MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cff1 Structured version   Visualization version   GIF version

Theorem cff1 10218
Description: There is always a map from (cf‘𝐴) to 𝐴 (this is a stronger condition than the definition, which only presupposes a map from some 𝑦 ≈ (cf‘𝐴). (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cff1 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Distinct variable group:   𝐴,𝑓,𝑤,𝑧

Proof of Theorem cff1
Dummy variables 𝑠 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 10207 . . . 4 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
2 cardon 9904 . . . . . . . . 9 (card‘𝑦) ∈ On
3 eleq1 2817 . . . . . . . . 9 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
42, 3mpbiri 258 . . . . . . . 8 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
54adantr 480 . . . . . . 7 ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → 𝑥 ∈ On)
65exlimiv 1930 . . . . . 6 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → 𝑥 ∈ On)
76abssi 4036 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ On
8 cflem 10205 . . . . . 6 (𝐴 ∈ On → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
9 abn0 4351 . . . . . 6 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ≠ ∅ ↔ ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
108, 9sylibr 234 . . . . 5 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ≠ ∅)
11 onint 7769 . . . . 5 (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
127, 10, 11sylancr 587 . . . 4 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
131, 12eqeltrd 2829 . . 3 (𝐴 ∈ On → (cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
14 fvex 6874 . . . 4 (cf‘𝐴) ∈ V
15 eqeq1 2734 . . . . . 6 (𝑥 = (cf‘𝐴) → (𝑥 = (card‘𝑦) ↔ (cf‘𝐴) = (card‘𝑦)))
1615anbi1d 631 . . . . 5 (𝑥 = (cf‘𝐴) → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) ↔ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))))
1716exbidv 1921 . . . 4 (𝑥 = (cf‘𝐴) → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))))
1814, 17elab 3649 . . 3 ((cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
1913, 18sylib 218 . 2 (𝐴 ∈ On → ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
20 simplr 768 . . . . . 6 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → (cf‘𝐴) = (card‘𝑦))
21 onss 7764 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ⊆ On)
22 sstr 3958 . . . . . . . . 9 ((𝑦𝐴𝐴 ⊆ On) → 𝑦 ⊆ On)
2321, 22sylan2 593 . . . . . . . 8 ((𝑦𝐴𝐴 ∈ On) → 𝑦 ⊆ On)
2423ancoms 458 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ⊆ On)
2524ad2ant2r 747 . . . . . 6 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → 𝑦 ⊆ On)
26 vex 3454 . . . . . . . . . . 11 𝑦 ∈ V
27 onssnum 10000 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
2826, 27mpan 690 . . . . . . . . . 10 (𝑦 ⊆ On → 𝑦 ∈ dom card)
29 cardid2 9913 . . . . . . . . . 10 (𝑦 ∈ dom card → (card‘𝑦) ≈ 𝑦)
3028, 29syl 17 . . . . . . . . 9 (𝑦 ⊆ On → (card‘𝑦) ≈ 𝑦)
3130adantl 481 . . . . . . . 8 (((cf‘𝐴) = (card‘𝑦) ∧ 𝑦 ⊆ On) → (card‘𝑦) ≈ 𝑦)
32 breq1 5113 . . . . . . . . 9 ((cf‘𝐴) = (card‘𝑦) → ((cf‘𝐴) ≈ 𝑦 ↔ (card‘𝑦) ≈ 𝑦))
3332adantr 480 . . . . . . . 8 (((cf‘𝐴) = (card‘𝑦) ∧ 𝑦 ⊆ On) → ((cf‘𝐴) ≈ 𝑦 ↔ (card‘𝑦) ≈ 𝑦))
3431, 33mpbird 257 . . . . . . 7 (((cf‘𝐴) = (card‘𝑦) ∧ 𝑦 ⊆ On) → (cf‘𝐴) ≈ 𝑦)
35 bren 8931 . . . . . . 7 ((cf‘𝐴) ≈ 𝑦 ↔ ∃𝑓 𝑓:(cf‘𝐴)–1-1-onto𝑦)
