Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > atsseq | Structured version Visualization version GIF version |
Description: Two atoms in a subset relationship are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atsseq | ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atne0 30752 | . . . . 5 ⊢ (𝐴 ∈ HAtoms → 𝐴 ≠ 0ℋ) | |
2 | 1 | ad2antrr 724 | . . . 4 ⊢ (((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≠ 0ℋ) |
3 | atelch 30751 | . . . . . . . 8 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) | |
4 | atss 30753 | . . . . . . . 8 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) | |
5 | 3, 4 | sylan 581 | . . . . . . 7 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
6 | 5 | imp 408 | . . . . . 6 ⊢ (((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) ∧ 𝐴 ⊆ 𝐵) → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)) |
7 | 6 | ord 862 | . . . . 5 ⊢ (((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) ∧ 𝐴 ⊆ 𝐵) → (¬ 𝐴 = 𝐵 → 𝐴 = 0ℋ)) |
8 | 7 | necon1ad 2958 | . . . 4 ⊢ (((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ≠ 0ℋ → 𝐴 = 𝐵)) |
9 | 2, 8 | mpd 15 | . . 3 ⊢ (((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) ∧ 𝐴 ⊆ 𝐵) → 𝐴 = 𝐵) |
10 | 9 | ex 414 | . 2 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → 𝐴 = 𝐵)) |
11 | eqimss 3982 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
12 | 10, 11 | impbid1 224 | 1 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 845 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ⊆ wss 3892 Cℋ cch 29336 0ℋc0h 29342 HAtomscat 29372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-addf 10996 ax-mulf 10997 ax-hilex 29406 ax-hfvadd 29407 ax-hvcom 29408 ax-hvass 29409 ax-hv0cl 29410 ax-hvaddid 29411 ax-hfvmul 29412 ax-hvmulid 29413 ax-hvmulass 29414 ax-hvdistr1 29415 ax-hvdistr2 29416 ax-hvmul0 29417 ax-hfi 29486 ax-his1 29489 ax-his2 29490 ax-his3 29491 ax-his4 29492 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9245 df-inf 9246 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-n0 12280 df-z 12366 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-icc 13132 df-seq 13768 df-exp 13829 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-topgen 17199 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-top 22088 df-topon 22105 df-bases 22141 df-lm 22425 df-haus 22511 df-grpo 28900 df-gid 28901 df-ginv 28902 df-gdiv 28903 df-ablo 28952 df-vc 28966 df-nv 28999 df-va 29002 df-ba 29003 df-sm 29004 df-0v 29005 df-vs 29006 df-nmcv 29007 df-ims 29008 df-hnorm 29375 df-hvsub 29378 df-hlim 29379 df-sh 29614 df-ch 29628 df-ch0 29660 df-cv 30686 df-at 30745 |
This theorem is referenced by: atnemeq0 30784 |
Copyright terms: Public domain | W3C validator |