MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2sn Structured version   Visualization version   GIF version

Theorem en2sn 9066
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5365. (Revised by BTernaryTau, 31-Jul-2024.) Avoid ax-un 7740. (Revised by BTernaryTau, 25-Sep-2024.)
Assertion
Ref Expression
en2sn ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})

Proof of Theorem en2sn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 snex 5433 . . 3 {⟨𝐴, 𝐵⟩} ∈ V
2 f1osng 6880 . . 3 ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
3 f1oeq1 6827 . . . 4 (𝑓 = {⟨𝐴, 𝐵⟩} → (𝑓:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
43spcegv 3584 . . 3 ({⟨𝐴, 𝐵⟩} ∈ V → ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}))
51, 2, 4mpsyl 68 . 2 ((𝐴𝐶𝐵𝐷) → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})
6 snex 5433 . . 3 {𝐴} ∈ V
7 snex 5433 . . 3 {𝐵} ∈ V
8 breng 8973 . . 3 (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}))
96, 7, 8mp2an 691 . 2 ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})
105, 9sylibr 233 1 ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1774  wcel 2099  Vcvv 3471  {csn 4629  cop 4635   class class class wbr 5148  1-1-ontowf1o 6547  cen 8961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-mo 2530  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-en 8965
This theorem is referenced by:  enrefnn  9072  enpr2dOLD  9075  difsnen  9078  domunsncan  9097  sucdom2OLD  9107  domunsn  9152  limensuci  9178  infensuc  9180  unfi  9197  sucdom2  9231  0sdom1dom  9263  1sdom2dom  9272  dif1ennnALT  9302  dif1card  10034  fin23lem26  10349  unsnen  10577  canthp1lem1  10676  fzennn  13966  hashsng  14361  mreexexlem4d  17627
  Copyright terms: Public domain W3C validator