Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isores2 | Structured version Visualization version GIF version |
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.) |
Ref | Expression |
---|---|
isores2 | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of 6716 | . . . . . . . 8 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) | |
2 | ffvelrn 6959 | . . . . . . . . . 10 ⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ 𝐵) | |
3 | 2 | adantrr 714 | . . . . . . . . 9 ⊢ ((𝐻:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐻‘𝑥) ∈ 𝐵) |
4 | ffvelrn 6959 | . . . . . . . . . 10 ⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → (𝐻‘𝑦) ∈ 𝐵) | |
5 | 4 | adantrl 713 | . . . . . . . . 9 ⊢ ((𝐻:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐻‘𝑦) ∈ 𝐵) |
6 | brinxp 5665 | . . . . . . . . 9 ⊢ (((𝐻‘𝑥) ∈ 𝐵 ∧ (𝐻‘𝑦) ∈ 𝐵) → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦))) | |
7 | 3, 5, 6 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝐻:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦))) |
8 | 1, 7 | sylan 580 | . . . . . . 7 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦))) |
9 | 8 | anassrs 468 | . . . . . 6 ⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦))) |
10 | 9 | bibi2d 343 | . . . . 5 ⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦)))) |
11 | 10 | ralbidva 3111 | . . . 4 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦)))) |
12 | 11 | ralbidva 3111 | . . 3 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦)))) |
13 | 12 | pm5.32i 575 | . 2 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦)))) |
14 | df-isom 6442 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
15 | df-isom 6442 | . 2 ⊢ (𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦)))) | |
16 | 13, 14, 15 | 3bitr4i 303 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 class class class wbr 5074 × cxp 5587 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 Isom wiso 6434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-f1o 6440 df-fv 6441 df-isom 6442 |
This theorem is referenced by: isores1 7205 hartogslem1 9301 leiso 14173 icopnfhmeo 24106 iccpnfhmeo 24108 gtiso 31033 xrge0iifhmeo 31886 |
Copyright terms: Public domain | W3C validator |