MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fictb Structured version   Visualization version   GIF version

Theorem fictb 10111
Description: A set is countable iff its collection of finite intersections is countable. (Contributed by Jeff Hankins, 24-Aug-2009.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fictb (𝐴𝐵 → (𝐴 ≼ ω ↔ (fi‘𝐴) ≼ ω))

Proof of Theorem fictb
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8828 . . . . 5 (𝐴 ≼ ω → ∃𝑓 𝑓:𝐴1-1→ω)
21adantl 483 . . . 4 ((𝐴𝐵𝐴 ≼ ω) → ∃𝑓 𝑓:𝐴1-1→ω)
3 reldom 8819 . . . . . 6 Rel ≼
43brrelex2i 5682 . . . . 5 (𝐴 ≼ ω → ω ∈ V)
5 omelon2 7802 . . . . . . . . . . 11 (ω ∈ V → ω ∈ On)
65ad2antlr 725 . . . . . . . . . 10 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ω ∈ On)
7 pwexg 5328 . . . . . . . . . . . . . 14 (𝐴𝐵 → 𝒫 𝐴 ∈ V)
87ad2antrr 724 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 𝐴 ∈ V)
9 inex1g 5271 . . . . . . . . . . . . 13 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
108, 9syl 17 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ∈ V)
11 difss 4086 . . . . . . . . . . . 12 ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin)
12 ssdomg 8870 . . . . . . . . . . . 12 ((𝒫 𝐴 ∩ Fin) ∈ V → (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin)))
1310, 11, 12mpisyl 21 . . . . . . . . . . 11 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin))
14 f1f1orn 6787 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1→ω → 𝑓:𝐴1-1-onto→ran 𝑓)
1514adantl 483 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝑓:𝐴1-1-onto→ran 𝑓)
16 f1opwfi 9230 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto→ran 𝑓 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin))
18 f1oeng 8841 . . . . . . . . . . . . 13 (((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin)) → (𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin))
1910, 17, 18syl2anc 585 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin))
20 pwexg 5328 . . . . . . . . . . . . . . . 16 (ω ∈ V → 𝒫 ω ∈ V)
2120ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 ω ∈ V)
22 inex1g 5271 . . . . . . . . . . . . . . 15 (𝒫 ω ∈ V → (𝒫 ω ∩ Fin) ∈ V)
2321, 22syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ω ∩ Fin) ∈ V)
24 f1f 6730 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1→ω → 𝑓:𝐴⟶ω)
2524frnd 6668 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1→ω → ran 𝑓 ⊆ ω)
2625adantl 483 . . . . . . . . . . . . . . . 16 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ran 𝑓 ⊆ ω)
2726sspwd 4568 . . . . . . . . . . . . . . 15 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 ran 𝑓 ⊆ 𝒫 ω)
2827ssrind 4190 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ⊆ (𝒫 ω ∩ Fin))
29 ssdomg 8870 . . . . . . . . . . . . . 14 ((𝒫 ω ∩ Fin) ∈ V → ((𝒫 ran 𝑓 ∩ Fin) ⊆ (𝒫 ω ∩ Fin) → (𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin)))
3023, 28, 29sylc 65 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin))
31 sneq 4591 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑧 → {𝑓} = {𝑧})
32 pweq 4569 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑧 → 𝒫 𝑓 = 𝒫 𝑧)
3331, 32xpeq12d 5658 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑧 → ({𝑓} × 𝒫 𝑓) = ({𝑧} × 𝒫 𝑧))
3433cbviunv 4995 . . . . . . . . . . . . . . . . . 18 𝑓𝑥 ({𝑓} × 𝒫 𝑓) = 𝑧𝑥 ({𝑧} × 𝒫 𝑧)
35 iuneq1 4965 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 𝑧𝑥 ({𝑧} × 𝒫 𝑧) = 𝑧𝑦 ({𝑧} × 𝒫 𝑧))
3634, 35eqtrid 2789 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 𝑓𝑥 ({𝑓} × 𝒫 𝑓) = 𝑧𝑦 ({𝑧} × 𝒫 𝑧))
3736fveq2d 6838 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓)) = (card‘ 𝑧𝑦 ({𝑧} × 𝒫 𝑧)))
