MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isores2 Structured version   Visualization version   GIF version

Theorem isores2 7308
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵))

Proof of Theorem isores2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 6800 . . . . . . . 8 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
2 ffvelcdm 7053 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑥𝐴) → (𝐻𝑥) ∈ 𝐵)
32adantrr 717 . . . . . . . . 9 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑥) ∈ 𝐵)
4 ffvelcdm 7053 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑦𝐴) → (𝐻𝑦) ∈ 𝐵)
54adantrl 716 . . . . . . . . 9 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑦) ∈ 𝐵)
6 brinxp 5717 . . . . . . . . 9 (((𝐻𝑥) ∈ 𝐵 ∧ (𝐻𝑦) ∈ 𝐵) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦)))
73, 5, 6syl2anc 584 . . . . . . . 8 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦)))
81, 7sylan 580 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦)))
98anassrs 467 . . . . . 6 (((𝐻:𝐴1-1-onto𝐵𝑥𝐴) ∧ 𝑦𝐴) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦)))
109bibi2d 342 . . . . 5 (((𝐻:𝐴1-1-onto𝐵𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
1110ralbidva 3154 . . . 4 ((𝐻:𝐴1-1-onto𝐵𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
1211ralbidva 3154 . . 3 (𝐻:𝐴1-1-onto𝐵 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
1312pm5.32i 574 . 2 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
14 df-isom 6520 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
15 df-isom 6520 . 2 (𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻𝑦))))
1613, 14, 153bitr4i 303 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  wral 3044  cin 3913   class class class wbr 5107   × cxp 5636  wf 6507  1-1-ontowf1o 6510  cfv 6511   Isom wiso 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-f1o 6518  df-fv 6519  df-isom 6520
This theorem is referenced by:  isores1  7309  hartogslem1  9495  leiso  14424  icopnfhmeo  24841  iccpnfhmeo  24843  gtiso  32624  xrge0iifhmeo  33926
  Copyright terms: Public domain W3C validator