| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-nr 11096 | . 2
⊢
R = ((P × P) /
~R ) | 
| 2 |  | oveq1 7438 | . . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R
·R 1R) = (𝐴
·R
1R)) | 
| 3 |  | id 22 | . . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → [〈𝑥, 𝑦〉] ~R = 𝐴) | 
| 4 | 2, 3 | eqeq12d 2753 | . 2
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R
·R 1R) = [〈𝑥, 𝑦〉] ~R ↔
(𝐴
·R 1R) = 𝐴)) | 
| 5 |  | df-1r 11101 | . . . 4
⊢
1R = [〈(1P
+P 1P),
1P〉] ~R | 
| 6 | 5 | oveq2i 7442 | . . 3
⊢
([〈𝑥, 𝑦〉]
~R ·R
1R) = ([〈𝑥, 𝑦〉] ~R
·R [〈(1P
+P 1P),
1P〉] ~R
) | 
| 7 |  | 1pr 11055 | . . . . . 6
⊢
1P ∈ P | 
| 8 |  | addclpr 11058 | . . . . . 6
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P +P
1P) ∈ P) | 
| 9 | 7, 7, 8 | mp2an 692 | . . . . 5
⊢
(1P +P
1P) ∈ P | 
| 10 |  | mulsrpr 11116 | . . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ ((1P +P
1P) ∈ P ∧
1P ∈ P)) → ([〈𝑥, 𝑦〉] ~R
·R [〈(1P
+P 1P),
1P〉] ~R ) =
[〈((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R
) | 
| 11 | 9, 7, 10 | mpanr12 705 | . . . 4
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R ·R
[〈(1P +P
1P), 1P〉]
~R ) = [〈((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R
) | 
| 12 |  | distrpr 11068 | . . . . . . . 8
⊢ (𝑥
·P (1P
+P 1P)) = ((𝑥
·P 1P)
+P (𝑥 ·P
1P)) | 
| 13 |  | 1idpr 11069 | . . . . . . . . 9
⊢ (𝑥 ∈ P →
(𝑥
·P 1P) = 𝑥) | 
| 14 | 13 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑥 ∈ P →
((𝑥
·P 1P)
+P (𝑥 ·P
1P)) = (𝑥 +P (𝑥
·P
1P))) | 
| 15 | 12, 14 | eqtr2id 2790 | . . . . . . 7
⊢ (𝑥 ∈ P →
(𝑥
+P (𝑥 ·P
1P)) = (𝑥 ·P
(1P +P
1P))) | 
| 16 |  | distrpr 11068 | . . . . . . . 8
⊢ (𝑦
·P (1P
+P 1P)) = ((𝑦
·P 1P)
+P (𝑦 ·P
1P)) | 
| 17 |  | 1idpr 11069 | . . . . . . . . 9
⊢ (𝑦 ∈ P →
(𝑦
·P 1P) = 𝑦) | 
| 18 | 17 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑦 ∈ P →
((𝑦
·P 1P)
+P (𝑦 ·P
1P)) = (𝑦 +P (𝑦
·P
1P))) | 
| 19 | 16, 18 | eqtrid 2789 | . . . . . . 7
⊢ (𝑦 ∈ P →
(𝑦
·P (1P
+P 1P)) = (𝑦 +P (𝑦
·P
1P))) | 
| 20 | 15, 19 | oveqan12d 7450 | . . . . . 6
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
+P (𝑥 ·P
1P)) +P (𝑦 ·P
(1P +P
1P))) = ((𝑥 ·P
(1P +P
1P)) +P (𝑦 +P (𝑦
·P
1P)))) | 
| 21 |  | addasspr 11062 | . . . . . 6
⊢ ((𝑥 +P
(𝑥
·P 1P))
+P (𝑦 ·P
(1P +P
1P))) = (𝑥 +P ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) | 
| 22 |  | ovex 7464 | . . . . . . 7
⊢ (𝑥
·P (1P
+P 1P)) ∈
V | 
| 23 |  | vex 3484 | . . . . . . 7
⊢ 𝑦 ∈ V | 
| 24 |  | ovex 7464 | . . . . . . 7
⊢ (𝑦
·P 1P) ∈
V | 
| 25 |  | addcompr 11061 | . . . . . . 7
⊢ (𝑧 +P
𝑤) = (𝑤 +P 𝑧) | 
| 26 |  | addasspr 11062 | . . . . . . 7
⊢ ((𝑧 +P
𝑤)
+P 𝑣) = (𝑧 +P (𝑤 +P
𝑣)) | 
| 27 | 22, 23, 24, 25, 26 | caov12 7661 | . . . . . 6
⊢ ((𝑥
·P (1P
+P 1P))
+P (𝑦 +P (𝑦
·P 1P))) = (𝑦 +P
((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))) | 
