MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvn Structured version   Visualization version   GIF version

Theorem strfvn 17163
Description: Value of a structure component extractor 𝐸. Normally, 𝐸 is a defined constant symbol such as Base (df-base 17187) and 𝑁 is the index of the component. 𝑆 is a structure, i.e. a specific member of a class of structures such as Poset (df-poset 18281) where 𝑆 ∈ Poset.

Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. Alternatively, use strfv 17180 instead of strfvn 17163. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.)

Hypotheses
Ref Expression
strfvn.f 𝑆 ∈ V
strfvn.c 𝐸 = Slot 𝑁
Assertion
Ref Expression
strfvn (𝐸𝑆) = (𝑆𝑁)

Proof of Theorem strfvn
StepHypRef Expression
1 strfvn.c . . 3 𝐸 = Slot 𝑁
2 strfvn.f . . . 4 𝑆 ∈ V
32a1i 11 . . 3 (⊤ → 𝑆 ∈ V)
41, 3strfvnd 17162 . 2 (⊤ → (𝐸𝑆) = (𝑆𝑁))
54mptru 1547 1 (𝐸𝑆) = (𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3450  cfv 6514  Slot cslot 17158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-slot 17159
This theorem is referenced by:  str0  17166  ndxarg  17173  setsnid  17185  baseval  17188  resvsca  33311
  Copyright terms: Public domain W3C validator