Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0idsr | Structured version Visualization version GIF version |
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0idsr | ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 10796 | . 2 ⊢ R = ((P × P) / ~R ) | |
2 | oveq1 7275 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R +R 0R) = (𝐴 +R 0R)) | |
3 | id 22 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → [〈𝑥, 𝑦〉] ~R = 𝐴) | |
4 | 2, 3 | eqeq12d 2755 | . 2 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ↔ (𝐴 +R 0R) = 𝐴)) |
5 | df-0r 10800 | . . . 4 ⊢ 0R = [〈1P, 1P〉] ~R | |
6 | 5 | oveq2i 7279 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R +R 0R) = ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) |
7 | 1pr 10755 | . . . . 5 ⊢ 1P ∈ P | |
8 | addsrpr 10815 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (1P ∈ P ∧ 1P ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) | |
9 | 7, 7, 8 | mpanr12 701 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
10 | addclpr 10758 | . . . . . . 7 ⊢ ((𝑥 ∈ P ∧ 1P ∈ P) → (𝑥 +P 1P) ∈ P) | |
11 | 7, 10 | mpan2 687 | . . . . . 6 ⊢ (𝑥 ∈ P → (𝑥 +P 1P) ∈ P) |
12 | addclpr 10758 | . . . . . . 7 ⊢ ((𝑦 ∈ P ∧ 1P ∈ P) → (𝑦 +P 1P) ∈ P) | |
13 | 7, 12 | mpan2 687 | . . . . . 6 ⊢ (𝑦 ∈ P → (𝑦 +P 1P) ∈ P) |
14 | 11, 13 | anim12i 612 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) |
15 | vex 3434 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
16 | vex 3434 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
17 | 7 | elexi 3449 | . . . . . . 7 ⊢ 1P ∈ V |
18 | addcompr 10761 | . . . . . . 7 ⊢ (𝑧 +P 𝑤) = (𝑤 +P 𝑧) | |
19 | addasspr 10762 | . . . . . . 7 ⊢ ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)) | |
20 | 15, 16, 17, 18, 19 | caov12 7491 | . . . . . 6 ⊢ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)) |
21 | enreceq 10806 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → ([〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))) | |
22 | 20, 21 | mpbiri 257 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → [〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
23 | 14, 22 | mpdan 683 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → [〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
24 | 9, 23 | eqtr4d 2782 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈𝑥, 𝑦〉] ~R ) |
25 | 6, 24 | eqtrid 2791 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ) |
26 | 1, 4, 25 | ecoptocl 8570 | 1 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 〈cop 4572 (class class class)co 7268 [cec 8470 Pcnp 10599 1Pc1p 10600 +P cpp 10601 ~R cer 10604 Rcnr 10605 0Rc0r 10606 +R cplr 10609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-omul 8286 df-er 8472 df-ec 8474 df-qs 8478 df-ni 10612 df-pli 10613 df-mi 10614 df-lti 10615 df-plpq 10648 df-mpq 10649 df-ltpq 10650 df-enq 10651 df-nq 10652 df-erq 10653 df-plq 10654 df-mq 10655 df-1nq 10656 df-rq 10657 df-ltnq 10658 df-np 10721 df-1p 10722 df-plp 10723 df-ltp 10725 df-enr 10795 df-nr 10796 df-plr 10797 df-0r 10800 |
This theorem is referenced by: addgt0sr 10844 sqgt0sr 10846 map2psrpr 10850 supsrlem 10851 addresr 10878 mulresr 10879 axi2m1 10899 axcnre 10904 |
Copyright terms: Public domain | W3C validator |