MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fictb Structured version   Visualization version   GIF version

Theorem fictb 10204
Description: A set is countable iff its collection of finite intersections is countable. (Contributed by Jeff Hankins, 24-Aug-2009.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fictb (𝐴𝐵 → (𝐴 ≼ ω ↔ (fi‘𝐴) ≼ ω))

Proof of Theorem fictb
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8934 . . . . 5 (𝐴 ≼ ω → ∃𝑓 𝑓:𝐴1-1→ω)
21adantl 481 . . . 4 ((𝐴𝐵𝐴 ≼ ω) → ∃𝑓 𝑓:𝐴1-1→ω)
3 reldom 8927 . . . . . 6 Rel ≼
43brrelex2i 5698 . . . . 5 (𝐴 ≼ ω → ω ∈ V)
5 omelon2 7858 . . . . . . . . . . 11 (ω ∈ V → ω ∈ On)
65ad2antlr 727 . . . . . . . . . 10 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ω ∈ On)
7 pwexg 5336 . . . . . . . . . . . . . 14 (𝐴𝐵 → 𝒫 𝐴 ∈ V)
87ad2antrr 726 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 𝐴 ∈ V)
9 inex1g 5277 . . . . . . . . . . . . 13 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
108, 9syl 17 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ∈ V)
11 difss 4102 . . . . . . . . . . . 12 ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin)
12 ssdomg 8974 . . . . . . . . . . . 12 ((𝒫 𝐴 ∩ Fin) ∈ V → (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin)))
1310, 11, 12mpisyl 21 . . . . . . . . . . 11 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin))
14 f1f1orn 6814 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1→ω → 𝑓:𝐴1-1-onto→ran 𝑓)
1514adantl 481 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝑓:𝐴1-1-onto→ran 𝑓)
16 f1opwfi 9314 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto→ran 𝑓 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin))
18 f1oeng 8945 . . . . . . . . . . . . 13 (((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin)) → (𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin))
1910, 17, 18syl2anc 584 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin))
20 pwexg 5336 . . . . . . . . . . . . . . . 16 (ω ∈ V → 𝒫 ω ∈ V)
2120ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 ω ∈ V)
22 inex1g 5277 . . . . . . . . . . . . . . 15 (𝒫 ω ∈ V → (𝒫 ω ∩ Fin) ∈ V)
2321, 22syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ω ∩ Fin) ∈ V)
24 f1f 6759 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1→ω → 𝑓:𝐴⟶ω)
2524frnd 6699 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1→ω → ran 𝑓 ⊆ ω)
2625adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ran 𝑓 ⊆ ω)
2726sspwd 4579 . . . . . . . . . . . . . . 15 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 ran 𝑓 ⊆ 𝒫 ω)
2827ssrind 4210 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ⊆ (𝒫 ω ∩ Fin))
29 ssdomg 8974 . . . . . . . . . . . . . 14 ((𝒫 ω ∩ Fin) ∈ V → ((𝒫 ran 𝑓 ∩ Fin) ⊆ (𝒫 ω ∩ Fin) → (𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin)))
3023, 28, 29sylc 65 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin))
31 sneq 4602 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑧 → {𝑓} = {𝑧})
32 pweq 4580 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑧 → 𝒫 𝑓 = 𝒫 𝑧)
3331, 32xpeq12d 5672 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑧 → ({𝑓} × 𝒫 𝑓) = ({𝑧} × 𝒫 𝑧))
3433cbviunv 5007 . . . . . . . . . . . . . . . . . 18 𝑓𝑥 ({𝑓} × 𝒫 𝑓) = 𝑧𝑥 ({𝑧} × 𝒫 𝑧)
35 iuneq1 4975 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 𝑧𝑥 ({𝑧} × 𝒫 𝑧) = 𝑧𝑦 ({𝑧} × 𝒫 𝑧))
3634, 35eqtrid 2777 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 𝑓𝑥 ({𝑓} × 𝒫 𝑓) = 𝑧𝑦 ({𝑧} × 𝒫 𝑧))
3736fveq2d 6865 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓)) = (card‘ 𝑧𝑦 ({𝑧} × 𝒫 𝑧)))
