Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satefvfmla0 Structured version   Visualization version   GIF version

Theorem satefvfmla0 34478
Description: The simplified satisfaction predicate for wff codes of height 0. (Contributed by AV, 4-Nov-2023.)
Assertion
Ref Expression
satefvfmla0 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ (𝑀 Sat∈ 𝑋) = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹)))})
Distinct variable groups:   𝑀,π‘Ž   𝑉,π‘Ž   𝑋,π‘Ž

Proof of Theorem satefvfmla0
Dummy variables 𝑖 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satefv 34474 . 2 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ (𝑀 Sat∈ 𝑋) = (((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜Ο‰)β€˜π‘‹))
2 incom 4201 . . . . . . . . 9 ( E ∩ (𝑀 Γ— 𝑀)) = ((𝑀 Γ— 𝑀) ∩ E )
3 sqxpexg 7744 . . . . . . . . . 10 (𝑀 ∈ 𝑉 β†’ (𝑀 Γ— 𝑀) ∈ V)
4 inex1g 5319 . . . . . . . . . 10 ((𝑀 Γ— 𝑀) ∈ V β†’ ((𝑀 Γ— 𝑀) ∩ E ) ∈ V)
53, 4syl 17 . . . . . . . . 9 (𝑀 ∈ 𝑉 β†’ ((𝑀 Γ— 𝑀) ∩ E ) ∈ V)
62, 5eqeltrid 2837 . . . . . . . 8 (𝑀 ∈ 𝑉 β†’ ( E ∩ (𝑀 Γ— 𝑀)) ∈ V)
76ancli 549 . . . . . . 7 (𝑀 ∈ 𝑉 β†’ (𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 Γ— 𝑀)) ∈ V))
87adantr 481 . . . . . 6 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ (𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 Γ— 𝑀)) ∈ V))
9 satom 34416 . . . . . 6 ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 Γ— 𝑀)) ∈ V) β†’ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜Ο‰) = βˆͺ 𝑖 ∈ Ο‰ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜π‘–))
108, 9syl 17 . . . . 5 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜Ο‰) = βˆͺ 𝑖 ∈ Ο‰ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜π‘–))
1110fveq1d 6893 . . . 4 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ (((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜Ο‰)β€˜π‘‹) = (βˆͺ 𝑖 ∈ Ο‰ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜π‘–)β€˜π‘‹))
12 satfun 34471 . . . . . . . 8 ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 Γ— 𝑀)) ∈ V) β†’ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜Ο‰):(Fmlaβ€˜Ο‰)βŸΆπ’« (𝑀 ↑m Ο‰))
138, 12syl 17 . . . . . . 7 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜Ο‰):(Fmlaβ€˜Ο‰)βŸΆπ’« (𝑀 ↑m Ο‰))
1413ffund 6721 . . . . . 6 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ Fun ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜Ο‰))
1510eqcomd 2738 . . . . . . 7 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ βˆͺ 𝑖 ∈ Ο‰ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜π‘–) = ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜Ο‰))
1615funeqd 6570 . . . . . 6 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ (Fun βˆͺ 𝑖 ∈ Ο‰ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜π‘–) ↔ Fun ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜Ο‰)))
1714, 16mpbird 256 . . . . 5 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ Fun βˆͺ 𝑖 ∈ Ο‰ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜π‘–))
18 peano1 7881 . . . . . 6 βˆ… ∈ Ο‰
1918a1i 11 . . . . 5 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ βˆ… ∈ Ο‰)
2018a1i 11 . . . . . . . . 9 (𝑀 ∈ 𝑉 β†’ βˆ… ∈ Ο‰)
21 satfdmfmla 34460 . . . . . . . . 9 ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 Γ— 𝑀)) ∈ V ∧ βˆ… ∈ Ο‰) β†’ dom ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜βˆ…) = (Fmlaβ€˜βˆ…))
226, 20, 21mpd3an23 1463 . . . . . . . 8 (𝑀 ∈ 𝑉 β†’ dom ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜βˆ…) = (Fmlaβ€˜βˆ…))
