Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satefvfmla0 Structured version   Visualization version   GIF version

Theorem satefvfmla0 35386
Description: The simplified satisfaction predicate for wff codes of height 0. (Contributed by AV, 4-Nov-2023.)
Assertion
Ref Expression
satefvfmla0 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat 𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
Distinct variable groups:   𝑀,𝑎   𝑉,𝑎   𝑋,𝑎

Proof of Theorem satefvfmla0
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satefv 35382 . 2 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat 𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋))
2 incom 4184 . . . . . . . . 9 ( E ∩ (𝑀 × 𝑀)) = ((𝑀 × 𝑀) ∩ E )
3 sqxpexg 7747 . . . . . . . . . 10 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
4 inex1g 5289 . . . . . . . . . 10 ((𝑀 × 𝑀) ∈ V → ((𝑀 × 𝑀) ∩ E ) ∈ V)
53, 4syl 17 . . . . . . . . 9 (𝑀𝑉 → ((𝑀 × 𝑀) ∩ E ) ∈ V)
62, 5eqeltrid 2838 . . . . . . . 8 (𝑀𝑉 → ( E ∩ (𝑀 × 𝑀)) ∈ V)
76ancli 548 . . . . . . 7 (𝑀𝑉 → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
87adantr 480 . . . . . 6 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
9 satom 35324 . . . . . 6 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
108, 9syl 17 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
1110fveq1d 6877 . . . 4 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋))
12 satfun 35379 . . . . . . . 8 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
138, 12syl 17 . . . . . . 7 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
1413ffund 6709 . . . . . 6 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
1510eqcomd 2741 . . . . . . 7 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
1615funeqd 6557 . . . . . 6 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ↔ Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)))
1714, 16mpbird 257 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
18 peano1 7882 . . . . . 6 ∅ ∈ ω
1918a1i 11 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ∅ ∈ ω)
2018a1i 11 . . . . . . . . 9 (𝑀𝑉 → ∅ ∈ ω)
21 satfdmfmla 35368 . . . . . . . . 9 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V ∧ ∅ ∈ ω) → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅) = (Fmla‘∅))
226, 20, 21mpd3an23 1465 . . . . . . . 8 (𝑀𝑉 → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅) = (Fmla‘∅))
2322eqcomd 2741 . . . . . . 7 (𝑀𝑉 → (Fmla‘∅) = dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅))
2423eleq2d 2820 . . . . . 6 (𝑀𝑉 → (𝑋 ∈ (Fmla‘∅) ↔ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)))
2524biimpa 476 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅))
26 eqid 2735 . . . . . 6 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)
2726fviunfun 7941 . . . . 5 ((Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ∧ ∅ ∈ ω ∧ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)) → ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋))
2817, 19, 25, 27syl3anc 1373 . . . 4 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋))
2911, 28eqtrd 2770 . . 3 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋))
30 simpl 482 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → 𝑀𝑉)
316adantr 480 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ( E ∩ (𝑀 × 𝑀)) ∈ V)
32 simpr 484 . . . . 5 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈ (Fmla‘∅))
33 eqid 2735 . . . . . 6 (𝑀 Sat ( E ∩ (𝑀 × 𝑀))) = (𝑀 Sat ( E ∩ (𝑀 × 𝑀)))
3433satfv0fvfmla0 35381 . . . . 5 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V ∧ 𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋)))})
3530, 31, 32, 34syl3anc 1373 . . . 4 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋)))})
36 elmapi 8861 . . . . . . . . 9 (𝑎 ∈ (𝑀m ω) → 𝑎:ω⟶𝑀)
37 simpl 482 . . . . . . . . . . . 12 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → 𝑎:ω⟶𝑀)
38 fmla0xp 35351 . . . . . . . . . . . . . . . 16 (Fmla‘∅) = ({∅} × (ω × ω))
3938eleq2i 2826 . . . . . . . . . . . . . . 15 (𝑋 ∈ (Fmla‘∅) ↔ 𝑋 ∈ ({∅} × (ω × ω)))
40 elxp 5677 . . . . . . . . . . . . . . 15 (𝑋 ∈ ({∅} × (ω × ω)) ↔ ∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))))
4139, 40bitri 275 . . . . . . . . . . . . . 14 (𝑋 ∈ (Fmla‘∅) ↔ ∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))))
42 xp1st 8018 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ω × ω) → (1st𝑦) ∈ ω)
4342ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (1st𝑦) ∈ ω)
44 vex 3463 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
