MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3 Structured version   Visualization version   GIF version

Theorem axdc3 10352
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149, with the addition of an initial value 𝐶. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013.)
Hypothesis
Ref Expression
axdc3.1 𝐴 ∈ V
Assertion
Ref Expression
axdc3 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,𝑘   𝐶,𝑔,𝑘   𝑔,𝐹,𝑘

Proof of Theorem axdc3
Dummy variables 𝑛 𝑠 𝑡 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc3.1 . 2 𝐴 ∈ V
2 feq1 6634 . . . . 5 (𝑡 = 𝑠 → (𝑡:suc 𝑛𝐴𝑠:suc 𝑛𝐴))
3 fveq1 6827 . . . . . 6 (𝑡 = 𝑠 → (𝑡‘∅) = (𝑠‘∅))
43eqeq1d 2735 . . . . 5 (𝑡 = 𝑠 → ((𝑡‘∅) = 𝐶 ↔ (𝑠‘∅) = 𝐶))
5 fveq1 6827 . . . . . . . 8 (𝑡 = 𝑠 → (𝑡‘suc 𝑗) = (𝑠‘suc 𝑗))
6 fveq1 6827 . . . . . . . . 9 (𝑡 = 𝑠 → (𝑡𝑗) = (𝑠𝑗))
76fveq2d 6832 . . . . . . . 8 (𝑡 = 𝑠 → (𝐹‘(𝑡𝑗)) = (𝐹‘(𝑠𝑗)))
85, 7eleq12d 2827 . . . . . . 7 (𝑡 = 𝑠 → ((𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)) ↔ (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗))))
98ralbidv 3156 . . . . . 6 (𝑡 = 𝑠 → (∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)) ↔ ∀𝑗𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗))))
10 suceq 6379 . . . . . . . . 9 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
1110fveq2d 6832 . . . . . . . 8 (𝑗 = 𝑘 → (𝑠‘suc 𝑗) = (𝑠‘suc 𝑘))
12 2fveq3 6833 . . . . . . . 8 (𝑗 = 𝑘 → (𝐹‘(𝑠𝑗)) = (𝐹‘(𝑠𝑘)))
1311, 12eleq12d 2827 . . . . . . 7 (𝑗 = 𝑘 → ((𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗)) ↔ (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
1413cbvralvw 3211 . . . . . 6 (∀𝑗𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠𝑗)) ↔ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))
159, 14bitrdi 287 . . . . 5 (𝑡 = 𝑠 → (∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)) ↔ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
162, 4, 153anbi123d 1438 . . . 4 (𝑡 = 𝑠 → ((𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗))) ↔ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
1716rexbidv 3157 . . 3 (𝑡 = 𝑠 → (∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗))) ↔ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
1817cbvabv 2803 . 2 {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
19 eqid 2733 . 2 (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) = (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
201, 18, 19axdc3lem4 10351 1 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  c0 4282  𝒫 cpw 4549  {csn 4575  cmpt 5174  dom cdm 5619  cres 5621  suc csuc 6313  wf 6482  cfv 6486  ωcom 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-dc 10344
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7803  df-1o 8391
This theorem is referenced by:  axdc4lem  10353
  Copyright terms: Public domain W3C validator