Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strfvn | Structured version Visualization version GIF version |
Description: Value of a structure
component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 16913) and 𝑁 is the
index of the component. 𝑆 is a structure, i.e. a specific
member of
a class of structures such as Poset (df-poset 18031) where
𝑆
∈ Poset.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. Alternatively, use strfv 16905 instead of strfvn 16887. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strfvn.f | ⊢ 𝑆 ∈ V |
strfvn.c | ⊢ 𝐸 = Slot 𝑁 |
Ref | Expression |
---|---|
strfvn | ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
2 | strfvn.f | . . . 4 ⊢ 𝑆 ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → 𝑆 ∈ V) |
4 | 1, 3 | strfvnd 16886 | . 2 ⊢ (⊤ → (𝐸‘𝑆) = (𝑆‘𝑁)) |
5 | 4 | mptru 1546 | 1 ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 Vcvv 3432 ‘cfv 6433 Slot cslot 16882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-slot 16883 |
This theorem is referenced by: str0 16890 ndxarg 16897 setsnid 16910 setsnidOLD 16911 baseval 16914 ressbasOLD 16948 resvsca 31529 |
Copyright terms: Public domain | W3C validator |