| Step | Hyp | Ref
| Expression |
| 1 | | cfval 10261 |
. . . 4
⊢ (𝐴 ∈ On →
(cf‘𝐴) = ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
| 2 | | cardon 9958 |
. . . . . . . . 9
⊢
(card‘𝑦)
∈ On |
| 3 | | eleq1 2822 |
. . . . . . . . 9
⊢ (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On)) |
| 4 | 2, 3 | mpbiri 258 |
. . . . . . . 8
⊢ (𝑥 = (card‘𝑦) → 𝑥 ∈ On) |
| 5 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → 𝑥 ∈ On) |
| 6 | 5 | exlimiv 1930 |
. . . . . 6
⊢
(∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → 𝑥 ∈ On) |
| 7 | 6 | abssi 4045 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ⊆ On |
| 8 | | cflem 10259 |
. . . . . 6
⊢ (𝐴 ∈ On → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
| 9 | | abn0 4360 |
. . . . . 6
⊢ ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ≠ ∅ ↔ ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
| 10 | 8, 9 | sylibr 234 |
. . . . 5
⊢ (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ≠ ∅) |
| 11 | | onint 7784 |
. . . . 5
⊢ (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ≠ ∅) → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
| 12 | 7, 10, 11 | sylancr 587 |
. . . 4
⊢ (𝐴 ∈ On → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
| 13 | 1, 12 | eqeltrd 2834 |
. . 3
⊢ (𝐴 ∈ On →
(cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
| 14 | | fvex 6889 |
. . . 4
⊢
(cf‘𝐴) ∈
V |
| 15 | | eqeq1 2739 |
. . . . . 6
⊢ (𝑥 = (cf‘𝐴) → (𝑥 = (card‘𝑦) ↔ (cf‘𝐴) = (card‘𝑦))) |
| 16 | 15 | anbi1d 631 |
. . . . 5
⊢ (𝑥 = (cf‘𝐴) → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) ↔ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)))) |
| 17 | 16 | exbidv 1921 |
. . . 4
⊢ (𝑥 = (cf‘𝐴) → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)))) |
| 18 | 14, 17 | elab 3658 |
. . 3
⊢
((cf‘𝐴) ∈
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
| 19 | 13, 18 | sylib 218 |
. 2
⊢ (𝐴 ∈ On → ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
| 20 | | simplr 768 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → (cf‘𝐴) = (card‘𝑦)) |
| 21 | | onss 7779 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| 22 | | sstr 3967 |
. . . . . . . . 9
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ On) → 𝑦 ⊆ On) |
| 23 | 21, 22 | sylan2 593 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝐴 ∈ On) → 𝑦 ⊆ On) |
| 24 | 23 | ancoms 458 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ On) |
| 25 | 24 | ad2ant2r 747 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → 𝑦 ⊆ On) |
| 26 | | vex 3463 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 27 | | onssnum 10054 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom
card) |
| 28 | 26, 27 | mpan 690 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ On → 𝑦 ∈ dom
card) |
| 29 | | cardid2 9967 |
. . . . . . . . . 10
⊢ (𝑦 ∈ dom card →
(card‘𝑦) ≈
𝑦) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ⊆ On →
(card‘𝑦) ≈
𝑦) |
| 31 | 30 | adantl 481 |
. . . . . . . 8
⊢
(((cf‘𝐴) =
(card‘𝑦) ∧ 𝑦 ⊆ On) →
(card‘𝑦) ≈
𝑦) |
| 32 | | breq1 5122 |
. . . . . . . . 9
⊢
((cf‘𝐴) =
(card‘𝑦) →
((cf‘𝐴) ≈ 𝑦 ↔ (card‘𝑦) ≈ 𝑦)) |
| 33 | 32 | adantr 480 |
. . . . . . . 8
⊢
(((cf‘𝐴) =
(card‘𝑦) ∧ 𝑦 ⊆ On) →
((cf‘𝐴) ≈ 𝑦 ↔ (card‘𝑦) ≈ 𝑦)) |
