Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axdc3 | Structured version Visualization version GIF version |
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149, with the addition of an initial value 𝐶. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013.) |
Ref | Expression |
---|---|
axdc3.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
axdc3 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axdc3.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | feq1 6526 | . . . . 5 ⊢ (𝑡 = 𝑠 → (𝑡:suc 𝑛⟶𝐴 ↔ 𝑠:suc 𝑛⟶𝐴)) | |
3 | fveq1 6716 | . . . . . 6 ⊢ (𝑡 = 𝑠 → (𝑡‘∅) = (𝑠‘∅)) | |
4 | 3 | eqeq1d 2739 | . . . . 5 ⊢ (𝑡 = 𝑠 → ((𝑡‘∅) = 𝐶 ↔ (𝑠‘∅) = 𝐶)) |
5 | fveq1 6716 | . . . . . . . 8 ⊢ (𝑡 = 𝑠 → (𝑡‘suc 𝑗) = (𝑠‘suc 𝑗)) | |
6 | fveq1 6716 | . . . . . . . . 9 ⊢ (𝑡 = 𝑠 → (𝑡‘𝑗) = (𝑠‘𝑗)) | |
7 | 6 | fveq2d 6721 | . . . . . . . 8 ⊢ (𝑡 = 𝑠 → (𝐹‘(𝑡‘𝑗)) = (𝐹‘(𝑠‘𝑗))) |
8 | 5, 7 | eleq12d 2832 | . . . . . . 7 ⊢ (𝑡 = 𝑠 → ((𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)))) |
9 | 8 | ralbidv 3118 | . . . . . 6 ⊢ (𝑡 = 𝑠 → (∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ ∀𝑗 ∈ 𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)))) |
10 | suceq 6278 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘) | |
11 | 10 | fveq2d 6721 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑠‘suc 𝑗) = (𝑠‘suc 𝑘)) |
12 | 2fveq3 6722 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝐹‘(𝑠‘𝑗)) = (𝐹‘(𝑠‘𝑘))) | |
13 | 11, 12 | eleq12d 2832 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → ((𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)) ↔ (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) |
14 | 13 | cbvralvw 3358 | . . . . . 6 ⊢ (∀𝑗 ∈ 𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)) ↔ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))) |
15 | 9, 14 | bitrdi 290 | . . . . 5 ⊢ (𝑡 = 𝑠 → (∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) |
16 | 2, 4, 15 | 3anbi123d 1438 | . . . 4 ⊢ (𝑡 = 𝑠 → ((𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗))) ↔ (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))))) |
17 | 16 | rexbidv 3216 | . . 3 ⊢ (𝑡 = 𝑠 → (∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗))) ↔ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))))) |
18 | 17 | cbvabv 2811 | . 2 ⊢ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} |
19 | eqid 2737 | . 2 ⊢ (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) = (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) | |
20 | 1, 18, 19 | axdc3lem4 10067 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∃wex 1787 ∈ wcel 2110 {cab 2714 ∀wral 3061 ∃wrex 3062 {crab 3065 Vcvv 3408 ∖ cdif 3863 ∅c0 4237 𝒫 cpw 4513 {csn 4541 ↦ cmpt 5135 dom cdm 5551 ↾ cres 5553 suc csuc 6215 ⟶wf 6376 ‘cfv 6380 ωcom 7644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-dc 10060 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-1o 8202 |
This theorem is referenced by: axdc4lem 10069 |
Copyright terms: Public domain | W3C validator |