Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isores2 | Structured version Visualization version GIF version |
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.) |
Ref | Expression |
---|---|
isores2 | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of 6700 | . . . . . . . 8 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) | |
2 | ffvelrn 6941 | . . . . . . . . . 10 ⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ 𝐵) | |
3 | 2 | adantrr 713 | . . . . . . . . 9 ⊢ ((𝐻:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐻‘𝑥) ∈ 𝐵) |
4 | ffvelrn 6941 | . . . . . . . . . 10 ⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → (𝐻‘𝑦) ∈ 𝐵) | |
5 | 4 | adantrl 712 | . . . . . . . . 9 ⊢ ((𝐻:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐻‘𝑦) ∈ 𝐵) |
6 | brinxp 5656 | . . . . . . . . 9 ⊢ (((𝐻‘𝑥) ∈ 𝐵 ∧ (𝐻‘𝑦) ∈ 𝐵) → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦))) | |
7 | 3, 5, 6 | syl2anc 583 | . . . . . . . 8 ⊢ ((𝐻:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦))) |
8 | 1, 7 | sylan 579 | . . . . . . 7 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦))) |
9 | 8 | anassrs 467 | . . . . . 6 ⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦))) |
10 | 9 | bibi2d 342 | . . . . 5 ⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦)))) |
11 | 10 | ralbidva 3119 | . . . 4 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦)))) |
12 | 11 | ralbidva 3119 | . . 3 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦)))) |
13 | 12 | pm5.32i 574 | . 2 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦)))) |
14 | df-isom 6427 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
15 | df-isom 6427 | . 2 ⊢ (𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)(𝑆 ∩ (𝐵 × 𝐵))(𝐻‘𝑦)))) | |
16 | 13, 14, 15 | 3bitr4i 302 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 class class class wbr 5070 × cxp 5578 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 Isom wiso 6419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-f1o 6425 df-fv 6426 df-isom 6427 |
This theorem is referenced by: isores1 7185 hartogslem1 9231 leiso 14101 icopnfhmeo 24012 iccpnfhmeo 24014 gtiso 30935 xrge0iifhmeo 31788 |
Copyright terms: Public domain | W3C validator |