Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en2prd | Structured version Visualization version GIF version |
Description: Two unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.) |
Ref | Expression |
---|---|
en2prd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
en2prd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
en2prd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
en2prd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
en2prd.5 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
en2prd.6 | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Ref | Expression |
---|---|
en2prd | ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5364 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ V | |
2 | en2prd.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | en2prd.6 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) | |
4 | en2prd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | en2prd.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
6 | en2prd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
7 | en2prd.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
8 | f1oprg 6791 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌)) → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
9 | 4, 5, 6, 7, 8 | syl22anc 837 | . . . 4 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) |
10 | 2, 3, 9 | mp2and 697 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
11 | f1oeq1 6734 | . . . 4 ⊢ (𝑓 = {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} → (𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} ↔ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
12 | 11 | spcegv 3541 | . . 3 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ V → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) |
13 | 1, 10, 12 | mpsyl 68 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
14 | prex 5364 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
15 | prex 5364 | . . 3 ⊢ {𝐶, 𝐷} ∈ V | |
16 | breng 8773 | . . 3 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶, 𝐷} ∈ V) → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
17 | 14, 15, 16 | mp2an 690 | . 2 ⊢ ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
18 | 13, 17 | sylibr 233 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∃wex 1779 ∈ wcel 2104 ≠ wne 2941 Vcvv 3437 {cpr 4567 〈cop 4571 class class class wbr 5081 –1-1-onto→wf1o 6457 ≈ cen 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-en 8765 |
This theorem is referenced by: enpr2d 8874 rex2dom 9067 |
Copyright terms: Public domain | W3C validator |