![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axdc3 | Structured version Visualization version GIF version |
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149, with the addition of an initial value 𝐶. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013.) |
Ref | Expression |
---|---|
axdc3.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
axdc3 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axdc3.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | feq1 6703 | . . . . 5 ⊢ (𝑡 = 𝑠 → (𝑡:suc 𝑛⟶𝐴 ↔ 𝑠:suc 𝑛⟶𝐴)) | |
3 | fveq1 6896 | . . . . . 6 ⊢ (𝑡 = 𝑠 → (𝑡‘∅) = (𝑠‘∅)) | |
4 | 3 | eqeq1d 2730 | . . . . 5 ⊢ (𝑡 = 𝑠 → ((𝑡‘∅) = 𝐶 ↔ (𝑠‘∅) = 𝐶)) |
5 | fveq1 6896 | . . . . . . . 8 ⊢ (𝑡 = 𝑠 → (𝑡‘suc 𝑗) = (𝑠‘suc 𝑗)) | |
6 | fveq1 6896 | . . . . . . . . 9 ⊢ (𝑡 = 𝑠 → (𝑡‘𝑗) = (𝑠‘𝑗)) | |
7 | 6 | fveq2d 6901 | . . . . . . . 8 ⊢ (𝑡 = 𝑠 → (𝐹‘(𝑡‘𝑗)) = (𝐹‘(𝑠‘𝑗))) |
8 | 5, 7 | eleq12d 2823 | . . . . . . 7 ⊢ (𝑡 = 𝑠 → ((𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)))) |
9 | 8 | ralbidv 3174 | . . . . . 6 ⊢ (𝑡 = 𝑠 → (∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ ∀𝑗 ∈ 𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)))) |
10 | suceq 6435 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘) | |
11 | 10 | fveq2d 6901 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑠‘suc 𝑗) = (𝑠‘suc 𝑘)) |
12 | 2fveq3 6902 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝐹‘(𝑠‘𝑗)) = (𝐹‘(𝑠‘𝑘))) | |
13 | 11, 12 | eleq12d 2823 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → ((𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)) ↔ (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) |
14 | 13 | cbvralvw 3231 | . . . . . 6 ⊢ (∀𝑗 ∈ 𝑛 (𝑠‘suc 𝑗) ∈ (𝐹‘(𝑠‘𝑗)) ↔ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))) |
15 | 9, 14 | bitrdi 287 | . . . . 5 ⊢ (𝑡 = 𝑠 → (∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)) ↔ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) |
16 | 2, 4, 15 | 3anbi123d 1433 | . . . 4 ⊢ (𝑡 = 𝑠 → ((𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗))) ↔ (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))))) |
17 | 16 | rexbidv 3175 | . . 3 ⊢ (𝑡 = 𝑠 → (∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗))) ↔ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))))) |
18 | 17 | cbvabv 2801 | . 2 ⊢ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} |
19 | eqid 2728 | . 2 ⊢ (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) = (𝑥 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ↦ {𝑦 ∈ {𝑡 ∣ ∃𝑛 ∈ ω (𝑡:suc 𝑛⟶𝐴 ∧ (𝑡‘∅) = 𝐶 ∧ ∀𝑗 ∈ 𝑛 (𝑡‘suc 𝑗) ∈ (𝐹‘(𝑡‘𝑗)))} ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)}) | |
20 | 1, 18, 19 | axdc3lem4 10476 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∃wex 1774 ∈ wcel 2099 {cab 2705 ∀wral 3058 ∃wrex 3067 {crab 3429 Vcvv 3471 ∖ cdif 3944 ∅c0 4323 𝒫 cpw 4603 {csn 4629 ↦ cmpt 5231 dom cdm 5678 ↾ cres 5680 suc csuc 6371 ⟶wf 6544 ‘cfv 6548 ωcom 7870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-dc 10469 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-om 7871 df-1o 8486 |
This theorem is referenced by: axdc4lem 10478 |
Copyright terms: Public domain | W3C validator |