MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fictb Structured version   Visualization version   GIF version

Theorem fictb 9932
Description: A set is countable iff its collection of finite intersections is countable. (Contributed by Jeff Hankins, 24-Aug-2009.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fictb (𝐴𝐵 → (𝐴 ≼ ω ↔ (fi‘𝐴) ≼ ω))

Proof of Theorem fictb
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8704 . . . . 5 (𝐴 ≼ ω → ∃𝑓 𝑓:𝐴1-1→ω)
21adantl 481 . . . 4 ((𝐴𝐵𝐴 ≼ ω) → ∃𝑓 𝑓:𝐴1-1→ω)
3 reldom 8697 . . . . . 6 Rel ≼
43brrelex2i 5635 . . . . 5 (𝐴 ≼ ω → ω ∈ V)
5 omelon2 7700 . . . . . . . . . . 11 (ω ∈ V → ω ∈ On)
65ad2antlr 723 . . . . . . . . . 10 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ω ∈ On)
7 pwexg 5296 . . . . . . . . . . . . . 14 (𝐴𝐵 → 𝒫 𝐴 ∈ V)
87ad2antrr 722 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 𝐴 ∈ V)
9 inex1g 5238 . . . . . . . . . . . . 13 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
108, 9syl 17 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ∈ V)
11 difss 4062 . . . . . . . . . . . 12 ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin)
12 ssdomg 8741 . . . . . . . . . . . 12 ((𝒫 𝐴 ∩ Fin) ∈ V → (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin)))
1310, 11, 12mpisyl 21 . . . . . . . . . . 11 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin))
14 f1f1orn 6711 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1→ω → 𝑓:𝐴1-1-onto→ran 𝑓)
1514adantl 481 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝑓:𝐴1-1-onto→ran 𝑓)
16 f1opwfi 9053 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto→ran 𝑓 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin))
18 f1oeng 8714 . . . . . . . . . . . . 13 (((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin)) → (𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin))
1910, 17, 18syl2anc 583 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin))
20 pwexg 5296 . . . . . . . . . . . . . . . 16 (ω ∈ V → 𝒫 ω ∈ V)
2120ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 ω ∈ V)
22 inex1g 5238 . . . . . . . . . . . . . . 15 (𝒫 ω ∈ V → (𝒫 ω ∩ Fin) ∈ V)
2321, 22syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ω ∩ Fin) ∈ V)
24 f1f 6654 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1→ω → 𝑓:𝐴⟶ω)
2524frnd 6592 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1→ω → ran 𝑓 ⊆ ω)
2625adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ran 𝑓 ⊆ ω)
2726sspwd 4545 . . . . . . . . . . . . . . 15 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 ran 𝑓 ⊆ 𝒫 ω)
2827ssrind 4166 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ⊆ (𝒫 ω ∩ Fin))
29 ssdomg 8741 . . . . . . . . . . . . . 14 ((𝒫 ω ∩ Fin) ∈ V → ((𝒫 ran 𝑓 ∩ Fin) ⊆ (𝒫 ω ∩ Fin) → (𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin)))
3023, 28, 29sylc 65 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin))
31 sneq 4568 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑧 → {𝑓} = {𝑧})
32 pweq 4546 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑧 → 𝒫 𝑓 = 𝒫 𝑧)
3331, 32xpeq12d 5611 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑧 → ({𝑓} × 𝒫 𝑓) = ({𝑧} × 𝒫 𝑧))
3433cbviunv 4966 . . . . . . . . . . . . . . . . . 18 𝑓𝑥 ({𝑓} × 𝒫 𝑓) = 𝑧𝑥 ({𝑧} × 𝒫 𝑧)
35 iuneq1 4937 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 𝑧𝑥 ({𝑧} × 𝒫 𝑧) = 𝑧𝑦 ({𝑧} × 𝒫 𝑧))
3634, 35eqtrid 2790 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 𝑓𝑥 ({𝑓} × 𝒫 𝑓) = 𝑧𝑦 ({𝑧} × 𝒫 𝑧))
3736fveq2d 6760 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓)) = (card‘ 𝑧𝑦 ({𝑧} × 𝒫 𝑧)))
