MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cff1 Structured version   Visualization version   GIF version

Theorem cff1 10250
Description: There is always a map from (cfβ€˜π΄) to 𝐴 (this is a stronger condition than the definition, which only presupposes a map from some 𝑦 β‰ˆ (cfβ€˜π΄). (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cff1 (𝐴 ∈ On β†’ βˆƒπ‘“(𝑓:(cfβ€˜π΄)–1-1→𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€)))
Distinct variable group:   𝐴,𝑓,𝑀,𝑧

Proof of Theorem cff1
Dummy variables 𝑠 𝑦 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 10239 . . . 4 (𝐴 ∈ On β†’ (cfβ€˜π΄) = ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))})
2 cardon 9936 . . . . . . . . 9 (cardβ€˜π‘¦) ∈ On
3 eleq1 2822 . . . . . . . . 9 (π‘₯ = (cardβ€˜π‘¦) β†’ (π‘₯ ∈ On ↔ (cardβ€˜π‘¦) ∈ On))
42, 3mpbiri 258 . . . . . . . 8 (π‘₯ = (cardβ€˜π‘¦) β†’ π‘₯ ∈ On)
54adantr 482 . . . . . . 7 ((π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)) β†’ π‘₯ ∈ On)
65exlimiv 1934 . . . . . 6 (βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)) β†’ π‘₯ ∈ On)
76abssi 4067 . . . . 5 {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))} βŠ† On
8 cflem 10238 . . . . . 6 (𝐴 ∈ On β†’ βˆƒπ‘₯βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)))
9 abn0 4380 . . . . . 6 ({π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))} β‰  βˆ… ↔ βˆƒπ‘₯βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)))
108, 9sylibr 233 . . . . 5 (𝐴 ∈ On β†’ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))} β‰  βˆ…)
11 onint 7775 . . . . 5 (({π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))} βŠ† On ∧ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))} β‰  βˆ…) β†’ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))} ∈ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))})
127, 10, 11sylancr 588 . . . 4 (𝐴 ∈ On β†’ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))} ∈ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))})
131, 12eqeltrd 2834 . . 3 (𝐴 ∈ On β†’ (cfβ€˜π΄) ∈ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))})
14 fvex 6902 . . . 4 (cfβ€˜π΄) ∈ V
15 eqeq1 2737 . . . . . 6 (π‘₯ = (cfβ€˜π΄) β†’ (π‘₯ = (cardβ€˜π‘¦) ↔ (cfβ€˜π΄) = (cardβ€˜π‘¦)))
1615anbi1d 631 . . . . 5 (π‘₯ = (cfβ€˜π΄) β†’ ((π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)) ↔ ((cfβ€˜π΄) = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))))
1716exbidv 1925 . . . 4 (π‘₯ = (cfβ€˜π΄) β†’ (βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)) ↔ βˆƒπ‘¦((cfβ€˜π΄) = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))))
1814, 17elab 3668 . . 3 ((cfβ€˜π΄) ∈ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠))} ↔ βˆƒπ‘¦((cfβ€˜π΄) = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)))
1913, 18sylib 217 . 2 (𝐴 ∈ On β†’ βˆƒπ‘¦((cfβ€˜π΄) = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)))
20 simplr 768 . . . . . 6 (((𝐴 ∈ On ∧ (cfβ€˜π΄) = (cardβ€˜π‘¦)) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)) β†’ (cfβ€˜π΄) = (cardβ€˜π‘¦))
