MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2sn Structured version   Visualization version   GIF version

Theorem en2sn 9015
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5323. (Revised by BTernaryTau, 31-Jul-2024.) Avoid ax-un 7714. (Revised by BTernaryTau, 25-Sep-2024.)
Assertion
Ref Expression
en2sn ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})

Proof of Theorem en2sn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 snex 5394 . . 3 {⟨𝐴, 𝐵⟩} ∈ V
2 f1osng 6844 . . 3 ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
3 f1oeq1 6791 . . . 4 (𝑓 = {⟨𝐴, 𝐵⟩} → (𝑓:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
43spcegv 3566 . . 3 ({⟨𝐴, 𝐵⟩} ∈ V → ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}))
51, 2, 4mpsyl 68 . 2 ((𝐴𝐶𝐵𝐷) → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})
6 snex 5394 . . 3 {𝐴} ∈ V
7 snex 5394 . . 3 {𝐵} ∈ V
8 breng 8930 . . 3 (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}))
96, 7, 8mp2an 692 . 2 ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})
105, 9sylibr 234 1 ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  Vcvv 3450  {csn 4592  cop 4598   class class class wbr 5110  1-1-ontowf1o 6513  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-en 8922
This theorem is referenced by:  enrefnn  9021  enpr2dOLD  9024  difsnen  9027  domunsncan  9046  sucdom2OLD  9056  domunsn  9097  limensuci  9123  infensuc  9125  unfi  9141  sucdom2  9173  0sdom1dom  9192  1sdom2dom  9201  dif1ennnALT  9229  fodomfi  9268  dif1card  9970  fin23lem26  10285  unsnen  10513  canthp1lem1  10612  fzennn  13940  hashsng  14341  mreexexlem4d  17615
  Copyright terms: Public domain W3C validator