Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en2sn | Structured version Visualization version GIF version |
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5288. (Revised by BTernaryTau, 31-Jul-2024.) Avoid ax-un 7588. (Revised by BTernaryTau, 25-Sep-2024.) |
Ref | Expression |
---|---|
en2sn | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5354 | . . 3 ⊢ {〈𝐴, 𝐵〉} ∈ V | |
2 | f1osng 6757 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) | |
3 | f1oeq1 6704 | . . . 4 ⊢ (𝑓 = {〈𝐴, 𝐵〉} → (𝑓:{𝐴}–1-1-onto→{𝐵} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) | |
4 | 3 | spcegv 3536 | . . 3 ⊢ ({〈𝐴, 𝐵〉} ∈ V → ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})) |
5 | 1, 2, 4 | mpsyl 68 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}) |
6 | snex 5354 | . . 3 ⊢ {𝐴} ∈ V | |
7 | snex 5354 | . . 3 ⊢ {𝐵} ∈ V | |
8 | breng 8742 | . . 3 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})) | |
9 | 6, 7, 8 | mp2an 689 | . 2 ⊢ ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}) |
10 | 5, 9 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 {csn 4561 〈cop 4567 class class class wbr 5074 –1-1-onto→wf1o 6432 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-en 8734 |
This theorem is referenced by: enrefnn 8837 enpr2d 8838 difsnen 8840 domunsncan 8859 sucdom2OLD 8869 domunsn 8914 limensuci 8940 infensuc 8942 unfi 8955 sucdom2 8989 dif1enALT 9050 dif1card 9766 fin23lem26 10081 unsnen 10309 canthp1lem1 10408 fzennn 13688 hashsng 14084 mreexexlem4d 17356 |
Copyright terms: Public domain | W3C validator |