HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atomli Structured version   Visualization version   GIF version

Theorem atomli 32248
Description: An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition 3.2.17 of [PtakPulmannova] p. 66. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atoml.1 𝐴C
Assertion
Ref Expression
atomli (𝐵 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}))

Proof of Theorem atomli
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atoml.1 . . . . . . . . 9 𝐴C
2 atelch 32210 . . . . . . . . 9 (𝐵 ∈ HAtoms → 𝐵C )
3 chjcl 31223 . . . . . . . . 9 ((𝐴C𝐵C ) → (𝐴 𝐵) ∈ C )
41, 2, 3sylancr 585 . . . . . . . 8 (𝐵 ∈ HAtoms → (𝐴 𝐵) ∈ C )
51choccli 31173 . . . . . . . 8 (⊥‘𝐴) ∈ C
6 chincl 31365 . . . . . . . 8 (((𝐴 𝐵) ∈ C ∧ (⊥‘𝐴) ∈ C ) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ C )
74, 5, 6sylancl 584 . . . . . . 7 (𝐵 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ C )
8 hatomic 32226 . . . . . . 7 ((((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ C ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)))
97, 8sylan 578 . . . . . 6 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)))
10 atelch 32210 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ HAtoms → 𝑥C )
11 inss2 4229 . . . . . . . . . . . . . . . . . 18 ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (⊥‘𝐴)
12 sstr 3986 . . . . . . . . . . . . . . . . . 18 ((𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (⊥‘𝐴)) → 𝑥 ⊆ (⊥‘𝐴))
1311, 12mpan2 689 . . . . . . . . . . . . . . . . 17 (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → 𝑥 ⊆ (⊥‘𝐴))
141pjococi 31303 . . . . . . . . . . . . . . . . . . . . 21 (⊥‘(⊥‘𝐴)) = 𝐴
1514oveq1i 7427 . . . . . . . . . . . . . . . . . . . 20 ((⊥‘(⊥‘𝐴)) ∨ 𝑥) = (𝐴 𝑥)
1615ineq1i 4207 . . . . . . . . . . . . . . . . . . 19 (((⊥‘(⊥‘𝐴)) ∨ 𝑥) ∩ (⊥‘𝐴)) = ((𝐴 𝑥) ∩ (⊥‘𝐴))
17 incom 4200 . . . . . . . . . . . . . . . . . . 19 (((⊥‘(⊥‘𝐴)) ∨ 𝑥) ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥))
1816, 17eqtr3i 2755 . . . . . . . . . . . . . . . . . 18 ((𝐴 𝑥) ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥))
19 pjoml3 31478 . . . . . . . . . . . . . . . . . . . 20 (((⊥‘𝐴) ∈ C𝑥C ) → (𝑥 ⊆ (⊥‘𝐴) → ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥)) = 𝑥))
205, 19mpan 688 . . . . . . . . . . . . . . . . . . 19 (𝑥C → (𝑥 ⊆ (⊥‘𝐴) → ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥)) = 𝑥))
2120imp 405 . . . . . . . . . . . . . . . . . 18 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥)) = 𝑥)
2218, 21eqtrid 2777 . . . . . . . . . . . . . . . . 17 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = 𝑥)
2310, 13, 22syl2an 594 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = 𝑥)
2423ad2ant2lr 746 . . . . . . . . . . . . . . 15 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = 𝑥)
25 inss1 4228 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (𝐴 𝐵)
26 sstr 3986 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (𝐴 𝐵)) → 𝑥 ⊆ (𝐴 𝐵))
2725, 26mpan2 689 . . . . . . . . . . . . . . . . . . 19 (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → 𝑥 ⊆ (𝐴 𝐵))
28 chub1 31373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴C𝐵C ) → 𝐴 ⊆ (𝐴 𝐵))
291, 28mpan 688 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵C𝐴 ⊆ (𝐴 𝐵))
3029adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑥C ) → 𝐴 ⊆ (𝐴 𝐵))
311, 3mpan 688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵C → (𝐴 𝐵) ∈ C )
32 chlub 31375 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴C𝑥C ∧ (𝐴 𝐵) ∈ C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ (𝐴 𝑥) ⊆ (𝐴 𝐵)))
331, 32mp3an1 1444 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥C ∧ (𝐴 𝐵) ∈ C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3431, 33sylan2 591 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥C𝐵C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3534biimpd 228 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥C𝐵C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3635ancoms 457 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑥C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3730, 36mpand 693 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵C𝑥C ) → (𝑥 ⊆ (𝐴 𝐵) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
