MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2sn Structured version   Visualization version   GIF version

Theorem en2sn 8785
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5283. (Revised by BTernaryTau, 31-Jul-2024.) Avoid ax-un 7566. (Revised by BTernaryTau, 25-Sep-2024.)
Assertion
Ref Expression
en2sn ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})

Proof of Theorem en2sn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 snex 5349 . . 3 {⟨𝐴, 𝐵⟩} ∈ V
2 f1osng 6740 . . 3 ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
3 f1oeq1 6688 . . . 4 (𝑓 = {⟨𝐴, 𝐵⟩} → (𝑓:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
43spcegv 3526 . . 3 ({⟨𝐴, 𝐵⟩} ∈ V → ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}))
51, 2, 4mpsyl 68 . 2 ((𝐴𝐶𝐵𝐷) → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})
6 snex 5349 . . 3 {𝐴} ∈ V
7 snex 5349 . . 3 {𝐵} ∈ V
8 breng 8700 . . 3 (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}))
96, 7, 8mp2an 688 . 2 ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})
105, 9sylibr 233 1 ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1783  wcel 2108  Vcvv 3422  {csn 4558  cop 4564   class class class wbr 5070  1-1-ontowf1o 6417  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-en 8692
This theorem is referenced by:  enrefnn  8791  enpr2d  8792  difsnen  8794  domunsncan  8812  sucdom2  8822  domunsn  8863  limensuci  8889  infensuc  8891  unfi  8917  dif1enALT  8980  dif1card  9697  fin23lem26  10012  unsnen  10240  canthp1lem1  10339  fzennn  13616  hashsng  14012  mreexexlem4d  17273
  Copyright terms: Public domain W3C validator