Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axdc3 | Structured version Visualization version GIF version |
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149, with the addition of an initial value 𝐶. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013.) |
Ref | Expression |
---|---|
axdc3.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
axdc3 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axdc3.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | feq1 6565 | . . . . 5 ⊢ (𝑡 = 𝑠 → (𝑡:suc 𝑛⟶𝐴 ↔ 𝑠:suc 𝑛⟶𝐴)) | |
3 | fveq1 6755 | . . . . . 6 ⊢ (𝑡 = 𝑠 → (𝑡‘∅) = (𝑠‘∅)) | |
4 | 3 | eqeq1d 2740 | . . . . 5 ⊢ (𝑡 = 𝑠 → ((𝑡‘∅) = 𝐶 ↔ (𝑠‘∅) = 𝐶)) |
5 | fveq1 6755 | . . . . . . . 8 ⊢ (𝑡 = 𝑠 → (𝑡‘suc 𝑗) = (𝑠‘suc 𝑗)) | |
6 | fveq1 6755 | . . . . . . . . 9 ⊢ (𝑡 = 𝑠 → (𝑡‘𝑗) = (𝑠‘𝑗)) | |
7 | 6 | fveq2d 6760 | . . . . . . . 8 ⊢ (𝑡 = 𝑠 → (𝐹‘(𝑡‘𝑗)) = (𝐹‘(𝑠‘𝑗))) |
8 | 5, 7 | eleq12d 2833 | . . . . . . 7 ⊢ (𝑡 = 𝑠 → ((𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)))) |
9 | 8 | ralbidv 3120 | . . . . . 6 ⊢ (𝑡 = 𝑠 → (∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ ∀𝑗 ∈ 𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)))) |
10 | suceq 6316 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘) | |
11 | 10 | fveq2d 6760 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑠‘suc 𝑗) = (𝑠‘suc 𝑘)) |
12 | 2fveq3 6761 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝐹‘(𝑠‘𝑗)) = (𝐹‘(𝑠‘𝑘))) | |
13 | 11, 12 | eleq12d 2833 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → ((𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)) ↔ (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) |
14 | 13 | cbvralvw 3372 | . . . . . 6 ⊢ (∀𝑗 ∈ 𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)) ↔ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))) |
15 | 9, 14 | bitrdi 286 | . . . . 5 ⊢ (𝑡 = 𝑠 → (∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) |
16 | 2, 4, 15 | 3anbi123d 1434 | . . . 4 ⊢ (𝑡 = 𝑠 → ((𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗))) ↔ (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))))) |
17 | 16 | rexbidv 3225 | . . 3 ⊢ (𝑡 = 𝑠 → (∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗))) ↔ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))))) |
18 | 17 | cbvabv 2812 | . 2 ⊢ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} |
19 | eqid 2738 | . 2 ⊢ (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) = (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) | |
20 | 1, 18, 19 | axdc3lem4 10140 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 {crab 3067 Vcvv 3422 ∖ cdif 3880 ∅c0 4253 𝒫 cpw 4530 {csn 4558 ↦ cmpt 5153 dom cdm 5580 ↾ cres 5582 suc csuc 6253 ⟶wf 6414 ‘cfv 6418 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-dc 10133 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 |
This theorem is referenced by: axdc4lem 10142 |
Copyright terms: Public domain | W3C validator |