Proof of Theorem qqhre
| Step | Hyp | Ref
| Expression |
| 1 | | resubdrg 21626 |
. . . . . 6
⊢ (ℝ
∈ (SubRing‘ℂfld) ∧ ℝfld ∈
DivRing) |
| 2 | 1 | simpri 485 |
. . . . 5
⊢
ℝfld ∈ DivRing |
| 3 | | drngring 20736 |
. . . . . 6
⊢
(ℝfld ∈ DivRing → ℝfld
∈ Ring) |
| 4 | | f1oi 6886 |
. . . . . . . . . 10
⊢ ( I
↾ ℤ):ℤ–1-1-onto→ℤ |
| 5 | | f1of1 6847 |
. . . . . . . . . 10
⊢ (( I
↾ ℤ):ℤ–1-1-onto→ℤ → ( I ↾
ℤ):ℤ–1-1→ℤ) |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . 9
⊢ ( I
↾ ℤ):ℤ–1-1→ℤ |
| 7 | | zssre 12620 |
. . . . . . . . 9
⊢ ℤ
⊆ ℝ |
| 8 | | f1ss 6809 |
. . . . . . . . 9
⊢ ((( I
↾ ℤ):ℤ–1-1→ℤ ∧ ℤ ⊆ ℝ) → (
I ↾ ℤ):ℤ–1-1→ℝ) |
| 9 | 6, 7, 8 | mp2an 692 |
. . . . . . . 8
⊢ ( I
↾ ℤ):ℤ–1-1→ℝ |
| 10 | | zrhre 34020 |
. . . . . . . . 9
⊢
(ℤRHom‘ℝfld) = ( I ↾
ℤ) |
| 11 | | f1eq1 6799 |
. . . . . . . . 9
⊢
((ℤRHom‘ℝfld) = ( I ↾ ℤ) →
((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ( I ↾
ℤ):ℤ–1-1→ℝ)) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . 8
⊢
((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ( I ↾
ℤ):ℤ–1-1→ℝ) |
| 13 | 9, 12 | mpbir 231 |
. . . . . . 7
⊢
(ℤRHom‘ℝfld):ℤ–1-1→ℝ |
| 14 | | rebase 21624 |
. . . . . . . 8
⊢ ℝ =
(Base‘ℝfld) |
| 15 | | eqid 2737 |
. . . . . . . 8
⊢
(ℤRHom‘ℝfld) =
(ℤRHom‘ℝfld) |
| 16 | | re0g 21630 |
. . . . . . . 8
⊢ 0 =
(0g‘ℝfld) |
| 17 | 14, 15, 16 | zrhchr 33975 |
. . . . . . 7
⊢
(ℝfld ∈ Ring →
((chr‘ℝfld) = 0 ↔
(ℤRHom‘ℝfld):ℤ–1-1→ℝ)) |
| 18 | 13, 17 | mpbiri 258 |
. . . . . 6
⊢
(ℝfld ∈ Ring →
(chr‘ℝfld) = 0) |
| 19 | 2, 3, 18 | mp2b 10 |
. . . . 5
⊢
(chr‘ℝfld) = 0 |
| 20 | | eqid 2737 |
. . . . . 6
⊢
(/r‘ℝfld) =
(/r‘ℝfld) |
| 21 | 14, 20, 15 | qqhvval 33984 |
. . . . 5
⊢
(((ℝfld ∈ DivRing ∧
(chr‘ℝfld) = 0) ∧ 𝑞 ∈ ℚ) →
((ℚHom‘ℝfld)‘𝑞) =
(((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞)))) |
| 22 | 2, 19, 21 | mpanl12 702 |
. . . 4
⊢ (𝑞 ∈ ℚ →
((ℚHom‘ℝfld)‘𝑞) =
(((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞)))) |
| 23 | | f1f 6804 |
. . . . . . . 8
⊢
((ℤRHom‘ℝfld):ℤ–1-1→ℝ →
(ℤRHom‘ℝfld):ℤ⟶ℝ) |
| 24 | 13, 23 | ax-mp 5 |
. . . . . . 7
⊢
(ℤRHom‘ℝfld):ℤ⟶ℝ |
| 25 | 24 | a1i 11 |
. . . . . 6
⊢ (𝑞 ∈ ℚ →
(ℤRHom‘ℝfld):ℤ⟶ℝ) |
| 26 | | qnumcl 16777 |
. . . . . 6
⊢ (𝑞 ∈ ℚ →
(numer‘𝑞) ∈
ℤ) |
| 27 | 25, 26 | ffvelcdmd 7105 |
. . . . 5
⊢ (𝑞 ∈ ℚ →
((ℤRHom‘ℝfld)‘(numer‘𝑞)) ∈
ℝ) |
| 28 | | qdencl 16778 |
. . . . . . 7
⊢ (𝑞 ∈ ℚ →
(denom‘𝑞) ∈
ℕ) |
| 29 | 28 | nnzd 12640 |
. . . . . 6
⊢ (𝑞 ∈ ℚ →
(denom‘𝑞) ∈
ℤ) |
| 30 | 25, 29 | ffvelcdmd 7105 |
. . . . 5
⊢ (𝑞 ∈ ℚ →
((ℤRHom‘ℝfld)‘(denom‘𝑞)) ∈
ℝ) |
| 31 | 29 | anim1i 615 |
. . . . . . . 8
⊢ ((𝑞 ∈ ℚ ∧
((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) →
((denom‘𝑞) ∈
ℤ ∧
((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)) |
| 32 | 14, 15, 16 | zrhf1ker 33974 |
. . . . . . . . . . . 12
⊢
(ℝfld ∈ Ring →
((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ (◡(ℤRHom‘ℝfld)
“ {0}) = {0})) |
| 33 | 2, 3, 32 | mp2b 10 |
. . . . . . . . . . 11
⊢
((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ (◡(ℤRHom‘ℝfld)
“ {0}) = {0}) |
| 34 | 13, 33 | mpbi 230 |
. . . . . . . . . 10
⊢ (◡(ℤRHom‘ℝfld)
“ {0}) = {0} |
| 35 | 34 | eleq2i 2833 |
. . . . . . . . 9
⊢
((denom‘𝑞)
∈ (◡(ℤRHom‘ℝfld)
“ {0}) ↔ (denom‘𝑞) ∈ {0}) |
| 36 | | ffn 6736 |
. . . . . . . . . 10
⊢
((ℤRHom‘ℝfld):ℤ⟶ℝ →
(ℤRHom‘ℝfld) Fn ℤ) |
| 37 | | fniniseg 7080 |
. . . . . . . . . 10
⊢
((ℤRHom‘ℝfld) Fn ℤ →
((denom‘𝑞) ∈
(◡(ℤRHom‘ℝfld)
“ {0}) ↔ ((denom‘𝑞) ∈ ℤ ∧
((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))) |
| 38 | 24, 36, 37 | mp2b 10 |
. . . . . . . . 9
⊢
((denom‘𝑞)
∈ (◡(ℤRHom‘ℝfld)
“ {0}) ↔ ((denom‘𝑞) ∈ ℤ ∧
((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)) |
| 39 | | fvex 6919 |
. . . . . . . . . 10
⊢
(denom‘𝑞)
∈ V |
| 40 | 39 | elsn 4641 |
. . . . . . . . 9
⊢
((denom‘𝑞)
∈ {0} ↔ (denom‘𝑞) = 0) |
| 41 | 35, 38, 40 | 3bitr3ri 302 |
. . . . . . . 8
⊢
((denom‘𝑞) = 0
↔ ((denom‘𝑞)
∈ ℤ ∧
((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)) |
| 42 | 31, 41 | sylibr 234 |
. . . . . . 7
⊢ ((𝑞 ∈ ℚ ∧
((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) →
(denom‘𝑞) =
0) |
| 43 | 28 | nnne0d 12316 |
. . . . . . . . 9
⊢ (𝑞 ∈ ℚ →
(denom‘𝑞) ≠
0) |
| 44 | 43 | adantr 480 |
. . . . . . . 8
⊢ ((𝑞 ∈ ℚ ∧
((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) →
(denom‘𝑞) ≠
0) |
| 45 | 44 | neneqd 2945 |
. . . . . . 7
⊢ ((𝑞 ∈ ℚ ∧
((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → ¬
(denom‘𝑞) =
0) |
| 46 | 42, 45 | pm2.65da 817 |
. . . . . 6
⊢ (𝑞 ∈ ℚ → ¬
((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) |
| 47 | 46 | neqned 2947 |
. . . . 5
⊢ (𝑞 ∈ ℚ →
((ℤRHom‘ℝfld)‘(denom‘𝑞)) ≠ 0) |
| 48 | | redvr 21635 |
. . . . 5
⊢
((((ℤRHom‘ℝfld)‘(numer‘𝑞)) ∈ ℝ ∧
