Step | Hyp | Ref
| Expression |
1 | | df-nr 10743 |
. 2
⊢
R = ((P × P) /
~R ) |
2 | | oveq1 7262 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R
·R 1R) = (𝐴
·R
1R)) |
3 | | id 22 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → [〈𝑥, 𝑦〉] ~R = 𝐴) |
4 | 2, 3 | eqeq12d 2754 |
. 2
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R
·R 1R) = [〈𝑥, 𝑦〉] ~R ↔
(𝐴
·R 1R) = 𝐴)) |
5 | | df-1r 10748 |
. . . 4
⊢
1R = [〈(1P
+P 1P),
1P〉] ~R |
6 | 5 | oveq2i 7266 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R ·R
1R) = ([〈𝑥, 𝑦〉] ~R
·R [〈(1P
+P 1P),
1P〉] ~R
) |
7 | | 1pr 10702 |
. . . . . 6
⊢
1P ∈ P |
8 | | addclpr 10705 |
. . . . . 6
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P +P
1P) ∈ P) |
9 | 7, 7, 8 | mp2an 688 |
. . . . 5
⊢
(1P +P
1P) ∈ P |
10 | | mulsrpr 10763 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ ((1P +P
1P) ∈ P ∧
1P ∈ P)) → ([〈𝑥, 𝑦〉] ~R
·R [〈(1P
+P 1P),
1P〉] ~R ) =
[〈((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R
) |
11 | 9, 7, 10 | mpanr12 701 |
. . . 4
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R ·R
[〈(1P +P
1P), 1P〉]
~R ) = [〈((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R
) |
12 | | distrpr 10715 |
. . . . . . . 8
⊢ (𝑥
·P (1P
+P 1P)) = ((𝑥
·P 1P)
+P (𝑥 ·P
1P)) |
13 | | 1idpr 10716 |
. . . . . . . . 9
⊢ (𝑥 ∈ P →
(𝑥
·P 1P) = 𝑥) |
14 | 13 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑥 ∈ P →
((𝑥
·P 1P)
+P (𝑥 ·P
1P)) = (𝑥 +P (𝑥
·P
1P))) |
15 | 12, 14 | eqtr2id 2792 |
. . . . . . 7
⊢ (𝑥 ∈ P →
(𝑥
+P (𝑥 ·P
1P)) = (𝑥 ·P
(1P +P
1P))) |
16 | | distrpr 10715 |
. . . . . . . 8
⊢ (𝑦
·P (1P
+P 1P)) = ((𝑦
·P 1P)
+P (𝑦 ·P
1P)) |
17 | | 1idpr 10716 |
. . . . . . . . 9
⊢ (𝑦 ∈ P →
(𝑦
·P 1P) = 𝑦) |
18 | 17 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑦 ∈ P →
((𝑦
·P 1P)
+P (𝑦 ·P
1P)) = (𝑦 +P (𝑦
·P
1P))) |
19 | 16, 18 | eqtrid 2790 |
. . . . . . 7
⊢ (𝑦 ∈ P →
(𝑦
·P (1P
+P 1P)) = (𝑦 +P (𝑦
·P
1P))) |
20 | 15, 19 | oveqan12d 7274 |
. . . . . 6
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
+P (𝑥 ·P
1P)) +P (𝑦 ·P
(1P +P
1P))) = ((𝑥 ·P
(1P +P
1P)) +P (𝑦 +P (𝑦
·P
1P)))) |
21 | | addasspr 10709 |
. . . . . 6
⊢ ((𝑥 +P
(𝑥
·P 1P))
+P (𝑦 ·P
(1P +P
1P))) = (𝑥 +P ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) |
22 | | ovex 7288 |
. . . . . . 7
⊢ (𝑥
·P (1P
+P 1P)) ∈
V |
23 | | vex 3426 |
. . . . . . 7
⊢ 𝑦 ∈ V |
24 | | ovex 7288 |
. . . . . . 7
⊢ (𝑦
·P 1P) ∈
V |
25 | | addcompr 10708 |
. . . . . . 7
⊢ (𝑧 +P
𝑤) = (𝑤 +P 𝑧) |
26 | | addasspr 10709 |
. . . . . . 7
⊢ ((𝑧 +P
𝑤)
+P 𝑣) = (𝑧 +P (𝑤 +P
𝑣)) |
27 | 22, 23, 24, 25, 26 | caov12 7478 |
. . . . . 6
⊢ ((𝑥
·P (1P
+P 1P))
+P (𝑦 +P (𝑦
·P 1P))) = (𝑦 +P
((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))) |
28 | 20, 21, 27 | 3eqtr3g 2802 |
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