3634, 35sylib 218 . . . . . 6 (((cf‘𝐴) = (card‘𝑦) ∧ 𝑦 ⊆ On) → ∃𝑓 𝑓:(cf‘𝐴)–1-1-onto𝑦)
3720, 25, 36syl2anc 584 . . . . 5 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → ∃𝑓 𝑓:(cf‘𝐴)–1-1-onto𝑦)
38 f1of1 6802 . . . . . . . . . . 11 (𝑓:(cf‘𝐴)–1-1-onto𝑦𝑓:(cf‘𝐴)–1-1𝑦)
39 f1ss 6764 . . . . . . . . . . . 12 ((𝑓:(cf‘𝐴)–1-1𝑦𝑦𝐴) → 𝑓:(cf‘𝐴)–1-1𝐴)
4039ancoms 458 . . . . . . . . . . 11 ((𝑦𝐴𝑓:(cf‘𝐴)–1-1𝑦) → 𝑓:(cf‘𝐴)–1-1𝐴)
4138, 40sylan2 593 . . . . . . . . . 10 ((𝑦𝐴𝑓:(cf‘𝐴)–1-1-onto𝑦) → 𝑓:(cf‘𝐴)–1-1𝐴)
4241adantlr 715 . . . . . . . . 9 (((𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto𝑦) → 𝑓:(cf‘𝐴)–1-1𝐴)
43423adant1 1130 . . . . . . . 8 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto𝑦) → 𝑓:(cf‘𝐴)–1-1𝐴)
44 f1ofo 6810 . . . . . . . . . . . 12 (𝑓:(cf‘𝐴)–1-1-onto𝑦𝑓:(cf‘𝐴)–onto𝑦)
45 foelrn 7082 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘𝐴)–onto𝑦𝑠𝑦) → ∃𝑤 ∈ (cf‘𝐴)𝑠 = (𝑓𝑤))
46 sseq2 3976 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑓𝑤) → (𝑧𝑠𝑧 ⊆ (𝑓𝑤)))
4746biimpcd 249 . . . . . . . . . . . . . . . 16 (𝑧𝑠 → (𝑠 = (𝑓𝑤) → 𝑧 ⊆ (𝑓𝑤)))
4847reximdv 3149 . . . . . . . . . . . . . . 15 (𝑧𝑠 → (∃𝑤 ∈ (cf‘𝐴)𝑠 = (𝑓𝑤) → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
4945, 48syl5com 31 . . . . . . . . . . . . . 14 ((𝑓:(cf‘𝐴)–onto𝑦𝑠𝑦) → (𝑧𝑠 → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
5049rexlimdva 3135 . . . . . . . . . . . . 13 (𝑓:(cf‘𝐴)–onto𝑦 → (∃𝑠𝑦 𝑧𝑠 → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
5150ralimdv 3148 . . . . . . . . . . . 12 (𝑓:(cf‘𝐴)–onto𝑦 → (∀𝑧𝐴𝑠𝑦 𝑧𝑠 → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
5244, 51syl 17 . . . . . . . . . . 11 (𝑓:(cf‘𝐴)–1-1-onto𝑦 → (∀𝑧𝐴𝑠𝑦 𝑧𝑠 → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
5352impcom 407 . . . . . . . . . 10 ((∀𝑧𝐴𝑠𝑦 𝑧𝑠𝑓:(cf‘𝐴)–1-1-onto𝑦) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))
5453adantll 714 . . . . . . . . 9 (((𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto𝑦) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))
55543adant1 1130 . . . . . . . 8 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto𝑦) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))
5643, 55jca 511 . . . . . . 7 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto𝑦) → (𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
57563expia 1121 . . . . . 6 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → (𝑓:(cf‘𝐴)–1-1-onto𝑦 → (𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
5857eximdv 1917 . . . . 5 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → (∃𝑓 𝑓:(cf‘𝐴)–1-1-onto𝑦 → ∃𝑓(𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
5937, 58mpd 15 . . . 4 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
6059expl 457 . . 3 (𝐴 ∈ On → (((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
6160exlimdv 1933 . 2 (𝐴 ∈ On → (∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
6219, 61mpd 15 1 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299   cint 4913   class class class wbr 5110  dom cdm 5641  Oncon0 6335  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  cen 8918  cardccrd 9895  cfccf 9897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-er 8674  df-en 8922  df-dom 8923  df-card 9899  df-cf 9901
This theorem is referenced by:  cfsmolem  10230  cfcoflem  10232  cfcof  10234  alephreg  10542
  Copyright terms: Public domain W3C validator