![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axdc3 | Structured version Visualization version GIF version |
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149, with the addition of an initial value 𝐶. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013.) |
Ref | Expression |
---|---|
axdc3.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
axdc3 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axdc3.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | feq1 6728 | . . . . 5 ⊢ (𝑡 = 𝑠 → (𝑡:suc 𝑛⟶𝐴 ↔ 𝑠:suc 𝑛⟶𝐴)) | |
3 | fveq1 6919 | . . . . . 6 ⊢ (𝑡 = 𝑠 → (𝑡‘∅) = (𝑠‘∅)) | |
4 | 3 | eqeq1d 2742 | . . . . 5 ⊢ (𝑡 = 𝑠 → ((𝑡‘∅) = 𝐶 ↔ (𝑠‘∅) = 𝐶)) |
5 | fveq1 6919 | . . . . . . . 8 ⊢ (𝑡 = 𝑠 → (𝑡‘suc 𝑗) = (𝑠‘suc 𝑗)) | |
6 | fveq1 6919 | . . . . . . . . 9 ⊢ (𝑡 = 𝑠 → (𝑡‘𝑗) = (𝑠‘𝑗)) | |
7 | 6 | fveq2d 6924 | . . . . . . . 8 ⊢ (𝑡 = 𝑠 → (𝐹‘(𝑡‘𝑗)) = (𝐹‘(𝑠‘𝑗))) |
8 | 5, 7 | eleq12d 2838 | . . . . . . 7 ⊢ (𝑡 = 𝑠 → ((𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)))) |
9 | 8 | ralbidv 3184 | . . . . . 6 ⊢ (𝑡 = 𝑠 → (∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ ∀𝑗 ∈ 𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)))) |
10 | suceq 6461 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘) | |
11 | 10 | fveq2d 6924 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑠‘suc 𝑗) = (𝑠‘suc 𝑘)) |
12 | 2fveq3 6925 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝐹‘(𝑠‘𝑗)) = (𝐹‘(𝑠‘𝑘))) | |
13 | 11, 12 | eleq12d 2838 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → ((𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)) ↔ (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) |
14 | 13 | cbvralvw 3243 | . . . . . 6 ⊢ (∀𝑗 ∈ 𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)) ↔ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))) |
15 | 9, 14 | bitrdi 287 | . . . . 5 ⊢ (𝑡 = 𝑠 → (∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) |
16 | 2, 4, 15 | 3anbi123d 1436 | . . . 4 ⊢ (𝑡 = 𝑠 → ((𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗))) ↔ (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))))) |
17 | 16 | rexbidv 3185 | . . 3 ⊢ (𝑡 = 𝑠 → (∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗))) ↔ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))))) |
18 | 17 | cbvabv 2815 | . 2 ⊢ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} |
19 | eqid 2740 | . 2 ⊢ (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) = (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) | |
20 | 1, 18, 19 | axdc3lem4 10522 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ∖ cdif 3973 ∅c0 4352 𝒫 cpw 4622 {csn 4648 ↦ cmpt 5249 dom cdm 5700 ↾ cres 5702 suc csuc 6397 ⟶wf 6569 ‘cfv 6573 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-dc 10515 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 |
This theorem is referenced by: axdc4lem 10524 |
Copyright terms: Public domain | W3C validator |