| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0idsr | Structured version Visualization version GIF version | ||
| Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0idsr | ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 11075 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 2 | oveq1 7417 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R +R 0R) = (𝐴 +R 0R)) | |
| 3 | id 22 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → [〈𝑥, 𝑦〉] ~R = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2752 | . 2 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ↔ (𝐴 +R 0R) = 𝐴)) |
| 5 | df-0r 11079 | . . . 4 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 6 | 5 | oveq2i 7421 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R +R 0R) = ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) |
| 7 | 1pr 11034 | . . . . 5 ⊢ 1P ∈ P | |
| 8 | addsrpr 11094 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (1P ∈ P ∧ 1P ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) | |
| 9 | 7, 7, 8 | mpanr12 705 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
| 10 | addclpr 11037 | . . . . . . 7 ⊢ ((𝑥 ∈ P ∧ 1P ∈ P) → (𝑥 +P 1P) ∈ P) | |
| 11 | 7, 10 | mpan2 691 | . . . . . 6 ⊢ (𝑥 ∈ P → (𝑥 +P 1P) ∈ P) |
| 12 | addclpr 11037 | . . . . . . 7 ⊢ ((𝑦 ∈ P ∧ 1P ∈ P) → (𝑦 +P 1P) ∈ P) | |
| 13 | 7, 12 | mpan2 691 | . . . . . 6 ⊢ (𝑦 ∈ P → (𝑦 +P 1P) ∈ P) |
| 14 | 11, 13 | anim12i 613 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) |
| 15 | vex 3468 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 16 | vex 3468 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 17 | 7 | elexi 3487 | . . . . . . 7 ⊢ 1P ∈ V |
| 18 | addcompr 11040 | . . . . . . 7 ⊢ (𝑧 +P 𝑤) = (𝑤 +P 𝑧) | |
| 19 | addasspr 11041 | . . . . . . 7 ⊢ ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)) | |
| 20 | 15, 16, 17, 18, 19 | caov12 7640 | . . . . . 6 ⊢ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)) |
| 21 | enreceq 11085 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → ([〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))) | |
| 22 | 20, 21 | mpbiri 258 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → [〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
| 23 | 14, 22 | mpdan 687 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → [〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
| 24 | 9, 23 | eqtr4d 2774 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈𝑥, 𝑦〉] ~R ) |
| 25 | 6, 24 | eqtrid 2783 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ) |
| 26 | 1, 4, 25 | ecoptocl 8826 | 1 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4612 (class class class)co 7410 [cec 8722 Pcnp 10878 1Pc1p 10879 +P cpp 10880 ~R cer 10883 Rcnr 10884 0Rc0r 10885 +R cplr 10888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 df-er 8724 df-ec 8726 df-qs 8730 df-ni 10891 df-pli 10892 df-mi 10893 df-lti 10894 df-plpq 10927 df-mpq 10928 df-ltpq 10929 df-enq 10930 df-nq 10931 df-erq 10932 df-plq 10933 df-mq 10934 df-1nq 10935 df-rq 10936 df-ltnq 10937 df-np 11000 df-1p 11001 df-plp 11002 df-ltp 11004 df-enr 11074 df-nr 11075 df-plr 11076 df-0r 11079 |
| This theorem is referenced by: addgt0sr 11123 sqgt0sr 11125 map2psrpr 11129 supsrlem 11130 addresr 11157 mulresr 11158 axi2m1 11178 axcnre 11183 |
| Copyright terms: Public domain | W3C validator |