| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2prd | Structured version Visualization version GIF version | ||
| Description: Two unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| en2prd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| en2prd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| en2prd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| en2prd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| en2prd.5 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| en2prd.6 | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Ref | Expression |
|---|---|
| en2prd | ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex 5392 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ V | |
| 2 | en2prd.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | en2prd.6 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) | |
| 4 | en2prd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | en2prd.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 6 | en2prd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | en2prd.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 8 | f1oprg 6845 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌)) → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
| 9 | 4, 5, 6, 7, 8 | syl22anc 838 | . . . 4 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) |
| 10 | 2, 3, 9 | mp2and 699 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
| 11 | f1oeq1 6788 | . . . 4 ⊢ (𝑓 = {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} → (𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} ↔ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
| 12 | 11 | spcegv 3563 | . . 3 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ V → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) |
| 13 | 1, 10, 12 | mpsyl 68 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
| 14 | prex 5392 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
| 15 | prex 5392 | . . 3 ⊢ {𝐶, 𝐷} ∈ V | |
| 16 | breng 8927 | . . 3 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶, 𝐷} ∈ V) → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
| 17 | 14, 15, 16 | mp2an 692 | . 2 ⊢ ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
| 18 | 13, 17 | sylibr 234 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 {cpr 4591 〈cop 4595 class class class wbr 5107 –1-1-onto→wf1o 6510 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-en 8919 |
| This theorem is referenced by: enpr2d 9020 rex2dom 9193 |
| Copyright terms: Public domain | W3C validator |