![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en2prd | Structured version Visualization version GIF version |
Description: Two unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.) |
Ref | Expression |
---|---|
en2prd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
en2prd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
en2prd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
en2prd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
en2prd.5 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
en2prd.6 | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Ref | Expression |
---|---|
en2prd | ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5432 | . . 3 ⊢ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ V | |
2 | en2prd.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | en2prd.6 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) | |
4 | en2prd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | en2prd.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
6 | en2prd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
7 | en2prd.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
8 | f1oprg 6878 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌)) → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
9 | 4, 5, 6, 7, 8 | syl22anc 836 | . . . 4 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) |
10 | 2, 3, 9 | mp2and 696 | . . 3 ⊢ (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
11 | f1oeq1 6821 | . . . 4 ⊢ (𝑓 = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} → (𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} ↔ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
12 | 11 | spcegv 3587 | . . 3 ⊢ ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ V → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) |
13 | 1, 10, 12 | mpsyl 68 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
14 | prex 5432 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
15 | prex 5432 | . . 3 ⊢ {𝐶, 𝐷} ∈ V | |
16 | breng 8951 | . . 3 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶, 𝐷} ∈ V) → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
17 | 14, 15, 16 | mp2an 689 | . 2 ⊢ ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
18 | 13, 17 | sylibr 233 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1780 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 {cpr 4630 ⟨cop 4634 class class class wbr 5148 –1-1-onto→wf1o 6542 ≈ cen 8939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-en 8943 |
This theorem is referenced by: enpr2d 9052 rex2dom 9249 |
Copyright terms: Public domain | W3C validator |