Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhre Structured version   Visualization version   GIF version

Theorem qqhre 34010
Description: The ℚHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017.)
Assertion
Ref Expression
qqhre (ℚHom‘ℝfld) = ( I ↾ ℚ)

Proof of Theorem qqhre
StepHypRef Expression
1 resubdrg 21517 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
21simpri 485 . . . . 5 fld ∈ DivRing
3 drngring 20645 . . . . . 6 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
4 f1oi 6838 . . . . . . . . . 10 ( I ↾ ℤ):ℤ–1-1-onto→ℤ
5 f1of1 6799 . . . . . . . . . 10 (( I ↾ ℤ):ℤ–1-1-onto→ℤ → ( I ↾ ℤ):ℤ–1-1→ℤ)
64, 5ax-mp 5 . . . . . . . . 9 ( I ↾ ℤ):ℤ–1-1→ℤ
7 zssre 12536 . . . . . . . . 9 ℤ ⊆ ℝ
8 f1ss 6761 . . . . . . . . 9 ((( I ↾ ℤ):ℤ–1-1→ℤ ∧ ℤ ⊆ ℝ) → ( I ↾ ℤ):ℤ–1-1→ℝ)
96, 7, 8mp2an 692 . . . . . . . 8 ( I ↾ ℤ):ℤ–1-1→ℝ
10 zrhre 34009 . . . . . . . . 9 (ℤRHom‘ℝfld) = ( I ↾ ℤ)
11 f1eq1 6751 . . . . . . . . 9 ((ℤRHom‘ℝfld) = ( I ↾ ℤ) → ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ( I ↾ ℤ):ℤ–1-1→ℝ))
1210, 11ax-mp 5 . . . . . . . 8 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ( I ↾ ℤ):ℤ–1-1→ℝ)
139, 12mpbir 231 . . . . . . 7 (ℤRHom‘ℝfld):ℤ–1-1→ℝ
14 rebase 21515 . . . . . . . 8 ℝ = (Base‘ℝfld)
15 eqid 2729 . . . . . . . 8 (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld)
16 re0g 21521 . . . . . . . 8 0 = (0g‘ℝfld)
1714, 15, 16zrhchr 33964 . . . . . . 7 (ℝfld ∈ Ring → ((chr‘ℝfld) = 0 ↔ (ℤRHom‘ℝfld):ℤ–1-1→ℝ))
1813, 17mpbiri 258 . . . . . 6 (ℝfld ∈ Ring → (chr‘ℝfld) = 0)
192, 3, 18mp2b 10 . . . . 5 (chr‘ℝfld) = 0
20 eqid 2729 . . . . . 6 (/r‘ℝfld) = (/r‘ℝfld)
2114, 20, 15qqhvval 33973 . . . . 5 (((ℝfld ∈ DivRing ∧ (chr‘ℝfld) = 0) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘ℝfld)‘𝑞) = (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))))
222, 19, 21mpanl12 702 . . . 4 (𝑞 ∈ ℚ → ((ℚHom‘ℝfld)‘𝑞) = (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))))
23 f1f 6756 . . . . . . . 8 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ → (ℤRHom‘ℝfld):ℤ⟶ℝ)
2413, 23ax-mp 5 . . . . . . 7 (ℤRHom‘ℝfld):ℤ⟶ℝ
2524a1i 11 . . . . . 6 (𝑞 ∈ ℚ → (ℤRHom‘ℝfld):ℤ⟶ℝ)
26 qnumcl 16710 . . . . . 6 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
2725, 26ffvelcdmd 7057 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) ∈ ℝ)
28 qdencl 16711 . . . . . . 7 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
2928nnzd 12556 . . . . . 6 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℤ)
3025, 29ffvelcdmd 7057 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ∈ ℝ)
3129anim1i 615 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
3214, 15, 16zrhf1ker 33963 . . . . . . . . . . . 12 (ℝfld ∈ Ring → ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ((ℤRHom‘ℝfld) “ {0}) = {0}))
332, 3, 32mp2b 10 . . . . . . . . . . 11 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ((ℤRHom‘ℝfld) “ {0}) = {0})
3413, 33mpbi 230 . . . . . . . . . 10 ((ℤRHom‘ℝfld) “ {0}) = {0}
3534eleq2i 2820 . . . . . . . . 9 ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ (denom‘𝑞) ∈ {0})
36 ffn 6688 . . . . . . . . . 10 ((ℤRHom‘ℝfld):ℤ⟶ℝ → (ℤRHom‘ℝfld) Fn ℤ)
37 fniniseg 7032 . . . . . . . . . 10 ((ℤRHom‘ℝfld) Fn ℤ → ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)))
3824, 36, 37mp2b 10 . . . . . . . . 9 ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
39 fvex 6871 . . . . . . . . . 10 (denom‘𝑞) ∈ V
4039elsn 4604 . . . . . . . . 9 ((denom‘𝑞) ∈ {0} ↔ (denom‘𝑞) = 0)
4135, 38, 403bitr3ri 302 . . . . . . . 8 ((denom‘𝑞) = 0 ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
4231, 41sylibr 234 . . . . . . 7 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → (denom‘𝑞) = 0)
4328nnne0d 12236 . . . . . . . . 9 (𝑞 ∈ ℚ → (denom‘𝑞) ≠ 0)
4443adantr 480 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → (denom‘𝑞) ≠ 0)
4544neneqd 2930 . . . . . . 7 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → ¬ (denom‘𝑞) = 0)
4642, 45pm2.65da 816 . . . . . 6 (𝑞 ∈ ℚ → ¬ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)
4746neqned 2932 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ≠ 0)
48 redvr 21526 . . . . 5 ((((ℤRHom‘ℝfld)‘(numer‘𝑞)) ∈ ℝ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ∈ ℝ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ≠ 0) → (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))) = (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))))
4927, 30, 47, 48syl3anc 1373 . . . 4 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))) = (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))))
5010fveq1i 6859 . . . . . . . 8 ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (( I ↾ ℤ)‘(numer‘𝑞))
51 fvresi 7147 . . . . . . . 8 ((numer‘𝑞) ∈ ℤ → (( I ↾ ℤ)‘(numer‘𝑞)) = (numer‘𝑞))
5250, 51eqtrid 2776 . . . . . . 7 ((numer‘𝑞) ∈ ℤ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (numer‘𝑞))
5326, 52syl 17 . . . . . 6 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (numer‘𝑞))
5410fveq1i 6859 . . . . . . . 8 ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (( I ↾ ℤ)‘(denom‘𝑞))
55 fvresi 7147 . . . . . . . 8 ((denom‘𝑞) ∈ ℤ → (( I ↾ ℤ)‘(denom‘𝑞)) = (denom‘𝑞))
5654, 55eqtrid 2776 . . . . . . 7 ((denom‘𝑞) ∈ ℤ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (denom‘𝑞))
5729, 56syl 17 . . . . . 6 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (denom‘𝑞))
5853, 57oveq12d 7405 . . . . 5 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))) = ((numer‘𝑞) / (denom‘𝑞)))
59 qeqnumdivden 16716 . . . . 5 (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
6058, 59eqtr4d 2767 . . . 4 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))) = 𝑞)
6122, 49, 603eqtrd 2768 . . 3 (𝑞 ∈ ℚ → ((ℚHom‘ℝfld)‘𝑞) = 𝑞)
6261mpteq2ia 5202 . 2 (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞)) = (𝑞 ∈ ℚ ↦ 𝑞)
6314, 20, 15qqhf 33976 . . . . . 6 ((ℝfld ∈ DivRing ∧ (chr‘ℝfld) = 0) → (ℚHom‘ℝfld):ℚ⟶ℝ)
642, 19, 63mp2an 692 . . . . 5 (ℚHom‘ℝfld):ℚ⟶ℝ
6564a1i 11 . . . 4 (⊤ → (ℚHom‘ℝfld):ℚ⟶ℝ)
6665feqmptd 6929 . . 3 (⊤ → (ℚHom‘ℝfld) = (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞)))
6766mptru 1547 . 2 (ℚHom‘ℝfld) = (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞))
68 mptresid 6022 . 2 ( I ↾ ℚ) = (𝑞 ∈ ℚ ↦ 𝑞)
6962, 67, 683eqtr4i 2762 1 (ℚHom‘ℝfld) = ( I ↾ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wss 3914  {csn 4589  cmpt 5188   I cid 5532  ccnv 5637  cres 5640  cima 5641   Fn wfn 6506  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068   / cdiv 11835  cz 12529  cq 12907  numercnumer 16703  denomcdenom 16704  Ringcrg 20142  /rcdvr 20309  SubRingcsubrg 20478  DivRingcdr 20638  fldccnfld 21264  ℤRHomczrh 21409  chrcchr 21411  fldcrefld 21513  ℚHomcqqh 33960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-numer 16705  df-denom 16706  df-gz 16901  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-od 19458  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-chr 21415  df-refld 21514  df-qqh 33961
This theorem is referenced by:  rrhre  34011
  Copyright terms: Public domain W3C validator