![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsleval | Structured version Visualization version GIF version |
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.) |
Ref | Expression |
---|---|
pwsle.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsle.v | ⊢ 𝐵 = (Base‘𝑌) |
pwsle.o | ⊢ 𝑂 = (le‘𝑅) |
pwsle.l | ⊢ ≤ = (le‘𝑌) |
pwsleval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
pwsleval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
pwsleval.a | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
pwsleval.b | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
pwsleval | ⊢ (𝜑 → (𝐹 ≤ 𝐺 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥)𝑂(𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsleval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | pwsleval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | pwsle.y | . . . . 5 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
4 | pwsle.v | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
5 | pwsle.o | . . . . 5 ⊢ 𝑂 = (le‘𝑅) | |
6 | pwsle.l | . . . . 5 ⊢ ≤ = (le‘𝑌) | |
7 | 3, 4, 5, 6 | pwsle 16467 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ≤ = ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))) |
8 | 1, 2, 7 | syl2anc 580 | . . 3 ⊢ (𝜑 → ≤ = ( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))) |
9 | 8 | breqd 4854 | . 2 ⊢ (𝜑 → (𝐹 ≤ 𝐺 ↔ 𝐹( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝐺)) |
10 | pwsleval.a | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
11 | pwsleval.b | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
12 | brinxp 5385 | . . 3 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∘𝑟 𝑂𝐺 ↔ 𝐹( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝐺)) | |
13 | 10, 11, 12 | syl2anc 580 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑟 𝑂𝐺 ↔ 𝐹( ∘𝑟 𝑂 ∩ (𝐵 × 𝐵))𝐺)) |
14 | eqid 2799 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
15 | 3, 14, 4, 1, 2, 10 | pwselbas 16464 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝑅)) |
16 | 15 | ffnd 6257 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐼) |
17 | 3, 14, 4, 1, 2, 11 | pwselbas 16464 | . . . 4 ⊢ (𝜑 → 𝐺:𝐼⟶(Base‘𝑅)) |
18 | 17 | ffnd 6257 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐼) |
19 | inidm 4018 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
20 | eqidd 2800 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
21 | eqidd 2800 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
22 | 16, 18, 2, 2, 19, 20, 21 | ofrfval 7139 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑟 𝑂𝐺 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥)𝑂(𝐺‘𝑥))) |
23 | 9, 13, 22 | 3bitr2d 299 | 1 ⊢ (𝜑 → (𝐹 ≤ 𝐺 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥)𝑂(𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∩ cin 3768 class class class wbr 4843 × cxp 5310 ‘cfv 6101 (class class class)co 6878 ∘𝑟 cofr 7130 Basecbs 16184 lecple 16274 ↑s cpws 16422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-ofr 7132 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-plusg 16280 df-mulr 16281 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-hom 16291 df-cco 16292 df-prds 16423 df-pws 16425 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |