MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3 Structured version   Visualization version   GIF version

Theorem axdc3 10523
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149, with the addition of an initial value 𝐶. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013.)
Hypothesis
Ref Expression
axdc3.1 𝐴 ∈ V
Assertion
Ref Expression
axdc3 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,𝑘   𝐶,𝑔,𝑘   𝑔,𝐹,𝑘

Proof of Theorem axdc3
Dummy variables 𝑛 𝑠 𝑡 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc3.1 . 2 𝐴 ∈ V
2 feq1 6728 . . . . 5 (𝑡 = 𝑠 → (𝑡:suc 𝑛𝐴𝑠:suc 𝑛𝐴))
3 fveq1 6919 . . . . . 6 (𝑡 = 𝑠 → (𝑡‘∅) = (𝑠‘∅))
43eqeq1d 2742 . . . . 5 (𝑡 = 𝑠 → ((𝑡‘∅) = 𝐶 ↔ (𝑠‘∅) = 𝐶))
5 fveq1 6919 . . . . . . . 8 (𝑡 = 𝑠 → (𝑡‘suc 𝑗) = (𝑠‘suc 𝑗))
6 fveq1 6919 . . . . . . . . 9 (𝑡 = 𝑠 → (𝑡𝑗) = (𝑠𝑗))
76fveq2d 6924 . . . . . . . 8 (𝑡 = 𝑠 → (𝐹‘(𝑡𝑗)) = (𝐹‘(𝑠𝑗)))
85, 7eleq12d 2838 . . . . . . 7 (𝑡 = 𝑠 → ((𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)) ↔ (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗))))
98ralbidv 3184 . . . . . 6 (𝑡 = 𝑠 → (∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)) ↔ ∀𝑗𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗))))
10 suceq 6461 . . . . . . . . 9 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
1110fveq2d 6924 . . . . . . . 8 (𝑗 = 𝑘 → (𝑠‘suc 𝑗) = (𝑠‘suc 𝑘))
12 2fveq3 6925 . . . . . . . 8 (𝑗 = 𝑘 → (𝐹‘(𝑠𝑗)) = (𝐹‘(𝑠𝑘)))
1311, 12eleq12d 2838 . . . . . . 7 (𝑗 = 𝑘 → ((𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗)) ↔ (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
1413cbvralvw 3243 . . . . . 6 (∀𝑗𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗)) ↔ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))
159, 14bitrdi 287 . . . . 5 (𝑡 = 𝑠 → (∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)) ↔ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
162, 4, 153anbi123d 1436 . . . 4 (𝑡 = 𝑠 → ((𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗))) ↔ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
1716rexbidv 3185 . . 3 (𝑡 = 𝑠 → (∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗))) ↔ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
1817cbvabv 2815 . 2 {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
19 eqid 2740 . 2 (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) = (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
201, 18, 19axdc3lem4 10522 1 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648  cmpt 5249  dom cdm 5700  cres 5702  suc csuc 6397  wf 6569  cfv 6573  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-dc 10515
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522
This theorem is referenced by:  axdc4lem  10524
  Copyright terms: Public domain W3C validator