MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1idsr Structured version   Visualization version   GIF version

Theorem 1idsr 10785
Description: 1 is an identity element for multiplication. (Contributed by NM, 2-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
1idsr (𝐴R → (𝐴 ·R 1R) = 𝐴)

Proof of Theorem 1idsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10743 . 2 R = ((P × P) / ~R )
2 oveq1 7262 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = (𝐴 ·R 1R))
3 id 22 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → [⟨𝑥, 𝑦⟩] ~R = 𝐴)
42, 3eqeq12d 2754 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R 1R) = [⟨𝑥, 𝑦⟩] ~R ↔ (𝐴 ·R 1R) = 𝐴))
5 df-1r 10748 . . . 4 1R = [⟨(1P +P 1P), 1P⟩] ~R
65oveq2i 7266 . . 3 ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R )
7 1pr 10702 . . . . . 6 1PP
8 addclpr 10705 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
97, 7, 8mp2an 688 . . . . 5 (1P +P 1P) ∈ P
10 mulsrpr 10763 . . . . 5 (((𝑥P𝑦P) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
119, 7, 10mpanr12 701 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
12 distrpr 10715 . . . . . . . 8 (𝑥 ·P (1P +P 1P)) = ((𝑥 ·P 1P) +P (𝑥 ·P 1P))
13 1idpr 10716 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) = 𝑥)
1413oveq1d 7270 . . . . . . . 8 (𝑥P → ((𝑥 ·P 1P) +P (𝑥 ·P 1P)) = (𝑥 +P (𝑥 ·P 1P)))
1512, 14eqtr2id 2792 . . . . . . 7 (𝑥P → (𝑥 +P (𝑥 ·P 1P)) = (𝑥 ·P (1P +P 1P)))
16 distrpr 10715 . . . . . . . 8 (𝑦 ·P (1P +P 1P)) = ((𝑦 ·P 1P) +P (𝑦 ·P 1P))
17 1idpr 10716 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) = 𝑦)
1817oveq1d 7270 . . . . . . . 8 (𝑦P → ((𝑦 ·P 1P) +P (𝑦 ·P 1P)) = (𝑦 +P (𝑦 ·P 1P)))
1916, 18eqtrid 2790 . . . . . . 7 (𝑦P → (𝑦 ·P (1P +P 1P)) = (𝑦 +P (𝑦 ·P 1P)))
2015, 19oveqan12d 7274 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = ((𝑥 ·P (1P +P 1P)) +P (𝑦 +P (𝑦 ·P 1P))))
21 addasspr 10709 . . . . . 6 ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))))
22 ovex 7288 . . . . . . 7 (𝑥 ·P (1P +P 1P)) ∈ V
23 vex 3426 . . . . . . 7 𝑦 ∈ V
24 ovex 7288 . . . . . . 7 (𝑦 ·P 1P) ∈ V
25 addcompr 10708 . . . . . . 7 (𝑧 +P 𝑤) = (𝑤 +P 𝑧)
26 addasspr 10709 . . . . . . 7 ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣))
2722, 23, 24, 25, 26caov12 7478 . . . . . 6 ((𝑥 ·P (1P +P 1P)) +P (𝑦 +P (𝑦 ·P 1P))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))
2820, 21, 273eqtr3g 2802 . . . . 5 ((𝑥P𝑦P) → (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P))))
29 mulclpr 10707 . . . . . . . . . 10 ((𝑥P ∧ (1P +P 1P) ∈ P) → (𝑥 ·P (1P +P 1P)) ∈ P)
309, 29mpan2 687 . . . . . . . . 9 (𝑥P → (𝑥 ·P (1P +P 1P)) ∈ P)
31 mulclpr 10707 . . . . . . . . . 10 ((𝑦P ∧ 1PP) → (𝑦 ·P 1P) ∈ P)
327, 31mpan2 687 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) ∈ P)
33 addclpr 10705 . . . . . . . . 9 (((𝑥 ·P (1P +P 1P)) ∈ P ∧ (𝑦 ·P 1P) ∈ P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P)
3430, 32, 33syl2an 595 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P)
35 mulclpr 10707 . . . . . . . . . 10 ((𝑥P ∧ 1PP) → (𝑥 ·P 1P) ∈ P)
367, 35mpan2 687 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) ∈ P)
37 mulclpr 10707 . . . . . . . . . 10 ((𝑦P ∧ (1P +P 1P) ∈ P) → (𝑦 ·P (1P +P 1P)) ∈ P)
389, 37mpan2 687 . . . . . . . . 9 (𝑦P → (𝑦 ·P (1P +P 1P)) ∈ P)
39 addclpr 10705 . . . . . . . . 9 (((𝑥 ·P 1P) ∈ P ∧ (𝑦 ·P (1P +P 1P)) ∈ P) → ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)
4036, 38, 39syl2an 595 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)
4134, 40anim12i 612 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → (((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P))
42 enreceq 10753 . . . . . . 7 (((𝑥P𝑦P) ∧ (((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
4341, 42syldan 590 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
4443anidms 566 . . . . 5 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
4528, 44mpbird 256 . . . 4 ((𝑥P𝑦P) → [⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
4611, 45eqtr4d 2781 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨𝑥, 𝑦⟩] ~R )
476, 46eqtrid 2790 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = [⟨𝑥, 𝑦⟩] ~R )
481, 4, 47ecoptocl 8554 1 (𝐴R → (𝐴 ·R 1R) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cop 4564  (class class class)co 7255  [cec 8454  Pcnp 10546  1Pc1p 10547   +P cpp 10548   ·P cmp 10549   ~R cer 10551  Rcnr 10552  1Rc1r 10554   ·R cmr 10557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-rq 10604  df-ltnq 10605  df-np 10668  df-1p 10669  df-plp 10670  df-mp 10671  df-ltp 10672  df-enr 10742  df-nr 10743  df-mr 10745  df-1r 10748
This theorem is referenced by:  pn0sr  10788  sqgt0sr  10793  axi2m1  10846  ax1rid  10848  axcnre  10851
  Copyright terms: Public domain W3C validator