Step | Hyp | Ref
| Expression |
1 | | satefv 33276 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat∈ 𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋)) |
2 | | incom 4131 |
. . . . . . . . 9
⊢ ( E ∩
(𝑀 × 𝑀)) = ((𝑀 × 𝑀) ∩ E ) |
3 | | sqxpexg 7583 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝑉 → (𝑀 × 𝑀) ∈ V) |
4 | | inex1g 5238 |
. . . . . . . . . 10
⊢ ((𝑀 × 𝑀) ∈ V → ((𝑀 × 𝑀) ∩ E ) ∈ V) |
5 | 3, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝑉 → ((𝑀 × 𝑀) ∩ E ) ∈ V) |
6 | 2, 5 | eqeltrid 2843 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → ( E ∩ (𝑀 × 𝑀)) ∈ V) |
7 | 6 | ancli 548 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V)) |
8 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → (𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V)) |
9 | | satom 33218 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = ∪ 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)) |
10 | 8, 9 | syl 17 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = ∪ 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)) |
11 | 10 | fveq1d 6758 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) →
(((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = (∪
𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋)) |
12 | | satfun 33273 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫
(𝑀 ↑m
ω)) |
13 | 8, 12 | syl 17 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫
(𝑀 ↑m
ω)) |
14 | 13 | ffund 6588 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → Fun
((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)) |
15 | 10 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) →
∪ 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)) |
16 | 15 | funeqd 6440 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → (Fun
∪ 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ↔ Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))) |
17 | 14, 16 | mpbird 256 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → Fun
∪ 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)) |
18 | | peano1 7710 |
. . . . . 6
⊢ ∅
∈ ω |
19 | 18 | a1i 11 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → ∅
∈ ω) |
20 | 18 | a1i 11 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝑉 → ∅ ∈
ω) |
21 | | satfdmfmla 33262 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V ∧ ∅ ∈ ω)
→ dom ((𝑀 Sat ( E
∩ (𝑀 × 𝑀)))‘∅) =
(Fmla‘∅)) |
22 | 6, 20, 21 | mpd3an23 1461 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅) =
(Fmla‘∅)) |
23 | 22 | eqcomd 2744 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → (Fmla‘∅) = dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)) |
24 | 23 | eleq2d 2824 |
. . . . . 6
⊢ (𝑀 ∈ 𝑉 → (𝑋 ∈ (Fmla‘∅) ↔ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅))) |
25 | 24 | biimpa 476 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)) |
26 | | eqid 2738 |
. . . . . 6
⊢ ∪ 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = ∪ 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) |
27 | 26 | fviunfun 7761 |
. . . . 5
⊢ ((Fun
∪ 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ∧ ∅ ∈ ω ∧ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)) → (∪ 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋)) |
28 | 17, 19, 25, 27 | syl3anc 1369 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) →
(∪ 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋)) |
29 | 11, 28 | eqtrd 2778 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) →
(((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋)) |
30 | | simpl 482 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → 𝑀 ∈ 𝑉) |
31 | 6 | adantr 480 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → ( E
∩ (𝑀 × 𝑀)) ∈ V) |
32 | | simpr 484 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈
(Fmla‘∅)) |
33 | | eqid 2738 |
. . . . . 6
⊢ (𝑀 Sat ( E ∩ (𝑀 × 𝑀))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀))) |
34 | 33 | satfv0fvfmla0 33275 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V ∧ 𝑋 ∈ (Fmla‘∅)) →
(((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd
‘𝑋)))}) |
35 | 30, 31, 32, 34 | syl3anc 1369 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) →
(((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd
‘𝑋)))}) |
36 | | elmapi 8595 |
. . . . . . . . 9
⊢ (𝑎 ∈ (𝑀 ↑m ω) → 𝑎:ω⟶𝑀) |
37 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑎:ω⟶𝑀 ∧ (𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅))) → 𝑎:ω⟶𝑀) |
38 | | fmla0xp 33245 |
. . . . . . . . . . . . . . . 16
⊢
(Fmla‘∅) = ({∅} × (ω ×
ω)) |
39 | 38 | eleq2i 2830 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ (Fmla‘∅)
↔ 𝑋 ∈ ({∅}
× (ω × ω))) |
40 | | elxp 5603 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ ({∅} ×
(ω × ω)) ↔ ∃𝑥∃𝑦(𝑋 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω ×
ω)))) |
41 | 39, 40 | bitri 274 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ (Fmla‘∅)
↔ ∃𝑥∃𝑦(𝑋 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω ×
ω)))) |
42 | | xp1st 7836 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (ω ×
ω) → (1st ‘𝑦) ∈ ω) |
