MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2prd Structured version   Visualization version   GIF version

Theorem en2prd 9022
Description: Two unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.)
Hypotheses
Ref Expression
en2prd.1 (𝜑𝐴𝑉)
en2prd.2 (𝜑𝐵𝑊)
en2prd.3 (𝜑𝐶𝑋)
en2prd.4 (𝜑𝐷𝑌)
en2prd.5 (𝜑𝐴𝐵)
en2prd.6 (𝜑𝐶𝐷)
Assertion
Ref Expression
en2prd (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷})

Proof of Theorem en2prd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 prex 5395 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ V
2 en2prd.5 . . . 4 (𝜑𝐴𝐵)
3 en2prd.6 . . . 4 (𝜑𝐶𝐷)
4 en2prd.1 . . . . 5 (𝜑𝐴𝑉)
5 en2prd.3 . . . . 5 (𝜑𝐶𝑋)
6 en2prd.2 . . . . 5 (𝜑𝐵𝑊)
7 en2prd.4 . . . . 5 (𝜑𝐷𝑌)
8 f1oprg 6848 . . . . 5 (((𝐴𝑉𝐶𝑋) ∧ (𝐵𝑊𝐷𝑌)) → ((𝐴𝐵𝐶𝐷) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
94, 5, 6, 7, 8syl22anc 838 . . . 4 (𝜑 → ((𝐴𝐵𝐶𝐷) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
102, 3, 9mp2and 699 . . 3 (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
11 f1oeq1 6791 . . . 4 (𝑓 = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} → (𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} ↔ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
1211spcegv 3566 . . 3 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ V → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
131, 10, 12mpsyl 68 . 2 (𝜑 → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
14 prex 5395 . . 3 {𝐴, 𝐵} ∈ V
15 prex 5395 . . 3 {𝐶, 𝐷} ∈ V
16 breng 8930 . . 3 (({𝐴, 𝐵} ∈ V ∧ {𝐶, 𝐷} ∈ V) → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
1714, 15, 16mp2an 692 . 2 ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
1813, 17sylibr 234 1 (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  wne 2926  Vcvv 3450  {cpr 4594  cop 4598   class class class wbr 5110  1-1-ontowf1o 6513  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-en 8922
This theorem is referenced by:  enpr2d  9023  rex2dom  9200
  Copyright terms: Public domain W3C validator