| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2sn | Structured version Visualization version GIF version | ||
| Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5307. (Revised by BTernaryTau, 31-Jul-2024.) Avoid ax-un 7675. (Revised by BTernaryTau, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| en2sn | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5378 | . . 3 ⊢ {〈𝐴, 𝐵〉} ∈ V | |
| 2 | f1osng 6809 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) | |
| 3 | f1oeq1 6756 | . . . 4 ⊢ (𝑓 = {〈𝐴, 𝐵〉} → (𝑓:{𝐴}–1-1-onto→{𝐵} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) | |
| 4 | 3 | spcegv 3554 | . . 3 ⊢ ({〈𝐴, 𝐵〉} ∈ V → ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})) |
| 5 | 1, 2, 4 | mpsyl 68 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}) |
| 6 | snex 5378 | . . 3 ⊢ {𝐴} ∈ V | |
| 7 | snex 5378 | . . 3 ⊢ {𝐵} ∈ V | |
| 8 | breng 8888 | . . 3 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})) | |
| 9 | 6, 7, 8 | mp2an 692 | . 2 ⊢ ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}) |
| 10 | 5, 9 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 {csn 4579 〈cop 4585 class class class wbr 5095 –1-1-onto→wf1o 6485 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-en 8880 |
| This theorem is referenced by: enrefnn 8979 difsnen 8983 domunsncan 9001 domunsn 9051 limensuci 9077 infensuc 9079 unfi 9095 sucdom2 9127 0sdom1dom 9145 1sdom2dom 9153 dif1ennnALT 9180 fodomfi 9219 dif1card 9923 fin23lem26 10238 unsnen 10466 canthp1lem1 10565 fzennn 13893 hashsng 14294 mreexexlem4d 17571 |
| Copyright terms: Public domain | W3C validator |