![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > atsseq | Structured version Visualization version GIF version |
Description: Two atoms in a subset relationship are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atsseq | ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atne0 29748 | . . . . 5 ⊢ (𝐴 ∈ HAtoms → 𝐴 ≠ 0ℋ) | |
2 | 1 | ad2antrr 717 | . . . 4 ⊢ (((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≠ 0ℋ) |
3 | atelch 29747 | . . . . . . . 8 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) | |
4 | atss 29749 | . . . . . . . 8 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) | |
5 | 3, 4 | sylan 575 | . . . . . . 7 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
6 | 5 | imp 397 | . . . . . 6 ⊢ (((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) ∧ 𝐴 ⊆ 𝐵) → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)) |
7 | 6 | ord 895 | . . . . 5 ⊢ (((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) ∧ 𝐴 ⊆ 𝐵) → (¬ 𝐴 = 𝐵 → 𝐴 = 0ℋ)) |
8 | 7 | necon1ad 3016 | . . . 4 ⊢ (((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ≠ 0ℋ → 𝐴 = 𝐵)) |
9 | 2, 8 | mpd 15 | . . 3 ⊢ (((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) ∧ 𝐴 ⊆ 𝐵) → 𝐴 = 𝐵) |
10 | 9 | ex 403 | . 2 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → 𝐴 = 𝐵)) |
11 | eqimss 3882 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
12 | 10, 11 | impbid1 217 | 1 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 878 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ⊆ wss 3798 Cℋ cch 28330 0ℋc0h 28336 HAtomscat 28366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 ax-addf 10331 ax-mulf 10332 ax-hilex 28400 ax-hfvadd 28401 ax-hvcom 28402 ax-hvass 28403 ax-hv0cl 28404 ax-hvaddid 28405 ax-hfvmul 28406 ax-hvmulid 28407 ax-hvmulass 28408 ax-hvdistr1 28409 ax-hvdistr2 28410 ax-hvmul0 28411 ax-hfi 28480 ax-his1 28483 ax-his2 28484 ax-his3 28485 ax-his4 28486 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-er 8009 df-map 8124 df-pm 8125 df-en 8223 df-dom 8224 df-sdom 8225 df-sup 8617 df-inf 8618 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-n0 11619 df-z 11705 df-uz 11969 df-q 12072 df-rp 12113 df-xneg 12232 df-xadd 12233 df-xmul 12234 df-icc 12470 df-seq 13096 df-exp 13155 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-topgen 16457 df-psmet 20098 df-xmet 20099 df-met 20100 df-bl 20101 df-mopn 20102 df-top 21069 df-topon 21086 df-bases 21121 df-lm 21404 df-haus 21490 df-grpo 27892 df-gid 27893 df-ginv 27894 df-gdiv 27895 df-ablo 27944 df-vc 27958 df-nv 27991 df-va 27994 df-ba 27995 df-sm 27996 df-0v 27997 df-vs 27998 df-nmcv 27999 df-ims 28000 df-hnorm 28369 df-hvsub 28372 df-hlim 28373 df-sh 28608 df-ch 28622 df-ch0 28654 df-cv 29682 df-at 29741 |
This theorem is referenced by: atnemeq0 29780 |
Copyright terms: Public domain | W3C validator |