Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1234 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 32942. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1234.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1234.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1234.4 | ⊢ 𝑍 = 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1234.5 | ⊢ 𝐷 = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))} |
Ref | Expression |
---|---|
bnj1234 | ⊢ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 6508 | . . . . 5 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑑 ↔ 𝑔 Fn 𝑑)) | |
2 | fveq1 6755 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝑓‘𝑥) = (𝑔‘𝑥)) | |
3 | reseq1 5874 | . . . . . . . . . 10 ⊢ (𝑓 = 𝑔 → (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))) | |
4 | 3 | opeq2d 4808 | . . . . . . . . 9 ⊢ (𝑓 = 𝑔 → 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
5 | bnj1234.2 | . . . . . . . . 9 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
6 | bnj1234.4 | . . . . . . . . 9 ⊢ 𝑍 = 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
7 | 4, 5, 6 | 3eqtr4g 2804 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → 𝑌 = 𝑍) |
8 | 7 | fveq2d 6760 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝐺‘𝑌) = (𝐺‘𝑍)) |
9 | 2, 8 | eqeq12d 2754 | . . . . . 6 ⊢ (𝑓 = 𝑔 → ((𝑓‘𝑥) = (𝐺‘𝑌) ↔ (𝑔‘𝑥) = (𝐺‘𝑍))) |
10 | 9 | ralbidv 3120 | . . . . 5 ⊢ (𝑓 = 𝑔 → (∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌) ↔ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
11 | 1, 10 | anbi12d 630 | . . . 4 ⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍)))) |
12 | 11 | rexbidv 3225 | . . 3 ⊢ (𝑓 = 𝑔 → (∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍)))) |
13 | 12 | cbvabv 2812 | . 2 ⊢ {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))} |
14 | bnj1234.3 | . 2 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
15 | bnj1234.5 | . 2 ⊢ 𝐷 = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))} | |
16 | 13, 14, 15 | 3eqtr4i 2776 | 1 ⊢ 𝐶 = 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 {cab 2715 ∀wral 3063 ∃wrex 3064 〈cop 4564 ↾ cres 5582 Fn wfn 6413 ‘cfv 6418 predc-bnj14 32567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: bnj1245 32894 bnj1256 32895 bnj1259 32896 bnj1296 32901 bnj1311 32904 |
Copyright terms: Public domain | W3C validator |