MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2prd Structured version   Visualization version   GIF version

Theorem en2prd 8891
Description: Two unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.)
Hypotheses
Ref Expression
en2prd.1 (𝜑𝐴𝑉)
en2prd.2 (𝜑𝐵𝑊)
en2prd.3 (𝜑𝐶𝑋)
en2prd.4 (𝜑𝐷𝑌)
en2prd.5 (𝜑𝐴𝐵)
en2prd.6 (𝜑𝐶𝐷)
Assertion
Ref Expression
en2prd (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷})

Proof of Theorem en2prd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 prex 5369 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ V
2 en2prd.5 . . . 4 (𝜑𝐴𝐵)
3 en2prd.6 . . . 4 (𝜑𝐶𝐷)
4 en2prd.1 . . . . 5 (𝜑𝐴𝑉)
5 en2prd.3 . . . . 5 (𝜑𝐶𝑋)
6 en2prd.2 . . . . 5 (𝜑𝐵𝑊)
7 en2prd.4 . . . . 5 (𝜑𝐷𝑌)
8 f1oprg 6798 . . . . 5 (((𝐴𝑉𝐶𝑋) ∧ (𝐵𝑊𝐷𝑌)) → ((𝐴𝐵𝐶𝐷) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
94, 5, 6, 7, 8syl22anc 836 . . . 4 (𝜑 → ((𝐴𝐵𝐶𝐷) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
102, 3, 9mp2and 696 . . 3 (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
11 f1oeq1 6741 . . . 4 (𝑓 = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} → (𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} ↔ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
1211spcegv 3544 . . 3 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ V → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
131, 10, 12mpsyl 68 . 2 (𝜑 → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
14 prex 5369 . . 3 {𝐴, 𝐵} ∈ V
15 prex 5369 . . 3 {𝐶, 𝐷} ∈ V
16 breng 8791 . . 3 (({𝐴, 𝐵} ∈ V ∧ {𝐶, 𝐷} ∈ V) → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
1714, 15, 16mp2an 689 . 2 ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
1813, 17sylibr 233 1 (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1780  wcel 2105  wne 2940  Vcvv 3440  {cpr 4572  cop 4576   class class class wbr 5086  1-1-ontowf1o 6464  cen 8779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5087  df-opab 5149  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-en 8783
This theorem is referenced by:  enpr2d  8892  rex2dom  9089
  Copyright terms: Public domain W3C validator