2322eqcomd 2738 . . . . . . 7 (𝑀 ∈ 𝑉 β†’ (Fmlaβ€˜βˆ…) = dom ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜βˆ…))
2423eleq2d 2819 . . . . . 6 (𝑀 ∈ 𝑉 β†’ (𝑋 ∈ (Fmlaβ€˜βˆ…) ↔ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜βˆ…)))
2524biimpa 477 . . . . 5 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜βˆ…))
26 eqid 2732 . . . . . 6 βˆͺ 𝑖 ∈ Ο‰ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜π‘–) = βˆͺ 𝑖 ∈ Ο‰ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜π‘–)
2726fviunfun 7933 . . . . 5 ((Fun βˆͺ 𝑖 ∈ Ο‰ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜π‘–) ∧ βˆ… ∈ Ο‰ ∧ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜βˆ…)) β†’ (βˆͺ 𝑖 ∈ Ο‰ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜π‘–)β€˜π‘‹) = (((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜βˆ…)β€˜π‘‹))
2817, 19, 25, 27syl3anc 1371 . . . 4 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ (βˆͺ 𝑖 ∈ Ο‰ ((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜π‘–)β€˜π‘‹) = (((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜βˆ…)β€˜π‘‹))
2911, 28eqtrd 2772 . . 3 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ (((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜Ο‰)β€˜π‘‹) = (((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜βˆ…)β€˜π‘‹))
30 simpl 483 . . . . 5 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ 𝑀 ∈ 𝑉)
316adantr 481 . . . . 5 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ ( E ∩ (𝑀 Γ— 𝑀)) ∈ V)
32 simpr 485 . . . . 5 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ 𝑋 ∈ (Fmlaβ€˜βˆ…))
33 eqid 2732 . . . . . 6 (𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀))) = (𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))
3433satfv0fvfmla0 34473 . . . . 5 ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 Γ— 𝑀)) ∈ V ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ (((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜βˆ…)β€˜π‘‹) = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹)))( E ∩ (𝑀 Γ— 𝑀))(π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹)))})
3530, 31, 32, 34syl3anc 1371 . . . 4 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ (((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜βˆ…)β€˜π‘‹) = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹)))( E ∩ (𝑀 Γ— 𝑀))(π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹)))})
36 elmapi 8845 . . . . . . . . 9 (π‘Ž ∈ (𝑀 ↑m Ο‰) β†’ π‘Ž:Ο‰βŸΆπ‘€)
37 simpl 483 . . . . . . . . . . . 12 ((π‘Ž:Ο‰βŸΆπ‘€ ∧ (𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…))) β†’ π‘Ž:Ο‰βŸΆπ‘€)
38 fmla0xp 34443 . . . . . . . . . . . . . . . 16 (Fmlaβ€˜βˆ…) = ({βˆ…} Γ— (Ο‰ Γ— Ο‰))
3938eleq2i 2825 . . . . . . . . . . . . . . 15 (𝑋 ∈ (Fmlaβ€˜βˆ…) ↔ 𝑋 ∈ ({βˆ…} Γ— (Ο‰ Γ— Ο‰)))
40 elxp 5699 . . . . . . . . . . . . . . 15 (𝑋 ∈ ({βˆ…} Γ— (Ο‰ Γ— Ο‰)) ↔ βˆƒπ‘₯βˆƒπ‘¦(𝑋 = ⟨π‘₯, π‘¦βŸ© ∧ (π‘₯ ∈ {βˆ…} ∧ 𝑦 ∈ (Ο‰ Γ— Ο‰))))
4139, 40bitri 274 . . . . . . . . . . . . . 14 (𝑋 ∈ (Fmlaβ€˜βˆ…) ↔ βˆƒπ‘₯βˆƒπ‘¦(𝑋 = ⟨π‘₯, π‘¦βŸ© ∧ (π‘₯ ∈ {βˆ…} ∧ 𝑦 ∈ (Ο‰ Γ— Ο‰))))
42 xp1st 8009 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (Ο‰ Γ— Ο‰) β†’ (1st β€˜π‘¦) ∈ Ο‰)
4342ad2antll 727 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨π‘₯, π‘¦βŸ© ∧ (π‘₯ ∈ {βˆ…} ∧ 𝑦 ∈ (Ο‰ Γ— Ο‰))) β†’ (1st β€˜π‘¦) ∈ Ο‰)
44 vex 3478 . . . . . . . . . . . . . . . . . . . 20 π‘₯ ∈ V
45 vex 3478 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ V
