MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2sn Structured version   Visualization version   GIF version

Theorem en2sn 8589
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
Assertion
Ref Expression
en2sn ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})

Proof of Theorem en2sn
StepHypRef Expression
1 ensn1g 8570 . 2 (𝐴𝐶 → {𝐴} ≈ 1o)
2 ensn1g 8570 . . 3 (𝐵𝐷 → {𝐵} ≈ 1o)
32ensymd 8556 . 2 (𝐵𝐷 → 1o ≈ {𝐵})
4 entr 8557 . 2 (({𝐴} ≈ 1o ∧ 1o ≈ {𝐵}) → {𝐴} ≈ {𝐵})
51, 3, 4syl2an 598 1 ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2115  {csn 4550   class class class wbr 5052  1oc1o 8091  cen 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-suc 6184  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-1o 8098  df-er 8285  df-en 8506
This theorem is referenced by:  enpr2d  8593  difsnen  8595  domunsncan  8613  sucdom2  8623  domunsn  8664  limensuci  8690  infensuc  8692  dif1en  8748  dif1card  9434  fin23lem26  9745  unsnen  9973  canthp1lem1  10072  fzennn  13340  hashsng  13735  mreexexlem4d  16918
  Copyright terms: Public domain W3C validator