Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1234 Structured version   Visualization version   GIF version

Theorem bnj1234 34677
Description: Technical lemma for bnj60 34726. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1234.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1234.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1234.4 𝑍 = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1234.5 𝐷 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}
Assertion
Ref Expression
bnj1234 𝐶 = 𝐷
Distinct variable groups:   𝐵,𝑓,𝑔   𝑓,𝐺,𝑔   𝑔,𝑌   𝑓,𝑍   𝑓,𝑑,𝑔   𝑥,𝑓,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑓,𝑔,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑔,𝑑)   𝐷(𝑥,𝑓,𝑔,𝑑)   𝑅(𝑥,𝑓,𝑔,𝑑)   𝐺(𝑥,𝑑)   𝑌(𝑥,𝑓,𝑑)   𝑍(𝑥,𝑔,𝑑)

Proof of Theorem bnj1234
StepHypRef Expression
1 fneq1 6650 . . . . 5 (𝑓 = 𝑔 → (𝑓 Fn 𝑑𝑔 Fn 𝑑))
2 fveq1 6901 . . . . . . 7 (𝑓 = 𝑔 → (𝑓𝑥) = (𝑔𝑥))
3 reseq1 5983 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)))
43opeq2d 4885 . . . . . . . . 9 (𝑓 = 𝑔 → ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
5 bnj1234.2 . . . . . . . . 9 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
6 bnj1234.4 . . . . . . . . 9 𝑍 = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩
74, 5, 63eqtr4g 2793 . . . . . . . 8 (𝑓 = 𝑔𝑌 = 𝑍)
87fveq2d 6906 . . . . . . 7 (𝑓 = 𝑔 → (𝐺𝑌) = (𝐺𝑍))
92, 8eqeq12d 2744 . . . . . 6 (𝑓 = 𝑔 → ((𝑓𝑥) = (𝐺𝑌) ↔ (𝑔𝑥) = (𝐺𝑍)))
109ralbidv 3175 . . . . 5 (𝑓 = 𝑔 → (∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌) ↔ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍)))
111, 10anbi12d 630 . . . 4 (𝑓 = 𝑔 → ((𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))))
1211rexbidv 3176 . . 3 (𝑓 = 𝑔 → (∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))))
1312cbvabv 2801 . 2 {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))} = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}
14 bnj1234.3 . 2 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
15 bnj1234.5 . 2 𝐷 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}
1613, 14, 153eqtr4i 2766 1 𝐶 = 𝐷
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  {cab 2705  wral 3058  wrex 3067  cop 4638  cres 5684   Fn wfn 6548  cfv 6553   predc-bnj14 34352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-res 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-fv 6561
This theorem is referenced by:  bnj1245  34678  bnj1256  34679  bnj1259  34680  bnj1296  34685  bnj1311  34688
  Copyright terms: Public domain W3C validator