| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfvn | Structured version Visualization version GIF version | ||
| Description: Value of a structure
component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 17234) and 𝑁 is the
index of the component. 𝑆 is a structure, i.e. a specific
member of
a class of structures such as Poset (df-poset 18330) where
𝑆
∈ Poset.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. Alternatively, use strfv 17227 instead of strfvn 17210. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| strfvn.f | ⊢ 𝑆 ∈ V |
| strfvn.c | ⊢ 𝐸 = Slot 𝑁 |
| Ref | Expression |
|---|---|
| strfvn | ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | strfvn.f | . . . 4 ⊢ 𝑆 ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → 𝑆 ∈ V) |
| 4 | 1, 3 | strfvnd 17209 | . 2 ⊢ (⊤ → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 5 | 4 | mptru 1547 | 1 ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3464 ‘cfv 6536 Slot cslot 17205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-slot 17206 |
| This theorem is referenced by: str0 17213 ndxarg 17220 setsnid 17232 baseval 17235 resvsca 33353 |
| Copyright terms: Public domain | W3C validator |