21 onss 7769 . . . . . . . . 9 (𝐴 ∈ On β†’ 𝐴 βŠ† On)
22 sstr 3990 . . . . . . . . 9 ((𝑦 βŠ† 𝐴 ∧ 𝐴 βŠ† On) β†’ 𝑦 βŠ† On)
2321, 22sylan2 594 . . . . . . . 8 ((𝑦 βŠ† 𝐴 ∧ 𝐴 ∈ On) β†’ 𝑦 βŠ† On)
2423ancoms 460 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 βŠ† 𝐴) β†’ 𝑦 βŠ† On)
2524ad2ant2r 746 . . . . . 6 (((𝐴 ∈ On ∧ (cfβ€˜π΄) = (cardβ€˜π‘¦)) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)) β†’ 𝑦 βŠ† On)
26 vex 3479 . . . . . . . . . . 11 𝑦 ∈ V
27 onssnum 10032 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ 𝑦 βŠ† On) β†’ 𝑦 ∈ dom card)
2826, 27mpan 689 . . . . . . . . . 10 (𝑦 βŠ† On β†’ 𝑦 ∈ dom card)
29 cardid2 9945 . . . . . . . . . 10 (𝑦 ∈ dom card β†’ (cardβ€˜π‘¦) β‰ˆ 𝑦)
3028, 29syl 17 . . . . . . . . 9 (𝑦 βŠ† On β†’ (cardβ€˜π‘¦) β‰ˆ 𝑦)
3130adantl 483 . . . . . . . 8 (((cfβ€˜π΄) = (cardβ€˜π‘¦) ∧ 𝑦 βŠ† On) β†’ (cardβ€˜π‘¦) β‰ˆ 𝑦)
32 breq1 5151 . . . . . . . . 9 ((cfβ€˜π΄) = (cardβ€˜π‘¦) β†’ ((cfβ€˜π΄) β‰ˆ 𝑦 ↔ (cardβ€˜π‘¦) β‰ˆ 𝑦))
3332adantr 482 . . . . . . . 8 (((cfβ€˜π΄) = (cardβ€˜π‘¦) ∧ 𝑦 βŠ† On) β†’ ((cfβ€˜π΄) β‰ˆ 𝑦 ↔ (cardβ€˜π‘¦) β‰ˆ 𝑦))
3431, 33mpbird 257 . . . . . . 7 (((cfβ€˜π΄) = (cardβ€˜π‘¦) ∧ 𝑦 βŠ† On) β†’ (cfβ€˜π΄) β‰ˆ 𝑦)
35 bren 8946 . . . . . . 7 ((cfβ€˜π΄) β‰ˆ 𝑦 ↔ βˆƒπ‘“ 𝑓:(cfβ€˜π΄)–1-1-onto→𝑦)
3634, 35sylib 217 . . . . . 6 (((cfβ€˜π΄) = (cardβ€˜π‘¦) ∧ 𝑦 βŠ† On) β†’ βˆƒπ‘“ 𝑓:(cfβ€˜π΄)–1-1-onto→𝑦)
3720, 25, 36syl2anc 585 . . . . 5 (((𝐴 ∈ On ∧ (cfβ€˜π΄) = (cardβ€˜π‘¦)) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)) β†’ βˆƒπ‘“ 𝑓:(cfβ€˜π΄)–1-1-onto→𝑦)
38 f1of1 6830 . . . . . . . . . . 11 (𝑓:(cfβ€˜π΄)–1-1-onto→𝑦 β†’ 𝑓:(cfβ€˜π΄)–1-1→𝑦)
39 f1ss 6791 . . . . . . . . . . . 12 ((𝑓:(cfβ€˜π΄)–1-1→𝑦 ∧ 𝑦 βŠ† 𝐴) β†’ 𝑓:(cfβ€˜π΄)–1-1→𝐴)
4039ancoms 460 . . . . . . . . . . 11 ((𝑦 βŠ† 𝐴 ∧ 𝑓:(cfβ€˜π΄)–1-1→𝑦) β†’ 𝑓:(cfβ€˜π΄)–1-1→𝐴)
4138, 40sylan2 594 . . . . . . . . . 10 ((𝑦 βŠ† 𝐴 ∧ 𝑓:(cfβ€˜π΄)–1-1-onto→𝑦) β†’ 𝑓:(cfβ€˜π΄)–1-1→𝐴)
4241adantlr 714 . . . . . . . . 9 (((𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠) ∧ 𝑓:(cfβ€˜π΄)–1-1-onto→𝑦) β†’ 𝑓:(cfβ€˜π΄)–1-1→𝐴)
43423adant1 1131 . . . . . . . 8 (((𝐴 ∈ On ∧ (cfβ€˜π΄) = (cardβ€˜π‘¦)) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠) ∧ 𝑓:(cfβ€˜π΄)–1-1-onto→𝑦) β†’ 𝑓:(cfβ€˜π΄)–1-1→𝐴)
44 f1ofo 6838 . . . . . . . . . . . 12 (𝑓:(cfβ€˜π΄)–1-1-onto→𝑦 β†’ 𝑓:(cfβ€˜π΄)–onto→𝑦)
45 foelrn 7105 . . . . . . . . . . . . . . 15 ((𝑓:(cfβ€˜π΄)–onto→𝑦 ∧ 𝑠 ∈ 𝑦) β†’ βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑠 = (π‘“β€˜π‘€))
46 sseq2 4008 . . . . . . . . . . . . . . . . 17 (𝑠 = (π‘“β€˜π‘€) β†’ (𝑧 βŠ† 𝑠 ↔ 𝑧 βŠ† (π‘“β€˜π‘€)))
4746biimpcd 248 . . . . . . . . . . . . . . . 16 (𝑧 βŠ† 𝑠 β†’ (𝑠 = (π‘“β€˜π‘€) β†’ 𝑧 βŠ† (π‘“β€˜π‘€)))
4847reximdv 3171 . . . . . . . . . . . . . . 15 (𝑧 βŠ† 𝑠 β†’ (βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑠 = (π‘“β€˜π‘€) β†’ βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€)))
4945, 48syl5com 31 . . . . . . . . . . . . . 14 ((𝑓:(cfβ€˜π΄)–onto→𝑦 ∧ 𝑠 ∈ 𝑦) β†’ (𝑧 βŠ† 𝑠 β†’ βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€)))
