MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fictb Structured version   Visualization version   GIF version

Theorem fictb 10282
Description: A set is countable iff its collection of finite intersections is countable. (Contributed by Jeff Hankins, 24-Aug-2009.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fictb (𝐴𝐵 → (𝐴 ≼ ω ↔ (fi‘𝐴) ≼ ω))

Proof of Theorem fictb
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8998 . . . . 5 (𝐴 ≼ ω → ∃𝑓 𝑓:𝐴1-1→ω)
21adantl 481 . . . 4 ((𝐴𝐵𝐴 ≼ ω) → ∃𝑓 𝑓:𝐴1-1→ω)
3 reldom 8990 . . . . . 6 Rel ≼
43brrelex2i 5746 . . . . 5 (𝐴 ≼ ω → ω ∈ V)
5 omelon2 7900 . . . . . . . . . . 11 (ω ∈ V → ω ∈ On)
65ad2antlr 727 . . . . . . . . . 10 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ω ∈ On)
7 pwexg 5384 . . . . . . . . . . . . . 14 (𝐴𝐵 → 𝒫 𝐴 ∈ V)
87ad2antrr 726 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 𝐴 ∈ V)
9 inex1g 5325 . . . . . . . . . . . . 13 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
108, 9syl 17 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ∈ V)
11 difss 4146 . . . . . . . . . . . 12 ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin)
12 ssdomg 9039 . . . . . . . . . . . 12 ((𝒫 𝐴 ∩ Fin) ∈ V → (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin)))
1310, 11, 12mpisyl 21 . . . . . . . . . . 11 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin))
14 f1f1orn 6860 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1→ω → 𝑓:𝐴1-1-onto→ran 𝑓)
1514adantl 481 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝑓:𝐴1-1-onto→ran 𝑓)
16 f1opwfi 9394 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto→ran 𝑓 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin))
18 f1oeng 9010 . . . . . . . . . . . . 13 (((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin)) → (𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin))
1910, 17, 18syl2anc 584 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin))
20 pwexg 5384 . . . . . . . . . . . . . . . 16 (ω ∈ V → 𝒫 ω ∈ V)
2120ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 ω ∈ V)
22 inex1g 5325 . . . . . . . . . . . . . . 15 (𝒫 ω ∈ V → (𝒫 ω ∩ Fin) ∈ V)
2321, 22syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ω ∩ Fin) ∈ V)
24 f1f 6805 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1→ω → 𝑓:𝐴⟶ω)
2524frnd 6745 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1→ω → ran 𝑓 ⊆ ω)
2625adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ran 𝑓 ⊆ ω)
2726sspwd 4618 . . . . . . . . . . . . . . 15 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 ran 𝑓 ⊆ 𝒫 ω)
2827ssrind 4252 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ⊆ (𝒫 ω ∩ Fin))
29 ssdomg 9039 . . . . . . . . . . . . . 14 ((𝒫 ω ∩ Fin) ∈ V → ((𝒫 ran 𝑓 ∩ Fin) ⊆ (𝒫 ω ∩ Fin) → (𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin)))
3023, 28, 29sylc 65 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin))
31 sneq 4641 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑧 → {𝑓} = {𝑧})
32 pweq 4619 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑧 → 𝒫 𝑓 = 𝒫 𝑧)
3331, 32xpeq12d 5720 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑧 → ({𝑓} × 𝒫 𝑓) = ({𝑧} × 𝒫 𝑧))
3433cbviunv 5045 . . . . . . . . . . . . . . . . . 18 𝑓𝑥 ({𝑓} × 𝒫 𝑓) = 𝑧𝑥 ({𝑧} × 𝒫 𝑧)
35 iuneq1 5013 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 𝑧𝑥 ({𝑧} × 𝒫 𝑧) = 𝑧𝑦 ({𝑧} × 𝒫 𝑧))
3634, 35eqtrid 2787 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 𝑓𝑥 ({𝑓} × 𝒫 𝑓) = 𝑧𝑦 ({𝑧} × 𝒫 𝑧))
3736fveq2d 6911 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓)) = (card‘ 𝑧𝑦 ({𝑧} × 𝒫 𝑧)))
