![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfvn | Structured version Visualization version GIF version |
Description: Value of a structure
component extractor πΈ. Normally, πΈ is a
defined constant symbol such as Base (df-base 17144) and π is the
index of the component. π is a structure, i.e. a specific
member of
a class of structures such as Poset (df-poset 18265) where
π
β Poset.
Hint: Do not substitute π by a specific (positive) integer to be independent of a hard-coded index value. Often, (πΈβndx) can be used instead of π. Alternatively, use strfv 17136 instead of strfvn 17118. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strfvn.f | β’ π β V |
strfvn.c | β’ πΈ = Slot π |
Ref | Expression |
---|---|
strfvn | β’ (πΈβπ) = (πβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvn.c | . . 3 β’ πΈ = Slot π | |
2 | strfvn.f | . . . 4 β’ π β V | |
3 | 2 | a1i 11 | . . 3 β’ (β€ β π β V) |
4 | 1, 3 | strfvnd 17117 | . 2 β’ (β€ β (πΈβπ) = (πβπ)) |
5 | 4 | mptru 1548 | 1 β’ (πΈβπ) = (πβπ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β€wtru 1542 β wcel 2106 Vcvv 3474 βcfv 6543 Slot cslot 17113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-slot 17114 |
This theorem is referenced by: str0 17121 ndxarg 17128 setsnid 17141 setsnidOLD 17142 baseval 17145 ressbasOLD 17179 resvsca 32439 |
Copyright terms: Public domain | W3C validator |