MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsleval Structured version   Visualization version   GIF version

Theorem pwsleval 17540
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.)
Hypotheses
Ref Expression
pwsle.y 𝑌 = (𝑅s 𝐼)
pwsle.v 𝐵 = (Base‘𝑌)
pwsle.o 𝑂 = (le‘𝑅)
pwsle.l = (le‘𝑌)
pwsleval.r (𝜑𝑅𝑉)
pwsleval.i (𝜑𝐼𝑊)
pwsleval.a (𝜑𝐹𝐵)
pwsleval.b (𝜑𝐺𝐵)
Assertion
Ref Expression
pwsleval (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)𝑂(𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑂   𝑥,𝑅   𝑥,𝑉   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑊
Allowed substitution hints:   (𝑥)   𝑌(𝑥)

Proof of Theorem pwsleval
StepHypRef Expression
1 pwsleval.r . . . 4 (𝜑𝑅𝑉)
2 pwsleval.i . . . 4 (𝜑𝐼𝑊)
3 pwsle.y . . . . 5 𝑌 = (𝑅s 𝐼)
4 pwsle.v . . . . 5 𝐵 = (Base‘𝑌)
5 pwsle.o . . . . 5 𝑂 = (le‘𝑅)
6 pwsle.l . . . . 5 = (le‘𝑌)
73, 4, 5, 6pwsle 17539 . . . 4 ((𝑅𝑉𝐼𝑊) → = ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))
81, 2, 7syl2anc 584 . . 3 (𝜑 = ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))
98breqd 5159 . 2 (𝜑 → (𝐹 𝐺𝐹( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝐺))
10 pwsleval.a . . 3 (𝜑𝐹𝐵)
11 pwsleval.b . . 3 (𝜑𝐺𝐵)
12 brinxp 5767 . . 3 ((𝐹𝐵𝐺𝐵) → (𝐹r 𝑂𝐺𝐹( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝐺))
1310, 11, 12syl2anc 584 . 2 (𝜑 → (𝐹r 𝑂𝐺𝐹( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝐺))
14 eqid 2735 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
153, 14, 4, 1, 2, 10pwselbas 17536 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝑅))
1615ffnd 6738 . . 3 (𝜑𝐹 Fn 𝐼)
173, 14, 4, 1, 2, 11pwselbas 17536 . . . 4 (𝜑𝐺:𝐼⟶(Base‘𝑅))
1817ffnd 6738 . . 3 (𝜑𝐺 Fn 𝐼)
19 inidm 4235 . . 3 (𝐼𝐼) = 𝐼
20 eqidd 2736 . . 3 ((𝜑𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
21 eqidd 2736 . . 3 ((𝜑𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
2216, 18, 10, 11, 19, 20, 21ofrfvalg 7705 . 2 (𝜑 → (𝐹r 𝑂𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)𝑂(𝐺𝑥)))
239, 13, 223bitr2d 307 1 (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)𝑂(𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  cin 3962   class class class wbr 5148   × cxp 5687  cfv 6563  (class class class)co 7431  r cofr 7696  Basecbs 17245  lecple 17305  s cpws 17493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-prds 17494  df-pws 17496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator