MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3 Structured version   Visualization version   GIF version

Theorem axdc3 10068
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149, with the addition of an initial value 𝐶. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013.)
Hypothesis
Ref Expression
axdc3.1 𝐴 ∈ V
Assertion
Ref Expression
axdc3 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,𝑘   𝐶,𝑔,𝑘   𝑔,𝐹,𝑘

Proof of Theorem axdc3
Dummy variables 𝑛 𝑠 𝑡 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc3.1 . 2 𝐴 ∈ V
2 feq1 6526 . . . . 5 (𝑡 = 𝑠 → (𝑡:suc 𝑛𝐴𝑠:suc 𝑛𝐴))
3 fveq1 6716 . . . . . 6 (𝑡 = 𝑠 → (𝑡‘∅) = (𝑠‘∅))
43eqeq1d 2739 . . . . 5 (𝑡 = 𝑠 → ((𝑡‘∅) = 𝐶 ↔ (𝑠‘∅) = 𝐶))
5 fveq1 6716 . . . . . . . 8 (𝑡 = 𝑠 → (𝑡‘suc 𝑗) = (𝑠‘suc 𝑗))
6 fveq1 6716 . . . . . . . . 9 (𝑡 = 𝑠 → (𝑡𝑗) = (𝑠𝑗))
76fveq2d 6721 . . . . . . . 8 (𝑡 = 𝑠 → (𝐹‘(𝑡𝑗)) = (𝐹‘(𝑠𝑗)))
85, 7eleq12d 2832 . . . . . . 7 (𝑡 = 𝑠 → ((𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)) ↔ (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗))))
98ralbidv 3118 . . . . . 6 (𝑡 = 𝑠 → (∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)) ↔ ∀𝑗𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗))))
10 suceq 6278 . . . . . . . . 9 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
1110fveq2d 6721 . . . . . . . 8 (𝑗 = 𝑘 → (𝑠‘suc 𝑗) = (𝑠‘suc 𝑘))
12 2fveq3 6722 . . . . . . . 8 (𝑗 = 𝑘 → (𝐹‘(𝑠𝑗)) = (𝐹‘(𝑠𝑘)))
1311, 12eleq12d 2832 . . . . . . 7 (𝑗 = 𝑘 → ((𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗)) ↔ (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
1413cbvralvw 3358 . . . . . 6 (∀𝑗𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗)) ↔ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))
159, 14bitrdi 290 . . . . 5 (𝑡 = 𝑠 → (∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)) ↔ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
162, 4, 153anbi123d 1438 . . . 4 (𝑡 = 𝑠 → ((𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗))) ↔ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
1716rexbidv 3216 . . 3 (𝑡 = 𝑠 → (∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗))) ↔ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
1817cbvabv 2811 . 2 {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
19 eqid 2737 . 2 (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) = (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
201, 18, 19axdc3lem4 10067 1 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  {cab 2714  wral 3061  wrex 3062  {crab 3065  Vcvv 3408  cdif 3863  c0 4237  𝒫 cpw 4513  {csn 4541  cmpt 5135  dom cdm 5551  cres 5553  suc csuc 6215  wf 6376  cfv 6380  ωcom 7644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-dc 10060
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-1o 8202
This theorem is referenced by:  axdc4lem  10069
  Copyright terms: Public domain W3C validator