3837cbvmptv 5214 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))) = (𝑦 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑧𝑦 ({𝑧} × 𝒫 𝑧)))
3938ackbij1 10197 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))):(𝒫 ω ∩ Fin)–1-1-onto→ω
40 f1oeng 8945 . . . . . . . . . . . . . 14 (((𝒫 ω ∩ Fin) ∈ V ∧ (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))):(𝒫 ω ∩ Fin)–1-1-onto→ω) → (𝒫 ω ∩ Fin) ≈ ω)
4123, 39, 40sylancl 586 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ω ∩ Fin) ≈ ω)
42 domentr 8987 . . . . . . . . . . . . 13 (((𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin) ∧ (𝒫 ω ∩ Fin) ≈ ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ ω)
4330, 41, 42syl2anc 584 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ ω)
44 endomtr 8986 . . . . . . . . . . . 12 (((𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin) ∧ (𝒫 ran 𝑓 ∩ Fin) ≼ ω) → (𝒫 𝐴 ∩ Fin) ≼ ω)
4519, 43, 44syl2anc 584 . . . . . . . . . . 11 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ≼ ω)
46 domtr 8981 . . . . . . . . . . 11 ((((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≼ ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω)
4713, 45, 46syl2anc 584 . . . . . . . . . 10 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω)
48 ondomen 9997 . . . . . . . . . 10 ((ω ∈ On ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
496, 47, 48syl2anc 584 . . . . . . . . 9 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
50 eqid 2730 . . . . . . . . . . 11 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦) = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
5150fifo 9390 . . . . . . . . . 10 (𝐴𝐵 → (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
5251ad2antrr 726 . . . . . . . . 9 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
53 fodomnum 10017 . . . . . . . . 9 (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card → ((𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅})))
5449, 52, 53sylc 65 . . . . . . . 8 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
55 domtr 8981 . . . . . . . 8 (((fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω) → (fi‘𝐴) ≼ ω)
5654, 47, 55syl2anc 584 . . . . . . 7 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (fi‘𝐴) ≼ ω)
5756ex 412 . . . . . 6 ((𝐴𝐵 ∧ ω ∈ V) → (𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
5857exlimdv 1933 . . . . 5 ((𝐴𝐵 ∧ ω ∈ V) → (∃𝑓 𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
594, 58sylan2 593 . . . 4 ((𝐴𝐵𝐴 ≼ ω) → (∃𝑓 𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
602, 59mpd 15 . . 3 ((𝐴𝐵𝐴 ≼ ω) → (fi‘𝐴) ≼ ω)
6160ex 412 . 2 (𝐴𝐵 → (𝐴 ≼ ω → (fi‘𝐴) ≼ ω))
62 fvex 6874 . . . 4 (fi‘𝐴) ∈ V
63 ssfii 9377 . . . 4 (𝐴𝐵𝐴 ⊆ (fi‘𝐴))
64 ssdomg 8974 . . . 4 ((fi‘𝐴) ∈ V → (𝐴 ⊆ (fi‘𝐴) → 𝐴 ≼ (fi‘𝐴)))
6562, 63, 64mpsyl 68 . . 3 (𝐴𝐵𝐴 ≼ (fi‘𝐴))
66 domtr 8981 . . . 4 ((𝐴 ≼ (fi‘𝐴) ∧ (fi‘𝐴) ≼ ω) → 𝐴 ≼ ω)
6766ex 412 . . 3 (𝐴 ≼ (fi‘𝐴) → ((fi‘𝐴) ≼ ω → 𝐴 ≼ ω))
6865, 67syl 17 . 2 (𝐴𝐵 → ((fi‘𝐴) ≼ ω → 𝐴 ≼ ω))
6961, 68impbid 212 1 (𝐴𝐵 → (𝐴 ≼ ω ↔ (fi‘𝐴) ≼ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  Vcvv 3450  cdif 3914  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cint 4913   ciun 4958   class class class wbr 5110  cmpt 5191   × cxp 5639  dom cdm 5641  ran crn 5642  cima 5644  Oncon0 6335  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  ωcom 7845  cen 8918  cdom 8919  Fincfn 8921  ficfi 9368  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-dju 9861  df-card 9899  df-acn 9902
This theorem is referenced by:  2ndcsb  23343
  Copyright terms: Public domain W3C validator