MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvn Structured version   Visualization version   GIF version

Theorem strfvn 17132
Description: Value of a structure component extractor 𝐸. Normally, 𝐸 is a defined constant symbol such as Base (df-base 17156) and 𝑁 is the index of the component. 𝑆 is a structure, i.e. a specific member of a class of structures such as Poset (df-poset 18250) where 𝑆 ∈ Poset.

Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. Alternatively, use strfv 17149 instead of strfvn 17132. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.)

Hypotheses
Ref Expression
strfvn.f 𝑆 ∈ V
strfvn.c 𝐸 = Slot 𝑁
Assertion
Ref Expression
strfvn (𝐸𝑆) = (𝑆𝑁)

Proof of Theorem strfvn
StepHypRef Expression
1 strfvn.c . . 3 𝐸 = Slot 𝑁
2 strfvn.f . . . 4 𝑆 ∈ V
32a1i 11 . . 3 (⊤ → 𝑆 ∈ V)
41, 3strfvnd 17131 . 2 (⊤ → (𝐸𝑆) = (𝑆𝑁))
54mptru 1547 1 (𝐸𝑆) = (𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3444  cfv 6499  Slot cslot 17127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-slot 17128
This theorem is referenced by:  str0  17135  ndxarg  17142  setsnid  17154  baseval  17157  resvsca  33277
  Copyright terms: Public domain W3C validator