3837cbvmptv 5183 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))) = (𝑦 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑧𝑦 ({𝑧} × 𝒫 𝑧)))
3938ackbij1 9925 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))):(𝒫 ω ∩ Fin)–1-1-onto→ω
40 f1oeng 8714 . . . . . . . . . . . . . 14 (((𝒫 ω ∩ Fin) ∈ V ∧ (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))):(𝒫 ω ∩ Fin)–1-1-onto→ω) → (𝒫 ω ∩ Fin) ≈ ω)
4123, 39, 40sylancl 585 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ω ∩ Fin) ≈ ω)
42 domentr 8754 . . . . . . . . . . . . 13 (((𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin) ∧ (𝒫 ω ∩ Fin) ≈ ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ ω)
4330, 41, 42syl2anc 583 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ ω)
44 endomtr 8753 . . . . . . . . . . . 12 (((𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin) ∧ (𝒫 ran 𝑓 ∩ Fin) ≼ ω) → (𝒫 𝐴 ∩ Fin) ≼ ω)
4519, 43, 44syl2anc 583 . . . . . . . . . . 11 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ≼ ω)
46 domtr 8748 . . . . . . . . . . 11 ((((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≼ ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω)
4713, 45, 46syl2anc 583 . . . . . . . . . 10 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω)
48 ondomen 9724 . . . . . . . . . 10 ((ω ∈ On ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
496, 47, 48syl2anc 583 . . . . . . . . 9 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
50 eqid 2738 . . . . . . . . . . 11 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦) = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
5150fifo 9121 . . . . . . . . . 10 (𝐴𝐵 → (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
5251ad2antrr 722 . . . . . . . . 9 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
53 fodomnum 9744 . . . . . . . . 9 (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card → ((𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅})))
5449, 52, 53sylc 65 . . . . . . . 8 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
55 domtr 8748 . . . . . . . 8 (((fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω) → (fi‘𝐴) ≼ ω)
5654, 47, 55syl2anc 583 . . . . . . 7 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (fi‘𝐴) ≼ ω)
5756ex 412 . . . . . 6 ((𝐴𝐵 ∧ ω ∈ V) → (𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
5857exlimdv 1937 . . . . 5 ((𝐴𝐵 ∧ ω ∈ V) → (∃𝑓 𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
594, 58sylan2 592 . . . 4 ((𝐴𝐵𝐴 ≼ ω) → (∃𝑓 𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
602, 59mpd 15 . . 3 ((𝐴𝐵𝐴 ≼ ω) → (fi‘𝐴) ≼ ω)
6160ex 412 . 2 (𝐴𝐵 → (𝐴 ≼ ω → (fi‘𝐴) ≼ ω))
62 fvex 6769 . . . 4 (fi‘𝐴) ∈ V
63 ssfii 9108 . . . 4 (𝐴𝐵𝐴 ⊆ (fi‘𝐴))
64 ssdomg 8741 . . . 4 ((fi‘𝐴) ∈ V → (𝐴 ⊆ (fi‘𝐴) → 𝐴 ≼ (fi‘𝐴)))
6562, 63, 64mpsyl 68 . . 3 (𝐴𝐵𝐴 ≼ (fi‘𝐴))
66 domtr 8748 . . . 4 ((𝐴 ≼ (fi‘𝐴) ∧ (fi‘𝐴) ≼ ω) → 𝐴 ≼ ω)
6766ex 412 . . 3 (𝐴 ≼ (fi‘𝐴) → ((fi‘𝐴) ≼ ω → 𝐴 ≼ ω))
6865, 67syl 17 . 2 (𝐴𝐵 → ((fi‘𝐴) ≼ ω → 𝐴 ≼ ω))
6961, 68impbid 211 1 (𝐴𝐵 → (𝐴 ≼ ω ↔ (fi‘𝐴) ≼ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1783  wcel 2108  Vcvv 3422  cdif 3880  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cint 4876   ciun 4921   class class class wbr 5070  cmpt 5153   × cxp 5578  dom cdm 5580  ran crn 5581  cima 5583  Oncon0 6251  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  ωcom 7687  cen 8688  cdom 8689  Fincfn 8691  ficfi 9099  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-dju 9590  df-card 9628  df-acn 9631
This theorem is referenced by:  2ndcsb  22508
  Copyright terms: Public domain W3C validator