Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satefvfmla0 Structured version   Visualization version   GIF version

Theorem satefvfmla0 35405
Description: The simplified satisfaction predicate for wff codes of height 0. (Contributed by AV, 4-Nov-2023.)
Assertion
Ref Expression
satefvfmla0 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat 𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
Distinct variable groups:   𝑀,𝑎   𝑉,𝑎   𝑋,𝑎

Proof of Theorem satefvfmla0
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satefv 35401 . 2 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat 𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋))
2 incom 4172 . . . . . . . . 9 ( E ∩ (𝑀 × 𝑀)) = ((𝑀 × 𝑀) ∩ E )
3 sqxpexg 7731 . . . . . . . . . 10 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
4 inex1g 5274 . . . . . . . . . 10 ((𝑀 × 𝑀) ∈ V → ((𝑀 × 𝑀) ∩ E ) ∈ V)
53, 4syl 17 . . . . . . . . 9 (𝑀𝑉 → ((𝑀 × 𝑀) ∩ E ) ∈ V)
62, 5eqeltrid 2832 . . . . . . . 8 (𝑀𝑉 → ( E ∩ (𝑀 × 𝑀)) ∈ V)
76ancli 548 . . . . . . 7 (𝑀𝑉 → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
87adantr 480 . . . . . 6 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
9 satom 35343 . . . . . 6 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
108, 9syl 17 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
1110fveq1d 6860 . . . 4 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋))
12 satfun 35398 . . . . . . . 8 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
138, 12syl 17 . . . . . . 7 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
1413ffund 6692 . . . . . 6 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
1510eqcomd 2735 . . . . . . 7 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
1615funeqd 6538 . . . . . 6 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ↔ Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)))
1714, 16mpbird 257 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
18 peano1 7865 . . . . . 6 ∅ ∈ ω
1918a1i 11 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ∅ ∈ ω)
2018a1i 11 . . . . . . . . 9 (𝑀𝑉 → ∅ ∈ ω)
21 satfdmfmla 35387 . . . . . . . . 9 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V ∧ ∅ ∈ ω) → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅) = (Fmla‘∅))
226, 20, 21mpd3an23 1465 . . . . . . . 8 (𝑀𝑉 → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅) = (Fmla‘∅))
2322eqcomd 2735 . . . . . . 7 (𝑀𝑉 → (Fmla‘∅) = dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅))
2423eleq2d 2814 . . . . . 6 (𝑀𝑉 → (𝑋 ∈ (Fmla‘∅) ↔ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)))
2524biimpa 476 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅))
26 eqid 2729 . . . . . 6 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)
2726fviunfun 7923 . . . . 5 ((Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ∧ ∅ ∈ ω ∧ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)) → ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋))
2817, 19, 25, 27syl3anc 1373 . . . 4 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋))
2911, 28eqtrd 2764 . . 3 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋))
30 simpl 482 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → 𝑀𝑉)
316adantr 480 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ( E ∩ (𝑀 × 𝑀)) ∈ V)
32 simpr 484 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈ (Fmla‘∅))
33 eqid 2729 . . . . . 6 (𝑀 Sat ( E ∩ (𝑀 × 𝑀))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀)))
3433satfv0fvfmla0 35400 . . . . 5 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V ∧ 𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋)))})
3530, 31, 32, 34syl3anc 1373 . . . 4 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋)))})
36 elmapi 8822 . . . . . . . . 9 (𝑎 ∈ (𝑀m ω) → 𝑎:ω⟶𝑀)
37 simpl 482 . . . . . . . . . . . 12 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → 𝑎:ω⟶𝑀)
38 fmla0xp 35370 . . . . . . . . . . . . . . . 16 (Fmla‘∅) = ({∅} × (ω × ω))
3938eleq2i 2820 . . . . . . . . . . . . . . 15 (𝑋 ∈ (Fmla‘∅) ↔ 𝑋 ∈ ({∅} × (ω × ω)))
40 elxp 5661 . . . . . . . . . . . . . . 15 (𝑋 ∈ ({∅} × (ω × ω)) ↔ ∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))))
4139, 40bitri 275 . . . . . . . . . . . . . 14 (𝑋 ∈ (Fmla‘∅) ↔ ∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))))