382, 10, 37syl2an 594 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥 ⊆ (𝐴 𝐵) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3938imp 405 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
4027, 39sylan2 591 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
4140adantrr 715 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
42 chjcl 31223 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴C𝑥C ) → (𝐴 𝑥) ∈ C )
431, 10, 42sylancr 585 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ HAtoms → (𝐴 𝑥) ∈ C )
442, 43anim12i 611 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝐵C ∧ (𝐴 𝑥) ∈ C ))
4544adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐵C ∧ (𝐴 𝑥) ∈ C ))
46 chub1 31373 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C𝑥C ) → 𝐴 ⊆ (𝐴 𝑥))
471, 10, 46sylancr 585 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ HAtoms → 𝐴 ⊆ (𝐴 𝑥))
4847ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → 𝐴 ⊆ (𝐴 𝑥))
49 pm3.22 458 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms))
5049adantr 479 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms))
5127adantl 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → 𝑥 ⊆ (𝐴 𝐵))
52 incom 4200 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝑥) = (𝑥𝐴)
53 chsh 31090 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥C𝑥S )
541chshii 31093 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴S
55 orthin 31312 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥S𝐴S ) → (𝑥 ⊆ (⊥‘𝐴) → (𝑥𝐴) = 0))
5653, 54, 55sylancl 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥C → (𝑥 ⊆ (⊥‘𝐴) → (𝑥𝐴) = 0))
5756imp 405 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → (𝑥𝐴) = 0)
5852, 57eqtrid 2777 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → (𝐴𝑥) = 0)
5910, 13, 58syl2an 594 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝐴𝑥) = 0)
6051, 59jca 510 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0))
6160ad2ant2lr 746 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0))
62 atexch 32247 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0) → 𝐵 ⊆ (𝐴 𝑥)))
631, 62mp3an1 1444 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0) → 𝐵 ⊆ (𝐴 𝑥)))
6450, 61, 63sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → 𝐵 ⊆ (𝐴 𝑥))
65 chlub 31375 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴C𝐵C ∧ (𝐴 𝑥) ∈ C ) → ((𝐴 ⊆ (𝐴 𝑥) ∧ 𝐵 ⊆ (𝐴 𝑥)) ↔ (𝐴 𝐵) ⊆ (𝐴 𝑥)))
661, 65mp3an1 1444 . . . . . . . . . . . . . . . . . . . 20 ((𝐵C ∧ (𝐴 𝑥) ∈ C ) → ((𝐴 ⊆ (𝐴 𝑥) ∧ 𝐵 ⊆ (𝐴 𝑥)) ↔ (𝐴 𝐵) ⊆ (𝐴 𝑥)))
6766biimpd 228 . . . . . . . . . . . . . . . . . . 19 ((𝐵C ∧ (𝐴 𝑥) ∈ C ) → ((𝐴 ⊆ (𝐴 𝑥) ∧ 𝐵 ⊆ (𝐴 𝑥)) → (𝐴 𝐵) ⊆ (𝐴 𝑥)))
6867expd 414 . . . . . . . . . . . . . . . . . 18 ((𝐵C ∧ (𝐴 𝑥) ∈ C ) → (𝐴 ⊆ (𝐴 𝑥) → (𝐵 ⊆ (𝐴 𝑥) → (𝐴 𝐵) ⊆ (𝐴 𝑥))))
6945, 48, 64, 68syl3c 66 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐴 𝐵) ⊆ (𝐴 𝑥))
7041, 69eqssd 3995 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐴 𝑥) = (𝐴 𝐵))
7170ineq1d 4210 . . . . . . . . . . . . . . 15 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = ((𝐴 𝐵) ∩ (⊥‘𝐴)))
7224, 71eqtr3d 2767 . . . . . . . . . . . . . 14 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → 𝑥 = ((𝐴 𝐵) ∩ (⊥‘𝐴)))
7372eleq1d 2810 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
7473exp43 435 . . . . . . . . . . . 12 (𝐵 ∈ HAtoms → (𝑥 ∈ HAtoms → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0 → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))))
7574com24 95 . . . . . . . . . . 11 (𝐵 ∈ HAtoms → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0 → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → (𝑥 ∈ HAtoms → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))))
7675imp31 416 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝑥 ∈ HAtoms → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))