3837cbvmptv 5261 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))) = (𝑦 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑧𝑦 ({𝑧} × 𝒫 𝑧)))
3938ackbij1 10275 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))):(𝒫 ω ∩ Fin)–1-1-onto→ω
40 f1oeng 9010 . . . . . . . . . . . . . 14 (((𝒫 ω ∩ Fin) ∈ V ∧ (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))):(𝒫 ω ∩ Fin)–1-1-onto→ω) → (𝒫 ω ∩ Fin) ≈ ω)
4123, 39, 40sylancl 586 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ω ∩ Fin) ≈ ω)
42 domentr 9052 . . . . . . . . . . . . 13 (((𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin) ∧ (𝒫 ω ∩ Fin) ≈ ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ ω)
4330, 41, 42syl2anc 584 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ ω)
44 endomtr 9051 . . . . . . . . . . . 12 (((𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin) ∧ (𝒫 ran 𝑓 ∩ Fin) ≼ ω) → (𝒫 𝐴 ∩ Fin) ≼ ω)
4519, 43, 44syl2anc 584 . . . . . . . . . . 11 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ≼ ω)
46 domtr 9046 . . . . . . . . . . 11 ((((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≼ ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω)
4713, 45, 46syl2anc 584 . . . . . . . . . 10 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω)
48 ondomen 10075 . . . . . . . . . 10 ((ω ∈ On ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
496, 47, 48syl2anc 584 . . . . . . . . 9 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
50 eqid 2735 . . . . . . . . . . 11 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦) = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
5150fifo 9470 . . . . . . . . . 10 (𝐴𝐵 → (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
5251ad2antrr 726 . . . . . . . . 9 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
53 fodomnum 10095 . . . . . . . . 9 (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card → ((𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅})))
5449, 52, 53sylc 65 . . . . . . . 8 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
55 domtr 9046 . . . . . . . 8 (((fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω) → (fi‘𝐴) ≼ ω)
5654, 47, 55syl2anc 584 . . . . . . 7 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (fi‘𝐴) ≼ ω)
5756ex 412 . . . . . 6 ((𝐴𝐵 ∧ ω ∈ V) → (𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
5857exlimdv 1931 . . . . 5 ((𝐴𝐵 ∧ ω ∈ V) → (∃𝑓 𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
594, 58sylan2 593 . . . 4 ((𝐴𝐵𝐴 ≼ ω) → (∃𝑓 𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
602, 59mpd 15 . . 3 ((𝐴𝐵𝐴 ≼ ω) → (fi‘𝐴) ≼ ω)
6160ex 412 . 2 (𝐴𝐵 → (𝐴 ≼ ω → (fi‘𝐴) ≼ ω))
62 fvex 6920 . . . 4 (fi‘𝐴) ∈ V
63 ssfii 9457 . . . 4 (𝐴𝐵𝐴 ⊆ (fi‘𝐴))
64 ssdomg 9039 . . . 4 ((fi‘𝐴) ∈ V → (𝐴 ⊆ (fi‘𝐴) → 𝐴 ≼ (fi‘𝐴)))
6562, 63, 64mpsyl 68 . . 3 (𝐴𝐵𝐴 ≼ (fi‘𝐴))
66 domtr 9046 . . . 4 ((𝐴 ≼ (fi‘𝐴) ∧ (fi‘𝐴) ≼ ω) → 𝐴 ≼ ω)
6766ex 412 . . 3 (𝐴 ≼ (fi‘𝐴) → ((fi‘𝐴) ≼ ω → 𝐴 ≼ ω))
6865, 67syl 17 . 2 (𝐴𝐵 → ((fi‘𝐴) ≼ ω → 𝐴 ≼ ω))
6961, 68impbid 212 1 (𝐴𝐵 → (𝐴 ≼ ω ↔ (fi‘𝐴) ≼ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1776  wcel 2106  Vcvv 3478  cdif 3960  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   cint 4951   ciun 4996   class class class wbr 5148  cmpt 5231   × cxp 5687  dom cdm 5689  ran crn 5690  cima 5692  Oncon0 6386  1-1wf1 6560  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563  ωcom 7887  cen 8981  cdom 8982  Fincfn 8984  ficfi 9448  cardccrd 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-dju 9939  df-card 9977  df-acn 9980
This theorem is referenced by:  2ndcsb  23473
  Copyright terms: Public domain W3C validator