MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvn Structured version   Visualization version   GIF version

Theorem strfvn 17118
Description: Value of a structure component extractor 𝐸. Normally, 𝐸 is a defined constant symbol such as Base (df-base 17144) and 𝑁 is the index of the component. 𝑆 is a structure, i.e. a specific member of a class of structures such as Poset (df-poset 18265) where 𝑆 ∈ Poset.

Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (πΈβ€˜ndx) can be used instead of 𝑁. Alternatively, use strfv 17136 instead of strfvn 17118. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.)

Hypotheses
Ref Expression
strfvn.f 𝑆 ∈ V
strfvn.c 𝐸 = Slot 𝑁
Assertion
Ref Expression
strfvn (πΈβ€˜π‘†) = (π‘†β€˜π‘)

Proof of Theorem strfvn
StepHypRef Expression
1 strfvn.c . . 3 𝐸 = Slot 𝑁
2 strfvn.f . . . 4 𝑆 ∈ V
32a1i 11 . . 3 (⊀ β†’ 𝑆 ∈ V)
41, 3strfvnd 17117 . 2 (⊀ β†’ (πΈβ€˜π‘†) = (π‘†β€˜π‘))
54mptru 1548 1 (πΈβ€˜π‘†) = (π‘†β€˜π‘)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  βŠ€wtru 1542   ∈ wcel 2106  Vcvv 3474  β€˜cfv 6543  Slot cslot 17113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-slot 17114
This theorem is referenced by:  str0  17121  ndxarg  17128  setsnid  17141  setsnidOLD  17142  baseval  17145  ressbasOLD  17179  resvsca  32439
  Copyright terms: Public domain W3C validator