| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2sn | Structured version Visualization version GIF version | ||
| Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5323. (Revised by BTernaryTau, 31-Jul-2024.) Avoid ax-un 7714. (Revised by BTernaryTau, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| en2sn | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5394 | . . 3 ⊢ {〈𝐴, 𝐵〉} ∈ V | |
| 2 | f1osng 6844 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) | |
| 3 | f1oeq1 6791 | . . . 4 ⊢ (𝑓 = {〈𝐴, 𝐵〉} → (𝑓:{𝐴}–1-1-onto→{𝐵} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) | |
| 4 | 3 | spcegv 3566 | . . 3 ⊢ ({〈𝐴, 𝐵〉} ∈ V → ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})) |
| 5 | 1, 2, 4 | mpsyl 68 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}) |
| 6 | snex 5394 | . . 3 ⊢ {𝐴} ∈ V | |
| 7 | snex 5394 | . . 3 ⊢ {𝐵} ∈ V | |
| 8 | breng 8930 | . . 3 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})) | |
| 9 | 6, 7, 8 | mp2an 692 | . 2 ⊢ ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}) |
| 10 | 5, 9 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 {csn 4592 〈cop 4598 class class class wbr 5110 –1-1-onto→wf1o 6513 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-en 8922 |
| This theorem is referenced by: enrefnn 9021 enpr2dOLD 9024 difsnen 9027 domunsncan 9046 sucdom2OLD 9056 domunsn 9097 limensuci 9123 infensuc 9125 unfi 9141 sucdom2 9173 0sdom1dom 9192 1sdom2dom 9201 dif1ennnALT 9229 fodomfi 9268 dif1card 9970 fin23lem26 10285 unsnen 10513 canthp1lem1 10612 fzennn 13940 hashsng 14341 mreexexlem4d 17615 |
| Copyright terms: Public domain | W3C validator |