43 | 42 | ad2antll 725 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) →
(1st ‘𝑦)
∈ ω) |
44 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑥 ∈ V |
45 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ∈ V |
46 | 44, 45 | op2ndd 7815 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 = 〈𝑥, 𝑦〉 → (2nd ‘𝑋) = 𝑦) |
47 | 46 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 = 〈𝑥, 𝑦〉 → (1st
‘(2nd ‘𝑋)) = (1st ‘𝑦)) |
48 | 47 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 = 〈𝑥, 𝑦〉 → ((1st
‘(2nd ‘𝑋)) ∈ ω ↔ (1st
‘𝑦) ∈
ω)) |
49 | 48 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) →
((1st ‘(2nd ‘𝑋)) ∈ ω ↔ (1st
‘𝑦) ∈
ω)) |
50 | 43, 49 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) →
(1st ‘(2nd ‘𝑋)) ∈ ω) |
51 | 50 | exlimivv 1936 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥∃𝑦(𝑋 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) →
(1st ‘(2nd ‘𝑋)) ∈ ω) |
52 | 41, 51 | sylbi 216 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ (Fmla‘∅)
→ (1st ‘(2nd ‘𝑋)) ∈ ω) |
53 | 52 | ad2antll 725 |
. . . . . . . . . . . 12
⊢ ((𝑎:ω⟶𝑀 ∧ (𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅))) →
(1st ‘(2nd ‘𝑋)) ∈ ω) |
54 | 37, 53 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ ((𝑎:ω⟶𝑀 ∧ (𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅))) → (𝑎‘(1st
‘(2nd ‘𝑋))) ∈ 𝑀) |
55 | | xp2nd 7837 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (ω ×
ω) → (2nd ‘𝑦) ∈ ω) |
56 | 55 | ad2antll 725 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) →
(2nd ‘𝑦)
∈ ω) |
57 | 46 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 = 〈𝑥, 𝑦〉 → (2nd
‘(2nd ‘𝑋)) = (2nd ‘𝑦)) |
58 | 57 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 = 〈𝑥, 𝑦〉 → ((2nd
‘(2nd ‘𝑋)) ∈ ω ↔ (2nd
‘𝑦) ∈
ω)) |
59 | 58 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) →
((2nd ‘(2nd ‘𝑋)) ∈ ω ↔ (2nd
‘𝑦) ∈
ω)) |
60 | 56, 59 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) →
(2nd ‘(2nd ‘𝑋)) ∈ ω) |
61 | 60 | exlimivv 1936 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥∃𝑦(𝑋 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) →
(2nd ‘(2nd ‘𝑋)) ∈ ω) |
62 | 41, 61 | sylbi 216 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ (Fmla‘∅)
→ (2nd ‘(2nd ‘𝑋)) ∈ ω) |
63 | 62 | ad2antll 725 |
. . . . . . . . . . . 12
⊢ ((𝑎:ω⟶𝑀 ∧ (𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅))) →
(2nd ‘(2nd ‘𝑋)) ∈ ω) |
64 | 37, 63 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ ((𝑎:ω⟶𝑀 ∧ (𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅))) → (𝑎‘(2nd
‘(2nd ‘𝑋))) ∈ 𝑀) |
65 | 54, 64 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑎:ω⟶𝑀 ∧ (𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅))) →
((𝑎‘(1st
‘(2nd ‘𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd
‘𝑋))) ∈ 𝑀)) |
66 | 65 | ex 412 |
. . . . . . . . 9
⊢ (𝑎:ω⟶𝑀 → ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → ((𝑎‘(1st
‘(2nd ‘𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd
‘𝑋))) ∈ 𝑀))) |
67 | 36, 66 | syl 17 |
. . . . . . . 8
⊢ (𝑎 ∈ (𝑀 ↑m ω) → ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → ((𝑎‘(1st
‘(2nd ‘𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd
‘𝑋))) ∈ 𝑀))) |
68 | 67 | impcom 407 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) ∧ 𝑎 ∈ (𝑀 ↑m ω)) → ((𝑎‘(1st
‘(2nd ‘𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd
‘𝑋))) ∈ 𝑀)) |
69 | | brinxp 5656 |
. . . . . . . 8
⊢ (((𝑎‘(1st
‘(2nd ‘𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd
‘𝑋))) ∈ 𝑀) → ((𝑎‘(1st ‘(2nd
‘𝑋))) E (𝑎‘(2nd
‘(2nd ‘𝑋))) ↔ (𝑎‘(1st ‘(2nd
‘𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd
‘𝑋))))) |
70 | 69 | bicomd 222 |
. . . . . . 7
⊢ (((𝑎‘(1st
‘(2nd ‘𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd
‘𝑋))) ∈ 𝑀) → ((𝑎‘(1st ‘(2nd
‘𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd
‘𝑋))) ↔ (𝑎‘(1st
‘(2nd ‘𝑋))) E (𝑎‘(2nd ‘(2nd
‘𝑋))))) |
71 | 68, 70 | syl 17 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) ∧ 𝑎 ∈ (𝑀 ↑m ω)) → ((𝑎‘(1st
‘(2nd ‘𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd
‘𝑋))) ↔ (𝑎‘(1st
‘(2nd ‘𝑋))) E (𝑎‘(2nd ‘(2nd
‘𝑋))))) |
72 | | fvex 6769 |
. . . . . . 7
⊢ (𝑎‘(2nd
‘(2nd ‘𝑋))) ∈ V |
73 | 72 | epeli 5488 |
. . . . . 6
⊢ ((𝑎‘(1st
‘(2nd ‘𝑋))) E (𝑎‘(2nd ‘(2nd
‘𝑋))) ↔ (𝑎‘(1st
‘(2nd ‘𝑋))) ∈ (𝑎‘(2nd ‘(2nd
‘𝑋)))) |
74 | 71, 73 | bitrdi 286 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) ∧ 𝑎 ∈ (𝑀 ↑m ω)) → ((𝑎‘(1st
‘(2nd ‘𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd
‘𝑋))) ↔ (𝑎‘(1st
‘(2nd ‘𝑋))) ∈ (𝑎‘(2nd ‘(2nd
‘𝑋))))) |
75 | 74 | rabbidva 3402 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋))) ∈ (𝑎‘(2nd ‘(2nd
‘𝑋)))}) |
76 | 35, 75 | eqtrd 2778 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) →
(((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋))) ∈ (𝑎‘(2nd ‘(2nd
‘𝑋)))}) |
77 | 29, 76 | eqtrd 2778 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) →
(((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋))) ∈ (𝑎‘(2nd ‘(2nd
‘𝑋)))}) |
78 | 1, 77 | eqtrd 2778 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat∈ 𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋))) ∈ (𝑎‘(2nd ‘(2nd
‘𝑋)))}) |