5049rexlimdva 3156 . . . . . . . . . . . . 13 (𝑓:(cfβ€˜π΄)–onto→𝑦 β†’ (βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠 β†’ βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€)))
5150ralimdv 3170 . . . . . . . . . . . 12 (𝑓:(cfβ€˜π΄)–onto→𝑦 β†’ (βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠 β†’ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€)))
5244, 51syl 17 . . . . . . . . . . 11 (𝑓:(cfβ€˜π΄)–1-1-onto→𝑦 β†’ (βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠 β†’ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€)))
5352impcom 409 . . . . . . . . . 10 ((βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠 ∧ 𝑓:(cfβ€˜π΄)–1-1-onto→𝑦) β†’ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€))
5453adantll 713 . . . . . . . . 9 (((𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠) ∧ 𝑓:(cfβ€˜π΄)–1-1-onto→𝑦) β†’ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€))
55543adant1 1131 . . . . . . . 8 (((𝐴 ∈ On ∧ (cfβ€˜π΄) = (cardβ€˜π‘¦)) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠) ∧ 𝑓:(cfβ€˜π΄)–1-1-onto→𝑦) β†’ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€))
5643, 55jca 513 . . . . . . 7 (((𝐴 ∈ On ∧ (cfβ€˜π΄) = (cardβ€˜π‘¦)) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠) ∧ 𝑓:(cfβ€˜π΄)–1-1-onto→𝑦) β†’ (𝑓:(cfβ€˜π΄)–1-1→𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€)))
57563expia 1122 . . . . . 6 (((𝐴 ∈ On ∧ (cfβ€˜π΄) = (cardβ€˜π‘¦)) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)) β†’ (𝑓:(cfβ€˜π΄)–1-1-onto→𝑦 β†’ (𝑓:(cfβ€˜π΄)–1-1→𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€))))
5857eximdv 1921 . . . . 5 (((𝐴 ∈ On ∧ (cfβ€˜π΄) = (cardβ€˜π‘¦)) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)) β†’ (βˆƒπ‘“ 𝑓:(cfβ€˜π΄)–1-1-onto→𝑦 β†’ βˆƒπ‘“(𝑓:(cfβ€˜π΄)–1-1→𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€))))
5937, 58mpd 15 . . . 4 (((𝐴 ∈ On ∧ (cfβ€˜π΄) = (cardβ€˜π‘¦)) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)) β†’ βˆƒπ‘“(𝑓:(cfβ€˜π΄)–1-1→𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€)))
6059expl 459 . . 3 (𝐴 ∈ On β†’ (((cfβ€˜π΄) = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)) β†’ βˆƒπ‘“(𝑓:(cfβ€˜π΄)–1-1→𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€))))
6160exlimdv 1937 . 2 (𝐴 ∈ On β†’ (βˆƒπ‘¦((cfβ€˜π΄) = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘  ∈ 𝑦 𝑧 βŠ† 𝑠)) β†’ βˆƒπ‘“(𝑓:(cfβ€˜π΄)–1-1→𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€))))
6219, 61mpd 15 1 (𝐴 ∈ On β†’ βˆƒπ‘“(𝑓:(cfβ€˜π΄)–1-1→𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  {cab 2710   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3475   βŠ† wss 3948  βˆ…c0 4322  βˆ© cint 4950   class class class wbr 5148  dom cdm 5676  Oncon0 6362  β€“1-1β†’wf1 6538  β€“ontoβ†’wfo 6539  β€“1-1-ontoβ†’wf1o 6540  β€˜cfv 6541   β‰ˆ cen 8933  cardccrd 9927  cfccf 9929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-er 8700  df-en 8937  df-dom 8938  df-card 9931  df-cf 9933
This theorem is referenced by:  cfsmolem  10262  cfcoflem  10264  cfcof  10266  alephreg  10574
  Copyright terms: Public domain W3C validator