Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strfvn | Structured version Visualization version GIF version |
Description: Value of a structure
component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 17015) and 𝑁 is the
index of the component. 𝑆 is a structure, i.e. a specific
member of
a class of structures such as Poset (df-poset 18133) where
𝑆
∈ Poset.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. Alternatively, use strfv 17007 instead of strfvn 16989. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strfvn.f | ⊢ 𝑆 ∈ V |
strfvn.c | ⊢ 𝐸 = Slot 𝑁 |
Ref | Expression |
---|---|
strfvn | ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
2 | strfvn.f | . . . 4 ⊢ 𝑆 ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → 𝑆 ∈ V) |
4 | 1, 3 | strfvnd 16988 | . 2 ⊢ (⊤ → (𝐸‘𝑆) = (𝑆‘𝑁)) |
5 | 4 | mptru 1548 | 1 ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 Vcvv 3443 ‘cfv 6488 Slot cslot 16984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pr 5379 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-iota 6440 df-fun 6490 df-fv 6496 df-slot 16985 |
This theorem is referenced by: str0 16992 ndxarg 16999 setsnid 17012 setsnidOLD 17013 baseval 17016 ressbasOLD 17050 resvsca 31889 |
Copyright terms: Public domain | W3C validator |