4644, 45op2ndd 7988 . . . . . . . . . . . . . . . . . . 19 (𝑋 = ⟨π‘₯, π‘¦βŸ© β†’ (2nd β€˜π‘‹) = 𝑦)
4746fveq2d 6895 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨π‘₯, π‘¦βŸ© β†’ (1st β€˜(2nd β€˜π‘‹)) = (1st β€˜π‘¦))
4847eleq1d 2818 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨π‘₯, π‘¦βŸ© β†’ ((1st β€˜(2nd β€˜π‘‹)) ∈ Ο‰ ↔ (1st β€˜π‘¦) ∈ Ο‰))
4948adantr 481 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨π‘₯, π‘¦βŸ© ∧ (π‘₯ ∈ {βˆ…} ∧ 𝑦 ∈ (Ο‰ Γ— Ο‰))) β†’ ((1st β€˜(2nd β€˜π‘‹)) ∈ Ο‰ ↔ (1st β€˜π‘¦) ∈ Ο‰))
5043, 49mpbird 256 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨π‘₯, π‘¦βŸ© ∧ (π‘₯ ∈ {βˆ…} ∧ 𝑦 ∈ (Ο‰ Γ— Ο‰))) β†’ (1st β€˜(2nd β€˜π‘‹)) ∈ Ο‰)
5150exlimivv 1935 . . . . . . . . . . . . . 14 (βˆƒπ‘₯βˆƒπ‘¦(𝑋 = ⟨π‘₯, π‘¦βŸ© ∧ (π‘₯ ∈ {βˆ…} ∧ 𝑦 ∈ (Ο‰ Γ— Ο‰))) β†’ (1st β€˜(2nd β€˜π‘‹)) ∈ Ο‰)
5241, 51sylbi 216 . . . . . . . . . . . . 13 (𝑋 ∈ (Fmlaβ€˜βˆ…) β†’ (1st β€˜(2nd β€˜π‘‹)) ∈ Ο‰)
5352ad2antll 727 . . . . . . . . . . . 12 ((π‘Ž:Ο‰βŸΆπ‘€ ∧ (𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…))) β†’ (1st β€˜(2nd β€˜π‘‹)) ∈ Ο‰)
5437, 53ffvelcdmd 7087 . . . . . . . . . . 11 ((π‘Ž:Ο‰βŸΆπ‘€ ∧ (𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…))) β†’ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ 𝑀)
55 xp2nd 8010 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (Ο‰ Γ— Ο‰) β†’ (2nd β€˜π‘¦) ∈ Ο‰)
5655ad2antll 727 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨π‘₯, π‘¦βŸ© ∧ (π‘₯ ∈ {βˆ…} ∧ 𝑦 ∈ (Ο‰ Γ— Ο‰))) β†’ (2nd β€˜π‘¦) ∈ Ο‰)
5746fveq2d 6895 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨π‘₯, π‘¦βŸ© β†’ (2nd β€˜(2nd β€˜π‘‹)) = (2nd β€˜π‘¦))
5857eleq1d 2818 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨π‘₯, π‘¦βŸ© β†’ ((2nd β€˜(2nd β€˜π‘‹)) ∈ Ο‰ ↔ (2nd β€˜π‘¦) ∈ Ο‰))
5958adantr 481 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨π‘₯, π‘¦βŸ© ∧ (π‘₯ ∈ {βˆ…} ∧ 𝑦 ∈ (Ο‰ Γ— Ο‰))) β†’ ((2nd β€˜(2nd β€˜π‘‹)) ∈ Ο‰ ↔ (2nd β€˜π‘¦) ∈ Ο‰))
6056, 59mpbird 256 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨π‘₯, π‘¦βŸ© ∧ (π‘₯ ∈ {βˆ…} ∧ 𝑦 ∈ (Ο‰ Γ— Ο‰))) β†’ (2nd β€˜(2nd β€˜π‘‹)) ∈ Ο‰)
6160exlimivv 1935 . . . . . . . . . . . . . 14 (βˆƒπ‘₯βˆƒπ‘¦(𝑋 = ⟨π‘₯, π‘¦βŸ© ∧ (π‘₯ ∈ {βˆ…} ∧ 𝑦 ∈ (Ο‰ Γ— Ο‰))) β†’ (2nd β€˜(2nd β€˜π‘‹)) ∈ Ο‰)
6241, 61sylbi 216 . . . . . . . . . . . . 13 (𝑋 ∈ (Fmlaβ€˜βˆ…) β†’ (2nd β€˜(2nd β€˜π‘‹)) ∈ Ο‰)
6362ad2antll 727 . . . . . . . . . . . 12 ((π‘Ž:Ο‰βŸΆπ‘€ ∧ (𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…))) β†’ (2nd β€˜(2nd β€˜π‘‹)) ∈ Ο‰)
6437, 63ffvelcdmd 7087 . . . . . . . . . . 11 ((π‘Ž:Ο‰βŸΆπ‘€ ∧ (𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…))) β†’ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ∈ 𝑀)
6554, 64jca 512 . . . . . . . . . 10 ((π‘Ž:Ο‰βŸΆπ‘€ ∧ (𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…))) β†’ ((π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ 𝑀 ∧ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ∈ 𝑀))
6665ex 413 . . . . . . . . 9 (π‘Ž:Ο‰βŸΆπ‘€ β†’ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ ((π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ 𝑀 ∧ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ∈ 𝑀)))
6736, 66syl 17 . . . . . . . 8 (π‘Ž ∈ (𝑀 ↑m Ο‰) β†’ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ ((π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ 𝑀 ∧ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ∈ 𝑀)))
