Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1234 Structured version   Visualization version   GIF version

Theorem bnj1234 33682
Description: Technical lemma for bnj60 33731. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1234.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1234.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1234.4 𝑍 = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1234.5 𝐷 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}
Assertion
Ref Expression
bnj1234 𝐶 = 𝐷
Distinct variable groups:   𝐵,𝑓,𝑔   𝑓,𝐺,𝑔   𝑔,𝑌   𝑓,𝑍   𝑓,𝑑,𝑔   𝑥,𝑓,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑓,𝑔,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑔,𝑑)   𝐷(𝑥,𝑓,𝑔,𝑑)   𝑅(𝑥,𝑓,𝑔,𝑑)   𝐺(𝑥,𝑑)   𝑌(𝑥,𝑓,𝑑)   𝑍(𝑥,𝑔,𝑑)

Proof of Theorem bnj1234
StepHypRef Expression
1 fneq1 6594 . . . . 5 (𝑓 = 𝑔 → (𝑓 Fn 𝑑𝑔 Fn 𝑑))
2 fveq1 6842 . . . . . . 7 (𝑓 = 𝑔 → (𝑓𝑥) = (𝑔𝑥))
3 reseq1 5932 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)))
43opeq2d 4838 . . . . . . . . 9 (𝑓 = 𝑔 → ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
5 bnj1234.2 . . . . . . . . 9 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
6 bnj1234.4 . . . . . . . . 9 𝑍 = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩
74, 5, 63eqtr4g 2798 . . . . . . . 8 (𝑓 = 𝑔𝑌 = 𝑍)
87fveq2d 6847 . . . . . . 7 (𝑓 = 𝑔 → (𝐺𝑌) = (𝐺𝑍))
92, 8eqeq12d 2749 . . . . . 6 (𝑓 = 𝑔 → ((𝑓𝑥) = (𝐺𝑌) ↔ (𝑔𝑥) = (𝐺𝑍)))
109ralbidv 3171 . . . . 5 (𝑓 = 𝑔 → (∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌) ↔ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍)))
111, 10anbi12d 632 . . . 4 (𝑓 = 𝑔 → ((𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))))
1211rexbidv 3172 . . 3 (𝑓 = 𝑔 → (∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))))
1312cbvabv 2806 . 2 {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))} = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}
14 bnj1234.3 . 2 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
15 bnj1234.5 . 2 𝐷 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}
1613, 14, 153eqtr4i 2771 1 𝐶 = 𝐷
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  {cab 2710  wral 3061  wrex 3070  cop 4593  cres 5636   Fn wfn 6492  cfv 6497   predc-bnj14 33357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-res 5646  df-iota 6449  df-fun 6499  df-fn 6500  df-fv 6505
This theorem is referenced by:  bnj1245  33683  bnj1256  33684  bnj1259  33685  bnj1296  33690  bnj1311  33693
  Copyright terms: Public domain W3C validator