Copyright terms: Public domain W3C validator