+P ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)))) |
29 | | mulclpr 10707 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ P ∧
(1P +P
1P) ∈ P) → (𝑥 ·P
(1P +P
1P)) ∈ P) |
30 | 9, 29 | mpan2 687 |
. . . . . . . . 9
⊢ (𝑥 ∈ P →
(𝑥
·P (1P
+P 1P)) ∈
P) |
31 | | mulclpr 10707 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ P ∧
1P ∈ P) → (𝑦 ·P
1P) ∈ P) |
32 | 7, 31 | mpan2 687 |
. . . . . . . . 9
⊢ (𝑦 ∈ P →
(𝑦
·P 1P) ∈
P) |
33 | | addclpr 10705 |
. . . . . . . . 9
⊢ (((𝑥
·P (1P
+P 1P)) ∈
P ∧ (𝑦
·P 1P) ∈
P) → ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)) ∈ P) |
34 | 30, 32, 33 | syl2an 595 |
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)) ∈ P) |
35 | | mulclpr 10707 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ P ∧
1P ∈ P) → (𝑥 ·P
1P) ∈ P) |
36 | 7, 35 | mpan2 687 |
. . . . . . . . 9
⊢ (𝑥 ∈ P →
(𝑥
·P 1P) ∈
P) |
37 | | mulclpr 10707 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ P ∧
(1P +P
1P) ∈ P) → (𝑦 ·P
(1P +P
1P)) ∈ P) |
38 | 9, 37 | mpan2 687 |
. . . . . . . . 9
⊢ (𝑦 ∈ P →
(𝑦
·P (1P
+P 1P)) ∈
P) |
39 | | addclpr 10705 |
. . . . . . . . 9
⊢ (((𝑥
·P 1P) ∈
P ∧ (𝑦
·P (1P
+P 1P)) ∈
P) → ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P))) ∈ P) |
40 | 36, 38, 39 | syl2an 595 |
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P))) ∈ P) |
41 | 34, 40 | anim12i 612 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P)) → (((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)) ∈ P ∧ ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P))) ∈ P)) |
42 | | enreceq 10753 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)) ∈ P ∧ ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P))) ∈ P)) → ([〈𝑥, 𝑦〉] ~R =
[〈((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R ↔ (𝑥 +P
((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))))) |
43 | 41, 42 | syldan 590 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P)) → ([〈𝑥, 𝑦〉] ~R =
[〈((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R ↔ (𝑥 +P
((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))))) |
44 | 43 | anidms 566 |
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R = [〈((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R ↔ (𝑥 +P
((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))))) |
45 | 28, 44 | mpbird 256 |
. . . 4
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ [〈𝑥, 𝑦〉]
~R = [〈((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R
) |
46 | 11, 45 | eqtr4d 2781 |
. . 3
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R ·R
[〈(1P +P
1P), 1P〉]
~R ) = [〈𝑥, 𝑦〉] ~R
) |
47 | 6, 46 | eqtrid 2790 |
. 2
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R ·R
1R) = [〈𝑥, 𝑦〉] ~R
) |
48 | 1, 4, 47 | ecoptocl 8554 |
1
⊢ (𝐴 ∈ R →
(𝐴
·R 1R) = 𝐴) |