((ℤRHom‘ℝfld)‘(denom‘𝑞)) ∈ ℝ ∧
((ℤRHom‘ℝfld)‘(denom‘𝑞)) ≠ 0) →
(((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))) = (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞)))) |
| 49 | 27, 30, 47, 48 | syl3anc 1373 |
. . . 4
⊢ (𝑞 ∈ ℚ →
(((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))) = (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞)))) |
| 50 | 10 | fveq1i 6907 |
. . . . . . . 8
⊢
((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (( I ↾
ℤ)‘(numer‘𝑞)) |
| 51 | | fvresi 7193 |
. . . . . . . 8
⊢
((numer‘𝑞)
∈ ℤ → (( I ↾ ℤ)‘(numer‘𝑞)) = (numer‘𝑞)) |
| 52 | 50, 51 | eqtrid 2789 |
. . . . . . 7
⊢
((numer‘𝑞)
∈ ℤ →
((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (numer‘𝑞)) |
| 53 | 26, 52 | syl 17 |
. . . . . 6
⊢ (𝑞 ∈ ℚ →
((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (numer‘𝑞)) |
| 54 | 10 | fveq1i 6907 |
. . . . . . . 8
⊢
((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (( I ↾
ℤ)‘(denom‘𝑞)) |
| 55 | | fvresi 7193 |
. . . . . . . 8
⊢
((denom‘𝑞)
∈ ℤ → (( I ↾ ℤ)‘(denom‘𝑞)) = (denom‘𝑞)) |
| 56 | 54, 55 | eqtrid 2789 |
. . . . . . 7
⊢
((denom‘𝑞)
∈ ℤ →
((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (denom‘𝑞)) |
| 57 | 29, 56 | syl 17 |
. . . . . 6
⊢ (𝑞 ∈ ℚ →
((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (denom‘𝑞)) |
| 58 | 53, 57 | oveq12d 7449 |
. . . . 5
⊢ (𝑞 ∈ ℚ →
(((ℤRHom‘ℝfld)‘(numer‘𝑞)) /
((ℤRHom‘ℝfld)‘(denom‘𝑞))) = ((numer‘𝑞) / (denom‘𝑞))) |
| 59 | | qeqnumdivden 16783 |
. . . . 5
⊢ (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞))) |
| 60 | 58, 59 | eqtr4d 2780 |
. . . 4
⊢ (𝑞 ∈ ℚ →
(((ℤRHom‘ℝfld)‘(numer‘𝑞)) /
((ℤRHom‘ℝfld)‘(denom‘𝑞))) = 𝑞) |
| 61 | 22, 49, 60 | 3eqtrd 2781 |
. . 3
⊢ (𝑞 ∈ ℚ →
((ℚHom‘ℝfld)‘𝑞) = 𝑞) |
| 62 | 61 | mpteq2ia 5245 |
. 2
⊢ (𝑞 ∈ ℚ ↦
((ℚHom‘ℝfld)‘𝑞)) = (𝑞 ∈ ℚ ↦ 𝑞) |
| 63 | 14, 20, 15 | qqhf 33987 |
. . . . . 6
⊢
((ℝfld ∈ DivRing ∧
(chr‘ℝfld) = 0) →
(ℚHom‘ℝfld):ℚ⟶ℝ) |
| 64 | 2, 19, 63 | mp2an 692 |
. . . . 5
⊢
(ℚHom‘ℝfld):ℚ⟶ℝ |
| 65 | 64 | a1i 11 |
. . . 4
⊢ (⊤
→
(ℚHom‘ℝfld):ℚ⟶ℝ) |
| 66 | 65 | feqmptd 6977 |
. . 3
⊢ (⊤
→ (ℚHom‘ℝfld) = (𝑞 ∈ ℚ ↦
((ℚHom‘ℝfld)‘𝑞))) |
| 67 | 66 | mptru 1547 |
. 2
⊢
(ℚHom‘ℝfld) = (𝑞 ∈ ℚ ↦
((ℚHom‘ℝfld)‘𝑞)) |
| 68 | | mptresid 6069 |
. 2
⊢ ( I
↾ ℚ) = (𝑞
∈ ℚ ↦ 𝑞) |
| 69 | 62, 67, 68 | 3eqtr4i 2775 |
1
⊢
(ℚHom‘ℝfld) = ( I ↾
ℚ) |