| 28 | 20, 21, 27 | 3eqtr3g 2800 | . . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
+P ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)))) | 
| 29 |  | mulclpr 11060 | . . . . . . . . . 10
⊢ ((𝑥 ∈ P ∧
(1P +P
1P) ∈ P) → (𝑥 ·P
(1P +P
1P)) ∈ P) | 
| 30 | 9, 29 | mpan2 691 | . . . . . . . . 9
⊢ (𝑥 ∈ P →
(𝑥
·P (1P
+P 1P)) ∈
P) | 
| 31 |  | mulclpr 11060 | . . . . . . . . . 10
⊢ ((𝑦 ∈ P ∧
1P ∈ P) → (𝑦 ·P
1P) ∈ P) | 
| 32 | 7, 31 | mpan2 691 | . . . . . . . . 9
⊢ (𝑦 ∈ P →
(𝑦
·P 1P) ∈
P) | 
| 33 |  | addclpr 11058 | . . . . . . . . 9
⊢ (((𝑥
·P (1P
+P 1P)) ∈
P ∧ (𝑦
·P 1P) ∈
P) → ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)) ∈ P) | 
| 34 | 30, 32, 33 | syl2an 596 | . . . . . . . 8
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)) ∈ P) | 
| 35 |  | mulclpr 11060 | . . . . . . . . . 10
⊢ ((𝑥 ∈ P ∧
1P ∈ P) → (𝑥 ·P
1P) ∈ P) | 
| 36 | 7, 35 | mpan2 691 | . . . . . . . . 9
⊢ (𝑥 ∈ P →
(𝑥
·P 1P) ∈
P) | 
| 37 |  | mulclpr 11060 | . . . . . . . . . 10
⊢ ((𝑦 ∈ P ∧
(1P +P
1P) ∈ P) → (𝑦 ·P
(1P +P
1P)) ∈ P) | 
| 38 | 9, 37 | mpan2 691 | . . . . . . . . 9
⊢ (𝑦 ∈ P →
(𝑦
·P (1P
+P 1P)) ∈
P) | 
| 39 |  | addclpr 11058 | . . . . . . . . 9
⊢ (((𝑥
·P 1P) ∈
P ∧ (𝑦
·P (1P
+P 1P)) ∈
P) → ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P))) ∈ P) | 
| 40 | 36, 38, 39 | syl2an 596 | . . . . . . . 8
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P))) ∈ P) | 
| 41 | 34, 40 | anim12i 613 | . . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P)) → (((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)) ∈ P ∧ ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P))) ∈ P)) | 
| 42 |  | enreceq 11106 | . . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)) ∈ P ∧ ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P))) ∈ P)) → ([〈𝑥, 𝑦〉] ~R =
[〈((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R ↔ (𝑥 +P
((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))))) | 
| 43 | 41, 42 | syldan 591 | . . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P)) → ([〈𝑥, 𝑦〉] ~R =
[〈((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R ↔ (𝑥 +P
((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))))) | 
| 44 | 43 | anidms 566 | . . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R = [〈((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R ↔ (𝑥 +P
((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))))) | 
| 45 | 28, 44 | mpbird 257 | . . . 4
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ [〈𝑥, 𝑦〉]
~R = [〈((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R
) | 
| 46 | 11, 45 | eqtr4d 2780 | . . 3
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R ·R
[〈(1P +P
1P), 1P〉]
~R ) = [〈𝑥, 𝑦〉] ~R
) | 
| 47 | 6, 46 | eqtrid 2789 | . 2
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R ·R
1R) = [〈𝑥, 𝑦〉] ~R
) | 
| 48 | 1, 4, 47 | ecoptocl 8847 | 1
⊢ (𝐴 ∈ R →
(𝐴
·R 1R) = 𝐴) |