42 xp1st 8000 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ω × ω) → (1st𝑦) ∈ ω)
4342ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (1st𝑦) ∈ ω)
44 vex 3451 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
45 vex 3451 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ V
4644, 45op2ndd 7979 . . . . . . . . . . . . . . . . . . 19 (𝑋 = ⟨𝑥, 𝑦⟩ → (2nd𝑋) = 𝑦)
4746fveq2d 6862 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨𝑥, 𝑦⟩ → (1st ‘(2nd𝑋)) = (1st𝑦))
4847eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨𝑥, 𝑦⟩ → ((1st ‘(2nd𝑋)) ∈ ω ↔ (1st𝑦) ∈ ω))
4948adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → ((1st ‘(2nd𝑋)) ∈ ω ↔ (1st𝑦) ∈ ω))
5043, 49mpbird 257 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (1st ‘(2nd𝑋)) ∈ ω)
5150exlimivv 1932 . . . . . . . . . . . . . 14 (∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (1st ‘(2nd𝑋)) ∈ ω)
5241, 51sylbi 217 . . . . . . . . . . . . 13 (𝑋 ∈ (Fmla‘∅) → (1st ‘(2nd𝑋)) ∈ ω)
5352ad2antll 729 . . . . . . . . . . . 12 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → (1st ‘(2nd𝑋)) ∈ ω)
5437, 53ffvelcdmd 7057 . . . . . . . . . . 11 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → (𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀)
55 xp2nd 8001 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ω × ω) → (2nd𝑦) ∈ ω)
5655ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (2nd𝑦) ∈ ω)
5746fveq2d 6862 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨𝑥, 𝑦⟩ → (2nd ‘(2nd𝑋)) = (2nd𝑦))
5857eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨𝑥, 𝑦⟩ → ((2nd ‘(2nd𝑋)) ∈ ω ↔ (2nd𝑦) ∈ ω))
5958adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → ((2nd ‘(2nd𝑋)) ∈ ω ↔ (2nd𝑦) ∈ ω))
6056, 59mpbird 257 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (2nd ‘(2nd𝑋)) ∈ ω)
6160exlimivv 1932 . . . . . . . . . . . . . 14 (∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (2nd ‘(2nd𝑋)) ∈ ω)
6241, 61sylbi 217 . . . . . . . . . . . . 13 (𝑋 ∈ (Fmla‘∅) → (2nd ‘(2nd𝑋)) ∈ ω)
6362ad2antll 729 . . . . . . . . . . . 12 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → (2nd ‘(2nd𝑋)) ∈ ω)
6437, 63ffvelcdmd 7057 . . . . . . . . . . 11 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀)
6554, 64jca 511 . . . . . . . . . 10 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → ((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀))
6665ex 412 . . . . . . . . 9 (𝑎:ω⟶𝑀 → ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀)))
6736, 66syl 17 . . . . . . . 8 (𝑎 ∈ (𝑀m ω) → ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀)))
6867impcom 407 . . . . . . 7 (((𝑀𝑉𝑋 ∈ (Fmla‘∅)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀))
69 brinxp 5717 . . . . . . . 8 (((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀) → ((𝑎‘(1st ‘(2nd𝑋))) E (𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋)))))
7069bicomd 223 . . . . . . 7 (((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀) → ((𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋))) E (𝑎‘(2nd ‘(2nd𝑋)))))
7168, 70syl 17 . . . . . 6 (((𝑀𝑉𝑋 ∈ (Fmla‘∅)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋))) E (𝑎‘(2nd ‘(2nd𝑋)))))
72 fvex 6871 . . . . . . 7 (𝑎‘(2nd ‘(2nd𝑋))) ∈ V
7372epeli 5540 . . . . . 6 ((𝑎‘(1st ‘(2nd𝑋))) E (𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋))))
7471, 73bitrdi 287 . . . . 5 (((𝑀𝑉𝑋 ∈ (Fmla‘∅)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))))
7574rabbidva 3412 . . . 4 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
7635, 75eqtrd 2764 . . 3 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
7729, 76eqtrd 2764 . 2 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
781, 77eqtrd 2764 1 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat 𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {crab 3405  Vcvv 3447  cin 3913  c0 4296  𝒫 cpw 4563  {csn 4589  cop 4595   ciun 4955   class class class wbr 5107   E cep 5537   × cxp 5636  dom cdm 5638  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  ωcom 7842  1st c1st 7966  2nd c2nd 7967  m cmap 8799   Sat csat 35323  Fmlacfmla 35324   Sat csate 35325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-ac 10069  df-goel 35327  df-gona 35328  df-goal 35329  df-sat 35330  df-sate 35331  df-fmla 35332
This theorem is referenced by:  sategoelfvb  35406  prv1n  35418
  Copyright terms: Public domain W3C validator