MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem3 Structured version   Visualization version   GIF version

Theorem axdc3lem3 10139
Description: Simple substitution lemma for axdc3 10141. (Contributed by Mario Carneiro, 27-Jan-2013.)
Hypotheses
Ref Expression
axdc3lem3.1 𝐴 ∈ V
axdc3lem3.2 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
axdc3lem3.3 𝐵 ∈ V
Assertion
Ref Expression
axdc3lem3 (𝐵𝑆 ↔ ∃𝑚 ∈ ω (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
Distinct variable groups:   𝐴,𝑚,𝑛   𝐴,𝑠,𝑛   𝐵,𝑘,𝑚,𝑛   𝐵,𝑠,𝑘   𝐶,𝑚,𝑛   𝐶,𝑠   𝑚,𝐹,𝑛   𝐹,𝑠
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑘)   𝑆(𝑘,𝑚,𝑛,𝑠)   𝐹(𝑘)

Proof of Theorem axdc3lem3
StepHypRef Expression
1 axdc3lem3.2 . . 3 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
21eleq2i 2830 . 2 (𝐵𝑆𝐵 ∈ {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))})
3 axdc3lem3.3 . . 3 𝐵 ∈ V
4 feq1 6565 . . . . 5 (𝑠 = 𝐵 → (𝑠:suc 𝑛𝐴𝐵:suc 𝑛𝐴))
5 fveq1 6755 . . . . . 6 (𝑠 = 𝐵 → (𝑠‘∅) = (𝐵‘∅))
65eqeq1d 2740 . . . . 5 (𝑠 = 𝐵 → ((𝑠‘∅) = 𝐶 ↔ (𝐵‘∅) = 𝐶))
7 fveq1 6755 . . . . . . 7 (𝑠 = 𝐵 → (𝑠‘suc 𝑘) = (𝐵‘suc 𝑘))
8 fveq1 6755 . . . . . . . 8 (𝑠 = 𝐵 → (𝑠𝑘) = (𝐵𝑘))
98fveq2d 6760 . . . . . . 7 (𝑠 = 𝐵 → (𝐹‘(𝑠𝑘)) = (𝐹‘(𝐵𝑘)))
107, 9eleq12d 2833 . . . . . 6 (𝑠 = 𝐵 → ((𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) ↔ (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
1110ralbidv 3120 . . . . 5 (𝑠 = 𝐵 → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) ↔ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
124, 6, 113anbi123d 1434 . . . 4 (𝑠 = 𝐵 → ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) ↔ (𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘)))))
1312rexbidv 3225 . . 3 (𝑠 = 𝐵 → (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) ↔ ∃𝑛 ∈ ω (𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘)))))
143, 13elab 3602 . 2 (𝐵 ∈ {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ↔ ∃𝑛 ∈ ω (𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
15 suceq 6316 . . . . 5 (𝑛 = 𝑚 → suc 𝑛 = suc 𝑚)
1615feq2d 6570 . . . 4 (𝑛 = 𝑚 → (𝐵:suc 𝑛𝐴𝐵:suc 𝑚𝐴))
17 raleq 3333 . . . 4 (𝑛 = 𝑚 → (∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘)) ↔ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
1816, 173anbi13d 1436 . . 3 (𝑛 = 𝑚 → ((𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))) ↔ (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘)))))
1918cbvrexvw 3373 . 2 (∃𝑛 ∈ ω (𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))) ↔ ∃𝑚 ∈ ω (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
202, 14, 193bitri 296 1 (𝐵𝑆 ↔ ∃𝑚 ∈ ω (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  c0 4253  suc csuc 6253  wf 6414  cfv 6418  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  axdc3lem4  10140
  Copyright terms: Public domain W3C validator