| 34 | 31, 33 | mpbird 257 |
. . . . . . 7
⊢
(((cf‘𝐴) =
(card‘𝑦) ∧ 𝑦 ⊆ On) →
(cf‘𝐴) ≈ 𝑦) |
| 35 | | bren 8969 |
. . . . . . 7
⊢
((cf‘𝐴)
≈ 𝑦 ↔
∃𝑓 𝑓:(cf‘𝐴)–1-1-onto→𝑦) |
| 36 | 34, 35 | sylib 218 |
. . . . . 6
⊢
(((cf‘𝐴) =
(card‘𝑦) ∧ 𝑦 ⊆ On) → ∃𝑓 𝑓:(cf‘𝐴)–1-1-onto→𝑦) |
| 37 | 20, 25, 36 | syl2anc 584 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → ∃𝑓 𝑓:(cf‘𝐴)–1-1-onto→𝑦) |
| 38 | | f1of1 6817 |
. . . . . . . . . . 11
⊢ (𝑓:(cf‘𝐴)–1-1-onto→𝑦 → 𝑓:(cf‘𝐴)–1-1→𝑦) |
| 39 | | f1ss 6779 |
. . . . . . . . . . . 12
⊢ ((𝑓:(cf‘𝐴)–1-1→𝑦 ∧ 𝑦 ⊆ 𝐴) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
| 40 | 39 | ancoms 458 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑓:(cf‘𝐴)–1-1→𝑦) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
| 41 | 38, 40 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
| 42 | 41 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
| 43 | 42 | 3adant1 1130 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
| 44 | | f1ofo 6825 |
. . . . . . . . . . . 12
⊢ (𝑓:(cf‘𝐴)–1-1-onto→𝑦 → 𝑓:(cf‘𝐴)–onto→𝑦) |
| 45 | | foelrn 7097 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(cf‘𝐴)–onto→𝑦 ∧ 𝑠 ∈ 𝑦) → ∃𝑤 ∈ (cf‘𝐴)𝑠 = (𝑓‘𝑤)) |
| 46 | | sseq2 3985 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝑓‘𝑤) → (𝑧 ⊆ 𝑠 ↔ 𝑧 ⊆ (𝑓‘𝑤))) |
| 47 | 46 | biimpcd 249 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ⊆ 𝑠 → (𝑠 = (𝑓‘𝑤) → 𝑧 ⊆ (𝑓‘𝑤))) |
| 48 | 47 | reximdv 3155 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ⊆ 𝑠 → (∃𝑤 ∈ (cf‘𝐴)𝑠 = (𝑓‘𝑤) → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 49 | 45, 48 | syl5com 31 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(cf‘𝐴)–onto→𝑦 ∧ 𝑠 ∈ 𝑦) → (𝑧 ⊆ 𝑠 → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 50 | 49 | rexlimdva 3141 |
. . . . . . . . . . . . 13
⊢ (𝑓:(cf‘𝐴)–onto→𝑦 → (∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 51 | 50 | ralimdv 3154 |
. . . . . . . . . . . 12
⊢ (𝑓:(cf‘𝐴)–onto→𝑦 → (∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 52 | 44, 51 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑓:(cf‘𝐴)–1-1-onto→𝑦 → (∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 53 | 52 | impcom 407 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)) |
| 54 | 53 | adantll 714 |
. . . . . . . . 9
⊢ (((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)) |
| 55 | 54 | 3adant1 1130 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)) |
| 56 | 43, 55 | jca 511 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → (𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 57 | 56 | 3expia 1121 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → (𝑓:(cf‘𝐴)–1-1-onto→𝑦 → (𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
| 58 | 57 | eximdv 1917 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → (∃𝑓 𝑓:(cf‘𝐴)–1-1-onto→𝑦 → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
| 59 | 37, 58 | mpd 15 |
. . . 4
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 60 | 59 | expl 457 |
. . 3
⊢ (𝐴 ∈ On →
(((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
| 61 | 60 | exlimdv 1933 |
. 2
⊢ (𝐴 ∈ On → (∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
| 62 | 19, 61 | mpd 15 |
1
⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |