| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1234 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35059. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1234.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1234.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1234.4 | ⊢ 𝑍 = 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1234.5 | ⊢ 𝐷 = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))} |
| Ref | Expression |
|---|---|
| bnj1234 | ⊢ 𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 6612 | . . . . 5 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑑 ↔ 𝑔 Fn 𝑑)) | |
| 2 | fveq1 6860 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝑓‘𝑥) = (𝑔‘𝑥)) | |
| 3 | reseq1 5947 | . . . . . . . . . 10 ⊢ (𝑓 = 𝑔 → (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))) | |
| 4 | 3 | opeq2d 4847 | . . . . . . . . 9 ⊢ (𝑓 = 𝑔 → 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
| 5 | bnj1234.2 | . . . . . . . . 9 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 6 | bnj1234.4 | . . . . . . . . 9 ⊢ 𝑍 = 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 7 | 4, 5, 6 | 3eqtr4g 2790 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → 𝑌 = 𝑍) |
| 8 | 7 | fveq2d 6865 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝐺‘𝑌) = (𝐺‘𝑍)) |
| 9 | 2, 8 | eqeq12d 2746 | . . . . . 6 ⊢ (𝑓 = 𝑔 → ((𝑓‘𝑥) = (𝐺‘𝑌) ↔ (𝑔‘𝑥) = (𝐺‘𝑍))) |
| 10 | 9 | ralbidv 3157 | . . . . 5 ⊢ (𝑓 = 𝑔 → (∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌) ↔ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))) |
| 11 | 1, 10 | anbi12d 632 | . . . 4 ⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍)))) |
| 12 | 11 | rexbidv 3158 | . . 3 ⊢ (𝑓 = 𝑔 → (∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍)))) |
| 13 | 12 | cbvabv 2800 | . 2 ⊢ {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))} |
| 14 | bnj1234.3 | . 2 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 15 | bnj1234.5 | . 2 ⊢ 𝐷 = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))} | |
| 16 | 13, 14, 15 | 3eqtr4i 2763 | 1 ⊢ 𝐶 = 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 {cab 2708 ∀wral 3045 ∃wrex 3054 〈cop 4598 ↾ cres 5643 Fn wfn 6509 ‘cfv 6514 predc-bnj14 34685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: bnj1245 35011 bnj1256 35012 bnj1259 35013 bnj1296 35018 bnj1311 35021 |
| Copyright terms: Public domain | W3C validator |