![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axdc3 | Structured version Visualization version GIF version |
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149, with the addition of an initial value 𝐶. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013.) |
Ref | Expression |
---|---|
axdc3.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
axdc3 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axdc3.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | feq1 6581 | . . . . 5 ⊢ (𝑡 = 𝑠 → (𝑡:suc 𝑛⟶𝐴 ↔ 𝑠:suc 𝑛⟶𝐴)) | |
3 | fveq1 6773 | . . . . . 6 ⊢ (𝑡 = 𝑠 → (𝑡‘∅) = (𝑠‘∅)) | |
4 | 3 | eqeq1d 2740 | . . . . 5 ⊢ (𝑡 = 𝑠 → ((𝑡‘∅) = 𝐶 ↔ (𝑠‘∅) = 𝐶)) |
5 | fveq1 6773 | . . . . . . . 8 ⊢ (𝑡 = 𝑠 → (𝑡‘suc 𝑗) = (𝑠‘suc 𝑗)) | |
6 | fveq1 6773 | . . . . . . . . 9 ⊢ (𝑡 = 𝑠 → (𝑡‘𝑗) = (𝑠‘𝑗)) | |
7 | 6 | fveq2d 6778 | . . . . . . . 8 ⊢ (𝑡 = 𝑠 → (𝐹‘(𝑡‘𝑗)) = (𝐹‘(𝑠‘𝑗))) |
8 | 5, 7 | eleq12d 2833 | . . . . . . 7 ⊢ (𝑡 = 𝑠 → ((𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)))) |
9 | 8 | ralbidv 3112 | . . . . . 6 ⊢ (𝑡 = 𝑠 → (∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ ∀𝑗 ∈ 𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)))) |
10 | suceq 6331 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘) | |
11 | 10 | fveq2d 6778 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑠‘suc 𝑗) = (𝑠‘suc 𝑘)) |
12 | 2fveq3 6779 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝐹‘(𝑠‘𝑗)) = (𝐹‘(𝑠‘𝑘))) | |
13 | 11, 12 | eleq12d 2833 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → ((𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)) ↔ (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) |
14 | 13 | cbvralvw 3383 | . . . . . 6 ⊢ (∀𝑗 ∈ 𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)) ↔ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))) |
15 | 9, 14 | bitrdi 287 | . . . . 5 ⊢ (𝑡 = 𝑠 → (∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) |
16 | 2, 4, 15 | 3anbi123d 1435 | . . . 4 ⊢ (𝑡 = 𝑠 → ((𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗))) ↔ (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))))) |
17 | 16 | rexbidv 3226 | . . 3 ⊢ (𝑡 = 𝑠 → (∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗))) ↔ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))))) |
18 | 17 | cbvabv 2811 | . 2 ⊢ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} |
19 | eqid 2738 | . 2 ⊢ (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) = (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) | |
20 | 1, 18, 19 | axdc3lem4 10209 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 {crab 3068 Vcvv 3432 ∖ cdif 3884 ∅c0 4256 𝒫 cpw 4533 {csn 4561 ↦ cmpt 5157 dom cdm 5589 ↾ cres 5591 suc csuc 6268 ⟶wf 6429 ‘cfv 6433 ωcom 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-dc 10202 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 |
This theorem is referenced by: axdc4lem 10211 |
Copyright terms: Public domain | W3C validator |