MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2sn Structured version   Visualization version   GIF version

Theorem en2sn 8831
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5288. (Revised by BTernaryTau, 31-Jul-2024.) Avoid ax-un 7588. (Revised by BTernaryTau, 25-Sep-2024.)
Assertion
Ref Expression
en2sn ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})

Proof of Theorem en2sn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 snex 5354 . . 3 {⟨𝐴, 𝐵⟩} ∈ V
2 f1osng 6757 . . 3 ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
3 f1oeq1 6704 . . . 4 (𝑓 = {⟨𝐴, 𝐵⟩} → (𝑓:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
43spcegv 3536 . . 3 ({⟨𝐴, 𝐵⟩} ∈ V → ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}))
51, 2, 4mpsyl 68 . 2 ((𝐴𝐶𝐵𝐷) → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})
6 snex 5354 . . 3 {𝐴} ∈ V
7 snex 5354 . . 3 {𝐵} ∈ V
8 breng 8742 . . 3 (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}))
96, 7, 8mp2an 689 . 2 ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})
105, 9sylibr 233 1 ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1782  wcel 2106  Vcvv 3432  {csn 4561  cop 4567   class class class wbr 5074  1-1-ontowf1o 6432  cen 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-en 8734
This theorem is referenced by:  enrefnn  8837  enpr2d  8838  difsnen  8840  domunsncan  8859  sucdom2OLD  8869  domunsn  8914  limensuci  8940  infensuc  8942  unfi  8955  sucdom2  8989  dif1enALT  9050  dif1card  9766  fin23lem26  10081  unsnen  10309  canthp1lem1  10408  fzennn  13688  hashsng  14084  mreexexlem4d  17356
  Copyright terms: Public domain W3C validator