| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2sn | Structured version Visualization version GIF version | ||
| Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5335. (Revised by BTernaryTau, 31-Jul-2024.) Avoid ax-un 7729. (Revised by BTernaryTau, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| en2sn | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5406 | . . 3 ⊢ {〈𝐴, 𝐵〉} ∈ V | |
| 2 | f1osng 6859 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) | |
| 3 | f1oeq1 6806 | . . . 4 ⊢ (𝑓 = {〈𝐴, 𝐵〉} → (𝑓:{𝐴}–1-1-onto→{𝐵} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) | |
| 4 | 3 | spcegv 3576 | . . 3 ⊢ ({〈𝐴, 𝐵〉} ∈ V → ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})) |
| 5 | 1, 2, 4 | mpsyl 68 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}) |
| 6 | snex 5406 | . . 3 ⊢ {𝐴} ∈ V | |
| 7 | snex 5406 | . . 3 ⊢ {𝐵} ∈ V | |
| 8 | breng 8968 | . . 3 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})) | |
| 9 | 6, 7, 8 | mp2an 692 | . 2 ⊢ ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}) |
| 10 | 5, 9 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 class class class wbr 5119 –1-1-onto→wf1o 6530 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-en 8960 |
| This theorem is referenced by: enrefnn 9061 enpr2dOLD 9064 difsnen 9067 domunsncan 9086 sucdom2OLD 9096 domunsn 9141 limensuci 9167 infensuc 9169 unfi 9185 sucdom2 9217 0sdom1dom 9246 1sdom2dom 9255 dif1ennnALT 9283 fodomfi 9322 dif1card 10024 fin23lem26 10339 unsnen 10567 canthp1lem1 10666 fzennn 13986 hashsng 14387 mreexexlem4d 17659 |
| Copyright terms: Public domain | W3C validator |