MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2prd Structured version   Visualization version   GIF version

Theorem en2prd 8979
Description: Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.)
Hypotheses
Ref Expression
en2prd.1 (𝜑𝐴𝑉)
en2prd.2 (𝜑𝐵𝑊)
en2prd.3 (𝜑𝐶𝑋)
en2prd.4 (𝜑𝐷𝑌)
en2prd.5 (𝜑𝐴𝐵)
en2prd.6 (𝜑𝐶𝐷)
Assertion
Ref Expression
en2prd (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷})

Proof of Theorem en2prd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 prex 5379 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ V
2 en2prd.5 . . . 4 (𝜑𝐴𝐵)
3 en2prd.6 . . . 4 (𝜑𝐶𝐷)
4 en2prd.1 . . . . 5 (𝜑𝐴𝑉)
5 en2prd.3 . . . . 5 (𝜑𝐶𝑋)
6 en2prd.2 . . . . 5 (𝜑𝐵𝑊)
7 en2prd.4 . . . . 5 (𝜑𝐷𝑌)
8 f1oprg 6817 . . . . 5 (((𝐴𝑉𝐶𝑋) ∧ (𝐵𝑊𝐷𝑌)) → ((𝐴𝐵𝐶𝐷) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
94, 5, 6, 7, 8syl22anc 838 . . . 4 (𝜑 → ((𝐴𝐵𝐶𝐷) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
102, 3, 9mp2and 699 . . 3 (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
11 f1oeq1 6759 . . . 4 (𝑓 = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} → (𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} ↔ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
1211spcegv 3549 . . 3 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ V → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
131, 10, 12mpsyl 68 . 2 (𝜑 → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
14 prex 5379 . . 3 {𝐴, 𝐵} ∈ V
15 prex 5379 . . 3 {𝐶, 𝐷} ∈ V
16 breng 8887 . . 3 (({𝐴, 𝐵} ∈ V ∧ {𝐶, 𝐷} ∈ V) → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
1714, 15, 16mp2an 692 . 2 ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
1813, 17sylibr 234 1 (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1780  wcel 2113  wne 2930  Vcvv 3438  {cpr 4579  cop 4583   class class class wbr 5095  1-1-ontowf1o 6488  cen 8875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-en 8879
This theorem is referenced by:  enpr2d  8980  rex2dom  9147
  Copyright terms: Public domain W3C validator