6867impcom 408 . . . . . . 7 (((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) ∧ π‘Ž ∈ (𝑀 ↑m Ο‰)) β†’ ((π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ 𝑀 ∧ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ∈ 𝑀))
69 brinxp 5754 . . . . . . . 8 (((π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ 𝑀 ∧ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ∈ 𝑀) β†’ ((π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) E (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ↔ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹)))( E ∩ (𝑀 Γ— 𝑀))(π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹)))))
7069bicomd 222 . . . . . . 7 (((π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ 𝑀 ∧ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ∈ 𝑀) β†’ ((π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹)))( E ∩ (𝑀 Γ— 𝑀))(π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ↔ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) E (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹)))))
7168, 70syl 17 . . . . . 6 (((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) ∧ π‘Ž ∈ (𝑀 ↑m Ο‰)) β†’ ((π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹)))( E ∩ (𝑀 Γ— 𝑀))(π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ↔ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) E (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹)))))
72 fvex 6904 . . . . . . 7 (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ∈ V
7372epeli 5582 . . . . . 6 ((π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) E (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ↔ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))))
7471, 73bitrdi 286 . . . . 5 (((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) ∧ π‘Ž ∈ (𝑀 ↑m Ο‰)) β†’ ((π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹)))( E ∩ (𝑀 Γ— 𝑀))(π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹))) ↔ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹)))))
7574rabbidva 3439 . . . 4 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹)))( E ∩ (𝑀 Γ— 𝑀))(π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹)))} = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹)))})
7635, 75eqtrd 2772 . . 3 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ (((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜βˆ…)β€˜π‘‹) = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹)))})
7729, 76eqtrd 2772 . 2 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ (((𝑀 Sat ( E ∩ (𝑀 Γ— 𝑀)))β€˜Ο‰)β€˜π‘‹) = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹)))})
781, 77eqtrd 2772 1 ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmlaβ€˜βˆ…)) β†’ (𝑀 Sat∈ 𝑋) = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜π‘‹))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜π‘‹)))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  {crab 3432  Vcvv 3474   ∩ cin 3947  βˆ…c0 4322  π’« cpw 4602  {csn 4628  βŸ¨cop 4634  βˆͺ ciun 4997   class class class wbr 5148   E cep 5579   Γ— cxp 5674  dom cdm 5676  Fun wfun 6537  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  Ο‰com 7857  1st c1st 7975  2nd c2nd 7976   ↑m cmap 8822   Sat csat 34396  Fmlacfmla 34397   Sat∈ csate 34398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-ac2 10460
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-ac 10113  df-goel 34400  df-gona 34401  df-goal 34402  df-sat 34403  df-sate 34404  df-fmla 34405
This theorem is referenced by:  sategoelfvb  34479  prv1n  34491
  Copyright terms: Public domain W3C validator