7776ibd 268 . . . . . . . . 9 (((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝑥 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
7877ex 411 . . . . . . . 8 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → (𝑥 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))
7978com23 86 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → (𝑥 ∈ HAtoms → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))
8079rexlimdv 3143 . . . . . 6 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → (∃𝑥 ∈ HAtoms 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
819, 80mpd 15 . . . . 5 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)
8281ex 411 . . . 4 (𝐵 ∈ HAtoms → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0 → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
8382necon1bd 2948 . . 3 (𝐵 ∈ HAtoms → (¬ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
8483orrd 861 . 2 (𝐵 ∈ HAtoms → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
85 elun 4146 . . 3 (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}) ↔ (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ {0}))
86 fvex 6907 . . . . . 6 (⊥‘𝐴) ∈ V
8786inex2 5318 . . . . 5 ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ V
8887elsn 4644 . . . 4 (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ {0} ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0)
8988orbi2i 910 . . 3 ((((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ {0}) ↔ (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
9085, 89bitri 274 . 2 (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}) ↔ (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
9184, 90sylibr 233 1 (𝐵 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2930  wrex 3060  cun 3943  cin 3944  wss 3945  {csn 4629  cfv 6547  (class class class)co 7417   S csh 30794   C cch 30795  cort 30796   chj 30799  0c0h 30801  HAtomscat 30831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cc 10458  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217  ax-mulf 11218  ax-hilex 30865  ax-hfvadd 30866  ax-hvcom 30867  ax-hvass 30868  ax-hv0cl 30869  ax-hvaddid 30870  ax-hfvmul 30871  ax-hvmulid 30872  ax-hvmulass 30873  ax-hvdistr1 30874  ax-hvdistr2 30875  ax-hvmul0 30876  ax-hfi 30945  ax-his1 30948  ax-his2 30949  ax-his3 30950  ax-his4 30951  ax-hcompl 31068
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-acn 9965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-ioo 13360  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-seq 13999  df-exp 14059  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464  df-rlim 15465  df-sum 15665  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-hom 17256  df-cco 17257  df-rest 17403  df-topn 17404  df-0g 17422  df-gsum 17423  df-topgen 17424  df-pt 17425  df-prds 17428  df-xrs 17483  df-qtop 17488  df-imas 17489  df-xps 17491  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-submnd 18740  df-mulg 19028  df-cntz 19272  df-cmn 19741  df-psmet 21275  df-xmet 21276  df-met 21277  df-bl 21278  df-mopn 21279  df-fbas 21280  df-fg 21281  df-cnfld 21284  df-top 22826  df-topon 22843  df-topsp 22865  df-bases 22879  df-cld 22953  df-ntr 22954  df-cls 22955  df-nei 23032  df-cn 23161  df-cnp 23162  df-lm 23163  df-haus 23249  df-tx 23496  df-hmeo 23689  df-fil 23780  df-fm 23872  df-flim 23873  df-flf 23874  df-xms 24256  df-ms 24257  df-tms 24258  df-cfil 25213  df-cau 25214  df-cmet 25215  df-grpo 30359  df-gid 30360  df-ginv 30361  df-gdiv 30362  df-ablo 30411  df-vc 30425  df-nv 30458  df-va 30461  df-ba 30462  df-sm 30463  df-0v 30464  df-vs 30465  df-nmcv 30466  df-ims 30467  df-dip 30567  df-ssp 30588  df-ph 30679  df-cbn 30729  df-hnorm 30834  df-hba 30835  df-hvsub 30837  df-hlim 30838  df-hcau 30839  df-sh 31073  df-ch 31087  df-oc 31118  df-ch0 31119  df-shs 31174  df-span 31175  df-chj 31176  df-chsup 31177  df-pjh 31261  df-cv 32145  df-at 32204
This theorem is referenced by:  atoml2i  32249
  Copyright terms: Public domain W3C validator