![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en2sn | Structured version Visualization version GIF version |
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) |
Ref | Expression |
---|---|
en2sn | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1g 8260 | . 2 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1𝑜) | |
2 | ensn1g 8260 | . . 3 ⊢ (𝐵 ∈ 𝐷 → {𝐵} ≈ 1𝑜) | |
3 | 2 | ensymd 8246 | . 2 ⊢ (𝐵 ∈ 𝐷 → 1𝑜 ≈ {𝐵}) |
4 | entr 8247 | . 2 ⊢ (({𝐴} ≈ 1𝑜 ∧ 1𝑜 ≈ {𝐵}) → {𝐴} ≈ {𝐵}) | |
5 | 1, 3, 4 | syl2an 590 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 {csn 4368 class class class wbr 4843 1𝑜c1o 7792 ≈ cen 8192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-suc 5947 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-1o 7799 df-er 7982 df-en 8196 |
This theorem is referenced by: difsnen 8284 domunsncan 8302 domunsn 8352 limensuci 8378 infensuc 8380 sucdom2 8398 dif1en 8435 dif1card 9119 fin23lem26 9435 unsnen 9663 canthp1lem1 9762 fzennn 13022 hashsng 13409 mreexexlem4d 16622 |
Copyright terms: Public domain | W3C validator |