Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cvp | Structured version Visualization version GIF version |
Description: The Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvp | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → ((𝐴 ∩ 𝐵) = 0ℋ ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atelch 30804 | . . . 4 ⊢ (𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) | |
2 | chincl 29959 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∩ 𝐵) ∈ Cℋ ) | |
3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ∩ 𝐵) ∈ Cℋ ) |
4 | atcveq0 30808 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 ↔ (𝐴 ∩ 𝐵) = 0ℋ)) | |
5 | 3, 4 | sylancom 588 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 ↔ (𝐴 ∩ 𝐵) = 0ℋ)) |
6 | cvexch 30834 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | |
7 | 1, 6 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) |
8 | 5, 7 | bitr3d 280 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → ((𝐴 ∩ 𝐵) = 0ℋ ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1538 ∈ wcel 2103 ∩ cin 3890 class class class wbr 5080 (class class class)co 7308 Cℋ cch 29389 ∨ℋ chj 29393 0ℋc0h 29395 ⋖ℋ ccv 29424 HAtomscat 29425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-rep 5217 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 ax-un 7621 ax-inf2 9457 ax-cc 10251 ax-cnex 10987 ax-resscn 10988 ax-1cn 10989 ax-icn 10990 ax-addcl 10991 ax-addrcl 10992 ax-mulcl 10993 ax-mulrcl 10994 ax-mulcom 10995 ax-addass 10996 ax-mulass 10997 ax-distr 10998 ax-i2m1 10999 ax-1ne0 11000 ax-1rid 11001 ax-rnegex 11002 ax-rrecex 11003 ax-cnre 11004 ax-pre-lttri 11005 ax-pre-lttrn 11006 ax-pre-ltadd 11007 ax-pre-mulgt0 11008 ax-pre-sup 11009 ax-addf 11010 ax-mulf 11011 ax-hilex 29459 ax-hfvadd 29460 ax-hvcom 29461 ax-hvass 29462 ax-hv0cl 29463 ax-hvaddid 29464 ax-hfvmul 29465 ax-hvmulid 29466 ax-hvmulass 29467 ax-hvdistr1 29468 ax-hvdistr2 29469 ax-hvmul0 29470 ax-hfi 29539 ax-his1 29542 ax-his2 29543 ax-his3 29544 ax-his4 29545 ax-hcompl 29662 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3339 df-reu 3340 df-rab 3357 df-v 3438 df-sbc 3721 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4844 df-int 4886 df-iun 4932 df-iin 4933 df-br 5081 df-opab 5143 df-mpt 5164 df-tr 5198 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7265 df-ov 7311 df-oprab 7312 df-mpo 7313 df-of 7566 df-om 7749 df-1st 7867 df-2nd 7868 df-supp 8013 df-frecs 8132 df-wrecs 8163 df-recs 8237 df-rdg 8276 df-1o 8332 df-2o 8333 df-oadd 8336 df-omul 8337 df-er 8534 df-map 8653 df-pm 8654 df-ixp 8722 df-en 8770 df-dom 8771 df-sdom 8772 df-fin 8773 df-fsupp 9187 df-fi 9228 df-sup 9259 df-inf 9260 df-oi 9327 df-card 9755 df-acn 9758 df-pnf 11071 df-mnf 11072 df-xr 11073 df-ltxr 11074 df-le 11075 df-sub 11267 df-neg 11268 df-div 11693 df-nn 12034 df-2 12096 df-3 12097 df-4 12098 df-5 12099 df-6 12100 df-7 12101 df-8 12102 df-9 12103 df-n0 12294 df-z 12380 df-dec 12498 df-uz 12643 df-q 12749 df-rp 12791 df-xneg 12908 df-xadd 12909 df-xmul 12910 df-ioo 13143 df-ico 13145 df-icc 13146 df-fz 13300 df-fzo 13443 df-fl 13572 df-seq 13782 df-exp 13843 df-hash 14105 df-cj 14869 df-re 14870 df-im 14871 df-sqrt 15005 df-abs 15006 df-clim 15256 df-rlim 15257 df-sum 15457 df-struct 16907 df-sets 16924 df-slot 16942 df-ndx 16954 df-base 16972 df-ress 17001 df-plusg 17034 df-mulr 17035 df-starv 17036 df-sca 17037 df-vsca 17038 df-ip 17039 df-tset 17040 df-ple 17041 df-ds 17043 df-unif 17044 df-hom 17045 df-cco 17046 df-rest 17192 df-topn 17193 df-0g 17211 df-gsum 17212 df-topgen 17213 df-pt 17214 df-prds 17217 df-xrs 17272 df-qtop 17277 df-imas 17278 df-xps 17280 df-mre 17354 df-mrc 17355 df-acs 17357 df-mgm 18385 df-sgrp 18434 df-mnd 18445 df-submnd 18490 df-mulg 18760 df-cntz 18982 df-cmn 19447 df-psmet 20652 df-xmet 20653 df-met 20654 df-bl 20655 df-mopn 20656 df-fbas 20657 df-fg 20658 df-cnfld 20661 df-top 22106 df-topon 22123 df-topsp 22145 df-bases 22159 df-cld 22233 df-ntr 22234 df-cls 22235 df-nei 22312 df-cn 22441 df-cnp 22442 df-lm 22443 df-haus 22529 df-tx 22776 df-hmeo 22969 df-fil 23060 df-fm 23152 df-flim 23153 df-flf 23154 df-xms 23536 df-ms 23537 df-tms 23538 df-cfil 24482 df-cau 24483 df-cmet 24484 df-grpo 28953 df-gid 28954 df-ginv 28955 df-gdiv 28956 df-ablo 29005 df-vc 29019 df-nv 29052 df-va 29055 df-ba 29056 df-sm 29057 df-0v 29058 df-vs 29059 df-nmcv 29060 df-ims 29061 df-dip 29161 df-ssp 29182 df-ph 29273 df-cbn 29323 df-hnorm 29428 df-hba 29429 df-hvsub 29431 df-hlim 29432 df-hcau 29433 df-sh 29667 df-ch 29681 df-oc 29712 df-ch0 29713 df-shs 29768 df-span 29769 df-chj 29770 df-chsup 29771 df-pjh 29855 df-cv 30739 df-at 30798 |
This theorem is referenced by: atnssm0 30836 atcv0eq 30839 atexch 30841 atcvatlem 30845 atdmd 30858 atmd2 30860 |
Copyright terms: Public domain | W3C validator |