| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2prd | Structured version Visualization version GIF version | ||
| Description: Two unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| en2prd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| en2prd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| en2prd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| en2prd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| en2prd.5 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| en2prd.6 | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Ref | Expression |
|---|---|
| en2prd | ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex 5394 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ V | |
| 2 | en2prd.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | en2prd.6 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) | |
| 4 | en2prd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | en2prd.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 6 | en2prd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | en2prd.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 8 | f1oprg 6847 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌)) → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
| 9 | 4, 5, 6, 7, 8 | syl22anc 838 | . . . 4 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) |
| 10 | 2, 3, 9 | mp2and 699 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
| 11 | f1oeq1 6790 | . . . 4 ⊢ (𝑓 = {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} → (𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} ↔ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
| 12 | 11 | spcegv 3566 | . . 3 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ V → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) |
| 13 | 1, 10, 12 | mpsyl 68 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
| 14 | prex 5394 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
| 15 | prex 5394 | . . 3 ⊢ {𝐶, 𝐷} ∈ V | |
| 16 | breng 8929 | . . 3 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶, 𝐷} ∈ V) → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
| 17 | 14, 15, 16 | mp2an 692 | . 2 ⊢ ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
| 18 | 13, 17 | sylibr 234 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 {cpr 4593 〈cop 4597 class class class wbr 5109 –1-1-onto→wf1o 6512 ≈ cen 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-en 8921 |
| This theorem is referenced by: enpr2d 9022 rex2dom 9199 |
| Copyright terms: Public domain | W3C validator |