45 vex 3463 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ V
4644, 45op2ndd 7997 . . . . . . . . . . . . . . . . . . 19 (𝑋 = ⟨𝑥, 𝑦⟩ → (2nd𝑋) = 𝑦)
4746fveq2d 6879 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨𝑥, 𝑦⟩ → (1st ‘(2nd𝑋)) = (1st𝑦))
4847eleq1d 2819 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨𝑥, 𝑦⟩ → ((1st ‘(2nd𝑋)) ∈ ω ↔ (1st𝑦) ∈ ω))
4948adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → ((1st ‘(2nd𝑋)) ∈ ω ↔ (1st𝑦) ∈ ω))
5043, 49mpbird 257 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (1st ‘(2nd𝑋)) ∈ ω)
5150exlimivv 1932 . . . . . . . . . . . . . 14 (∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (1st ‘(2nd𝑋)) ∈ ω)
5241, 51sylbi 217 . . . . . . . . . . . . 13 (𝑋 ∈ (Fmla‘∅) → (1st ‘(2nd𝑋)) ∈ ω)
5352ad2antll 729 . . . . . . . . . . . 12 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → (1st ‘(2nd𝑋)) ∈ ω)
5437, 53ffvelcdmd 7074 . . . . . . . . . . 11 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → (𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀)
55 xp2nd 8019 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ω × ω) → (2nd𝑦) ∈ ω)
5655ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (2nd𝑦) ∈ ω)
5746fveq2d 6879 . . . . . . . . . . . . . . . . . 18 (𝑋 = ⟨𝑥, 𝑦⟩ → (2nd ‘(2nd𝑋)) = (2nd𝑦))
5857eleq1d 2819 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨𝑥, 𝑦⟩ → ((2nd ‘(2nd𝑋)) ∈ ω ↔ (2nd𝑦) ∈ ω))
5958adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → ((2nd ‘(2nd𝑋)) ∈ ω ↔ (2nd𝑦) ∈ ω))
6056, 59mpbird 257 . . . . . . . . . . . . . . 15 ((𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (2nd ‘(2nd𝑋)) ∈ ω)
6160exlimivv 1932 . . . . . . . . . . . . . 14 (∃𝑥𝑦(𝑋 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {∅} ∧ 𝑦 ∈ (ω × ω))) → (2nd ‘(2nd𝑋)) ∈ ω)
6241, 61sylbi 217 . . . . . . . . . . . . 13 (𝑋 ∈ (Fmla‘∅) → (2nd ‘(2nd𝑋)) ∈ ω)
6362ad2antll 729 . . . . . . . . . . . 12 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → (2nd ‘(2nd𝑋)) ∈ ω)
6437, 63ffvelcdmd 7074 . . . . . . . . . . 11 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀)
6554, 64jca 511 . . . . . . . . . 10 ((𝑎:ω⟶𝑀 ∧ (𝑀𝑉𝑋 ∈ (Fmla‘∅))) → ((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀))
6665ex 412 . . . . . . . . 9 (𝑎:ω⟶𝑀 → ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀)))
6736, 66syl 17 . . . . . . . 8 (𝑎 ∈ (𝑀m ω) → ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → ((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀)))
6867impcom 407 . . . . . . 7 (((𝑀𝑉𝑋 ∈ (Fmla‘∅)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀))
69 brinxp 5733 . . . . . . . 8 (((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀) → ((𝑎‘(1st ‘(2nd𝑋))) E (𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋)))))
7069bicomd 223 . . . . . . 7 (((𝑎‘(1st ‘(2nd𝑋))) ∈ 𝑀 ∧ (𝑎‘(2nd ‘(2nd𝑋))) ∈ 𝑀) → ((𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋))) E (𝑎‘(2nd ‘(2nd𝑋)))))
7168, 70syl 17 . . . . . 6 (((𝑀𝑉𝑋 ∈ (Fmla‘∅)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋))) E (𝑎‘(2nd ‘(2nd𝑋)))))
72 fvex 6888 . . . . . . 7 (𝑎‘(2nd ‘(2nd𝑋))) ∈ V
7372epeli 5555 . . . . . 6 ((𝑎‘(1st ‘(2nd𝑋))) E (𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋))))
7471, 73bitrdi 287 . . . . 5 (((𝑀𝑉𝑋 ∈ (Fmla‘∅)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))))
7574rabbidva 3422 . . . 4 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))( E ∩ (𝑀 × 𝑀))(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
7635, 75eqtrd 2770 . . 3 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
7729, 76eqtrd 2770 . 2 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
781, 77eqtrd 2770 1 ((𝑀𝑉𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat 𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋))) ∈ (𝑎‘(2nd ‘(2nd𝑋)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  {crab 3415  Vcvv 3459  cin 3925  c0 4308  𝒫 cpw 4575  {csn 4601  cop 4607   ciun 4967   class class class wbr 5119   E cep 5552   × cxp 5652  dom cdm 5654  Fun wfun 6524  wf 6526  cfv 6530  (class class class)co 7403  ωcom 7859  1st c1st 7984  2nd c2nd 7985  m cmap 8838   Sat csat 35304  Fmlacfmla 35305   Sat csate 35306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-ac2 10475
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9951  df-ac 10128  df-goel 35308  df-gona 35309  df-goal 35310  df-sat 35311  df-sate 35312  df-fmla 35313
This theorem is referenced by:  sategoelfvb  35387  prv1n  35399
  Copyright terms: Public domain W3C validator