| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2sn | Structured version Visualization version GIF version | ||
| Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5305. (Revised by BTernaryTau, 31-Jul-2024.) Avoid ax-un 7674. (Revised by BTernaryTau, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| en2sn | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5376 | . . 3 ⊢ {〈𝐴, 𝐵〉} ∈ V | |
| 2 | f1osng 6810 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) | |
| 3 | f1oeq1 6756 | . . . 4 ⊢ (𝑓 = {〈𝐴, 𝐵〉} → (𝑓:{𝐴}–1-1-onto→{𝐵} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) | |
| 4 | 3 | spcegv 3548 | . . 3 ⊢ ({〈𝐴, 𝐵〉} ∈ V → ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})) |
| 5 | 1, 2, 4 | mpsyl 68 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}) |
| 6 | snex 5376 | . . 3 ⊢ {𝐴} ∈ V | |
| 7 | snex 5376 | . . 3 ⊢ {𝐵} ∈ V | |
| 8 | breng 8884 | . . 3 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})) | |
| 9 | 6, 7, 8 | mp2an 692 | . 2 ⊢ ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}) |
| 10 | 5, 9 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 {csn 4575 〈cop 4581 class class class wbr 5093 –1-1-onto→wf1o 6485 ≈ cen 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-en 8876 |
| This theorem is referenced by: enrefnn 8975 difsnen 8979 domunsncan 8997 domunsn 9047 limensuci 9073 infensuc 9075 unfi 9087 sucdom2 9119 0sdom1dom 9137 1sdom2dom 9145 dif1ennnALT 9168 fodomfi 9203 dif1card 9908 fin23lem26 10223 unsnen 10451 canthp1lem1 10550 fzennn 13877 hashsng 14278 mreexexlem4d 17555 |
| Copyright terms: Public domain | W3C validator |