3837cbvmptv 5213 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))) = (𝑦 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑧𝑦 ({𝑧} × 𝒫 𝑧)))
3938ackbij1 10104 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))):(𝒫 ω ∩ Fin)–1-1-onto→ω
40 f1oeng 8841 . . . . . . . . . . . . . 14 (((𝒫 ω ∩ Fin) ∈ V ∧ (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))):(𝒫 ω ∩ Fin)–1-1-onto→ω) → (𝒫 ω ∩ Fin) ≈ ω)
4123, 39, 40sylancl 587 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ω ∩ Fin) ≈ ω)
42 domentr 8883 . . . . . . . . . . . . 13 (((𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin) ∧ (𝒫 ω ∩ Fin) ≈ ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ ω)
4330, 41, 42syl2anc 585 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ ω)
44 endomtr 8882 . . . . . . . . . . . 12 (((𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin) ∧ (𝒫 ran 𝑓 ∩ Fin) ≼ ω) → (𝒫 𝐴 ∩ Fin) ≼ ω)
4519, 43, 44syl2anc 585 . . . . . . . . . . 11 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ≼ ω)
46 domtr 8877 . . . . . . . . . . 11 ((((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≼ ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω)
4713, 45, 46syl2anc 585 . . . . . . . . . 10 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω)
48 ondomen 9903 . . . . . . . . . 10 ((ω ∈ On ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
496, 47, 48syl2anc 585 . . . . . . . . 9 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
50 eqid 2737 . . . . . . . . . . 11 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦) = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
5150fifo 9298 . . . . . . . . . 10 (𝐴𝐵 → (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
5251ad2antrr 724 . . . . . . . . 9 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
53 fodomnum 9923 . . . . . . . . 9 (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card → ((𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅})))
5449, 52, 53sylc 65 . . . . . . . 8 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
55 domtr 8877 . . . . . . . 8 (((fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω) → (fi‘𝐴) ≼ ω)
5654, 47, 55syl2anc 585 . . . . . . 7 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (fi‘𝐴) ≼ ω)
5756ex 414 . . . . . 6 ((𝐴𝐵 ∧ ω ∈ V) → (𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
5857exlimdv 1936 . . . . 5 ((𝐴𝐵 ∧ ω ∈ V) → (∃𝑓 𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
594, 58sylan2 594 . . . 4 ((𝐴𝐵𝐴 ≼ ω) → (∃𝑓 𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
602, 59mpd 15 . . 3 ((𝐴𝐵𝐴 ≼ ω) → (fi‘𝐴) ≼ ω)
6160ex 414 . 2 (𝐴𝐵 → (𝐴 ≼ ω → (fi‘𝐴) ≼ ω))
62 fvex 6847 . . . 4 (fi‘𝐴) ∈ V
63 ssfii 9285 . . . 4 (𝐴𝐵𝐴 ⊆ (fi‘𝐴))
64 ssdomg 8870 . . . 4 ((fi‘𝐴) ∈ V → (𝐴 ⊆ (fi‘𝐴) → 𝐴 ≼ (fi‘𝐴)))
6562, 63, 64mpsyl 68 . . 3 (𝐴𝐵𝐴 ≼ (fi‘𝐴))
66 domtr 8877 . . . 4 ((𝐴 ≼ (fi‘𝐴) ∧ (fi‘𝐴) ≼ ω) → 𝐴 ≼ ω)
6766ex 414 . . 3 (𝐴 ≼ (fi‘𝐴) → ((fi‘𝐴) ≼ ω → 𝐴 ≼ ω))
6865, 67syl 17 . 2 (𝐴𝐵 → ((fi‘𝐴) ≼ ω → 𝐴 ≼ ω))
6961, 68impbid 211 1 (𝐴𝐵 → (𝐴 ≼ ω ↔ (fi‘𝐴) ≼ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wex 1781  wcel 2106  Vcvv 3443  cdif 3902  cin 3904  wss 3905  c0 4277  𝒫 cpw 4555  {csn 4581   cint 4902   ciun 4949   class class class wbr 5100  cmpt 5183   × cxp 5625  dom cdm 5627  ran crn 5628  cima 5630  Oncon0 6310  1-1wf1 6485  ontowfo 6486  1-1-ontowf1o 6487  cfv 6488  ωcom 7789  cen 8810  cdom 8811  Fincfn 8813  ficfi 9276  cardccrd 9801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-2o 8377  df-oadd 8380  df-er 8578  df-map 8697  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-fi 9277  df-dju 9767  df-card 9805  df-acn 9808
This theorem is referenced by:  2ndcsb  22710
  Copyright terms: Public domain W3C validator