| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0idsr | Structured version Visualization version GIF version | ||
| Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0idsr | ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 11009 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 2 | oveq1 7394 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R +R 0R) = (𝐴 +R 0R)) | |
| 3 | id 22 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → [〈𝑥, 𝑦〉] ~R = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2745 | . 2 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ↔ (𝐴 +R 0R) = 𝐴)) |
| 5 | df-0r 11013 | . . . 4 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 6 | 5 | oveq2i 7398 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R +R 0R) = ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) |
| 7 | 1pr 10968 | . . . . 5 ⊢ 1P ∈ P | |
| 8 | addsrpr 11028 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (1P ∈ P ∧ 1P ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) | |
| 9 | 7, 7, 8 | mpanr12 705 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
| 10 | addclpr 10971 | . . . . . . 7 ⊢ ((𝑥 ∈ P ∧ 1P ∈ P) → (𝑥 +P 1P) ∈ P) | |
| 11 | 7, 10 | mpan2 691 | . . . . . 6 ⊢ (𝑥 ∈ P → (𝑥 +P 1P) ∈ P) |
| 12 | addclpr 10971 | . . . . . . 7 ⊢ ((𝑦 ∈ P ∧ 1P ∈ P) → (𝑦 +P 1P) ∈ P) | |
| 13 | 7, 12 | mpan2 691 | . . . . . 6 ⊢ (𝑦 ∈ P → (𝑦 +P 1P) ∈ P) |
| 14 | 11, 13 | anim12i 613 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) |
| 15 | vex 3451 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 16 | vex 3451 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 17 | 7 | elexi 3470 | . . . . . . 7 ⊢ 1P ∈ V |
| 18 | addcompr 10974 | . . . . . . 7 ⊢ (𝑧 +P 𝑤) = (𝑤 +P 𝑧) | |
| 19 | addasspr 10975 | . . . . . . 7 ⊢ ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)) | |
| 20 | 15, 16, 17, 18, 19 | caov12 7617 | . . . . . 6 ⊢ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)) |
| 21 | enreceq 11019 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → ([〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))) | |
| 22 | 20, 21 | mpbiri 258 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → [〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
| 23 | 14, 22 | mpdan 687 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → [〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
| 24 | 9, 23 | eqtr4d 2767 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈𝑥, 𝑦〉] ~R ) |
| 25 | 6, 24 | eqtrid 2776 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ) |
| 26 | 1, 4, 25 | ecoptocl 8780 | 1 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4595 (class class class)co 7387 [cec 8669 Pcnp 10812 1Pc1p 10813 +P cpp 10814 ~R cer 10817 Rcnr 10818 0Rc0r 10819 +R cplr 10822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ec 8673 df-qs 8677 df-ni 10825 df-pli 10826 df-mi 10827 df-lti 10828 df-plpq 10861 df-mpq 10862 df-ltpq 10863 df-enq 10864 df-nq 10865 df-erq 10866 df-plq 10867 df-mq 10868 df-1nq 10869 df-rq 10870 df-ltnq 10871 df-np 10934 df-1p 10935 df-plp 10936 df-ltp 10938 df-enr 11008 df-nr 11009 df-plr 11010 df-0r 11013 |
| This theorem is referenced by: addgt0sr 11057 sqgt0sr 11059 map2psrpr 11063 supsrlem 11064 addresr 11091 mulresr 11092 axi2m1 11112 axcnre 11117 |
| Copyright terms: Public domain | W3C validator |