Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1234 Structured version   Visualization version   GIF version

Theorem bnj1234 31891
Description: Technical lemma for bnj60 31940. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1234.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1234.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1234.4 𝑍 = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1234.5 𝐷 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}
Assertion
Ref Expression
bnj1234 𝐶 = 𝐷
Distinct variable groups:   𝐵,𝑓,𝑔   𝑓,𝐺,𝑔   𝑔,𝑌   𝑓,𝑍   𝑓,𝑑,𝑔   𝑥,𝑓,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑓,𝑔,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑔,𝑑)   𝐷(𝑥,𝑓,𝑔,𝑑)   𝑅(𝑥,𝑓,𝑔,𝑑)   𝐺(𝑥,𝑑)   𝑌(𝑥,𝑓,𝑑)   𝑍(𝑥,𝑔,𝑑)

Proof of Theorem bnj1234
StepHypRef Expression
1 fneq1 6271 . . . . 5 (𝑓 = 𝑔 → (𝑓 Fn 𝑑𝑔 Fn 𝑑))
2 fveq1 6492 . . . . . . 7 (𝑓 = 𝑔 → (𝑓𝑥) = (𝑔𝑥))
3 reseq1 5682 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)))
43opeq2d 4678 . . . . . . . . 9 (𝑓 = 𝑔 → ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
5 bnj1234.2 . . . . . . . . 9 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
6 bnj1234.4 . . . . . . . . 9 𝑍 = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩
74, 5, 63eqtr4g 2833 . . . . . . . 8 (𝑓 = 𝑔𝑌 = 𝑍)
87fveq2d 6497 . . . . . . 7 (𝑓 = 𝑔 → (𝐺𝑌) = (𝐺𝑍))
92, 8eqeq12d 2787 . . . . . 6 (𝑓 = 𝑔 → ((𝑓𝑥) = (𝐺𝑌) ↔ (𝑔𝑥) = (𝐺𝑍)))
109ralbidv 3141 . . . . 5 (𝑓 = 𝑔 → (∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌) ↔ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍)))
111, 10anbi12d 621 . . . 4 (𝑓 = 𝑔 → ((𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))))
1211rexbidv 3236 . . 3 (𝑓 = 𝑔 → (∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))))
1312cbvabv 2904 . 2 {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))} = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}
14 bnj1234.3 . 2 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
15 bnj1234.5 . 2 𝐷 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}
1613, 14, 153eqtr4i 2806 1 𝐶 = 𝐷
Colors of variables: wff setvar class
Syntax hints:  wa 387   = wceq 1507  {cab 2753  wral 3082  wrex 3083  cop 4441  cres 5402   Fn wfn 6177  cfv 6182   predc-bnj14 31567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-ext 2745
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-res 5412  df-iota 6146  df-fun 6184  df-fn 6185  df-fv 6190
This theorem is referenced by:  bnj1245  31892  bnj1256  31893  bnj1259  31894  bnj1296  31899  bnj1311  31902
  Copyright terms: Public domain W3C validator