Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strfvn | Structured version Visualization version GIF version |
Description: Value of a structure
component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 16841) and 𝑁 is the
index of the component. 𝑆 is a structure, i.e. a specific
member of
a class of structures such as Poset (df-poset 17946) where
𝑆
∈ Poset.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. Alternatively, use strfv 16833 instead of strfvn 16815. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strfvn.f | ⊢ 𝑆 ∈ V |
strfvn.c | ⊢ 𝐸 = Slot 𝑁 |
Ref | Expression |
---|---|
strfvn | ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
2 | strfvn.f | . . . 4 ⊢ 𝑆 ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → 𝑆 ∈ V) |
4 | 1, 3 | strfvnd 16814 | . 2 ⊢ (⊤ → (𝐸‘𝑆) = (𝑆‘𝑁)) |
5 | 4 | mptru 1546 | 1 ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 Vcvv 3422 ‘cfv 6418 Slot cslot 16810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-slot 16811 |
This theorem is referenced by: str0 16818 ndxarg 16825 setsnid 16838 setsnidOLD 16839 baseval 16842 ressbasOLD 16874 resvsca 31431 |
Copyright terms: Public domain | W3C validator |