![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0idsr | Structured version Visualization version GIF version |
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0idsr | ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 10215 | . 2 ⊢ R = ((P × P) / ~R ) | |
2 | oveq1 6931 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R +R 0R) = (𝐴 +R 0R)) | |
3 | id 22 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → [〈𝑥, 𝑦〉] ~R = 𝐴) | |
4 | 2, 3 | eqeq12d 2793 | . 2 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ↔ (𝐴 +R 0R) = 𝐴)) |
5 | df-0r 10219 | . . . 4 ⊢ 0R = [〈1P, 1P〉] ~R | |
6 | 5 | oveq2i 6935 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R +R 0R) = ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) |
7 | 1pr 10174 | . . . . 5 ⊢ 1P ∈ P | |
8 | addsrpr 10234 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (1P ∈ P ∧ 1P ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) | |
9 | 7, 7, 8 | mpanr12 695 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
10 | addclpr 10177 | . . . . . . 7 ⊢ ((𝑥 ∈ P ∧ 1P ∈ P) → (𝑥 +P 1P) ∈ P) | |
11 | 7, 10 | mpan2 681 | . . . . . 6 ⊢ (𝑥 ∈ P → (𝑥 +P 1P) ∈ P) |
12 | addclpr 10177 | . . . . . . 7 ⊢ ((𝑦 ∈ P ∧ 1P ∈ P) → (𝑦 +P 1P) ∈ P) | |
13 | 7, 12 | mpan2 681 | . . . . . 6 ⊢ (𝑦 ∈ P → (𝑦 +P 1P) ∈ P) |
14 | 11, 13 | anim12i 606 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) |
15 | vex 3401 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
16 | vex 3401 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
17 | 7 | elexi 3415 | . . . . . . 7 ⊢ 1P ∈ V |
18 | addcompr 10180 | . . . . . . 7 ⊢ (𝑧 +P 𝑤) = (𝑤 +P 𝑧) | |
19 | addasspr 10181 | . . . . . . 7 ⊢ ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)) | |
20 | 15, 16, 17, 18, 19 | caov12 7141 | . . . . . 6 ⊢ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)) |
21 | enreceq 10225 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → ([〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))) | |
22 | 20, 21 | mpbiri 250 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → [〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
23 | 14, 22 | mpdan 677 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → [〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
24 | 9, 23 | eqtr4d 2817 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈𝑥, 𝑦〉] ~R ) |
25 | 6, 24 | syl5eq 2826 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ) |
26 | 1, 4, 25 | ecoptocl 8122 | 1 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 〈cop 4404 (class class class)co 6924 [cec 8026 Pcnp 10018 1Pc1p 10019 +P cpp 10020 ~R cer 10023 Rcnr 10024 0Rc0r 10025 +R cplr 10028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-omul 7850 df-er 8028 df-ec 8030 df-qs 8034 df-ni 10031 df-pli 10032 df-mi 10033 df-lti 10034 df-plpq 10067 df-mpq 10068 df-ltpq 10069 df-enq 10070 df-nq 10071 df-erq 10072 df-plq 10073 df-mq 10074 df-1nq 10075 df-rq 10076 df-ltnq 10077 df-np 10140 df-1p 10141 df-plp 10142 df-ltp 10144 df-enr 10214 df-nr 10215 df-plr 10216 df-0r 10219 |
This theorem is referenced by: addgt0sr 10263 sqgt0sr 10265 map2psrpr 10269 supsrlem 10270 addresr 10297 mulresr 10298 axi2m1 10318 axcnre 10323 |
Copyright terms: Public domain | W3C validator |