Step | Hyp | Ref
| Expression |
1 | | cfval 9934 |
. . . 4
⊢ (𝐴 ∈ On →
(cf‘𝐴) = ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
2 | | cardon 9633 |
. . . . . . . . 9
⊢
(card‘𝑦)
∈ On |
3 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On)) |
4 | 2, 3 | mpbiri 257 |
. . . . . . . 8
⊢ (𝑥 = (card‘𝑦) → 𝑥 ∈ On) |
5 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → 𝑥 ∈ On) |
6 | 5 | exlimiv 1934 |
. . . . . 6
⊢
(∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → 𝑥 ∈ On) |
7 | 6 | abssi 3999 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ⊆ On |
8 | | cflem 9933 |
. . . . . 6
⊢ (𝐴 ∈ On → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
9 | | abn0 4311 |
. . . . . 6
⊢ ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ≠ ∅ ↔ ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
10 | 8, 9 | sylibr 233 |
. . . . 5
⊢ (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ≠ ∅) |
11 | | onint 7617 |
. . . . 5
⊢ (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ≠ ∅) → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
12 | 7, 10, 11 | sylancr 586 |
. . . 4
⊢ (𝐴 ∈ On → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
13 | 1, 12 | eqeltrd 2839 |
. . 3
⊢ (𝐴 ∈ On →
(cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
14 | | fvex 6769 |
. . . 4
⊢
(cf‘𝐴) ∈
V |
15 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑥 = (cf‘𝐴) → (𝑥 = (card‘𝑦) ↔ (cf‘𝐴) = (card‘𝑦))) |
16 | 15 | anbi1d 629 |
. . . . 5
⊢ (𝑥 = (cf‘𝐴) → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) ↔ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)))) |
17 | 16 | exbidv 1925 |
. . . 4
⊢ (𝑥 = (cf‘𝐴) → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)))) |
18 | 14, 17 | elab 3602 |
. . 3
⊢
((cf‘𝐴) ∈
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
19 | 13, 18 | sylib 217 |
. 2
⊢ (𝐴 ∈ On → ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
20 | | simplr 765 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → (cf‘𝐴) = (card‘𝑦)) |
21 | | onss 7611 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
22 | | sstr 3925 |
. . . . . . . . 9
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ On) → 𝑦 ⊆ On) |
23 | 21, 22 | sylan2 592 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝐴 ∈ On) → 𝑦 ⊆ On) |
24 | 23 | ancoms 458 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ On) |
25 | 24 | ad2ant2r 743 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → 𝑦 ⊆ On) |
26 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
27 | | onssnum 9727 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom
card) |
28 | 26, 27 | mpan 686 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ On → 𝑦 ∈ dom
card) |
29 | | cardid2 9642 |
. . . . . . . . . 10
⊢ (𝑦 ∈ dom card →
(card‘𝑦) ≈
𝑦) |
30 | 28, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ⊆ On →
(card‘𝑦) ≈
𝑦) |
31 | 30 | adantl 481 |
. . . . . . . 8
⊢
(((cf‘𝐴) =
(card‘𝑦) ∧ 𝑦 ⊆ On) →
(card‘𝑦) ≈
𝑦) |
32 | | breq1 5073 |
. . . . . . . . 9
⊢
((cf‘𝐴) =
(card‘𝑦) →
((cf‘𝐴) ≈ 𝑦 ↔ (card‘𝑦) ≈ 𝑦)) |
33 | 32 | adantr 480 |
. . . . . . . 8
⊢
(((cf‘𝐴) =
(card‘𝑦) ∧ 𝑦 ⊆ On) →
((cf‘𝐴) ≈ 𝑦 ↔ (card‘𝑦) ≈ 𝑦)) |
34 | 31, 33 | mpbird 256 |
. . . . . . 7
⊢
(((cf‘𝐴) =
(card‘𝑦) ∧ 𝑦 ⊆ On) →
(cf‘𝐴) ≈ 𝑦) |
35 | | bren 8701 |
. . . . . . 7
⊢
((cf‘𝐴)
≈ 𝑦 ↔
∃𝑓 𝑓:(cf‘𝐴)–1-1-onto→𝑦) |
36 | 34, 35 | sylib 217 |
. . . . . 6
⊢
(((cf‘𝐴) =
(card‘𝑦) ∧ 𝑦 ⊆ On) → ∃𝑓 𝑓:(cf‘𝐴)–1-1-onto→𝑦) |
37 | 20, 25, 36 | syl2anc 583 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → ∃𝑓 𝑓:(cf‘𝐴)–1-1-onto→𝑦) |
38 | | f1of1 6699 |
. . . . . . . . . . 11
⊢ (𝑓:(cf‘𝐴)–1-1-onto→𝑦 → 𝑓:(cf‘𝐴)–1-1→𝑦) |
39 | | f1ss 6660 |
. . . . . . . . . . . 12
⊢ ((𝑓:(cf‘𝐴)–1-1→𝑦 ∧ 𝑦 ⊆ 𝐴) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
40 | 39 | ancoms 458 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑓:(cf‘𝐴)–1-1→𝑦) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
41 | 38, 40 | sylan2 592 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
42 | 41 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
43 | 42 | 3adant1 1128 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
44 | | f1ofo 6707 |
. . . . . . . . . . . 12
⊢ (𝑓:(cf‘𝐴)–1-1-onto→𝑦 → 𝑓:(cf‘𝐴)–onto→𝑦) |
45 | | foelrn 6964 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(cf‘𝐴)–onto→𝑦 ∧ 𝑠 ∈ 𝑦) → ∃𝑤 ∈ (cf‘𝐴)𝑠 = (𝑓‘𝑤)) |
46 | | sseq2 3943 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝑓‘𝑤) → (𝑧 ⊆ 𝑠 ↔ 𝑧 ⊆ (𝑓‘𝑤))) |
47 | 46 | biimpcd 248 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ⊆ 𝑠 → (𝑠 = (𝑓‘𝑤) → 𝑧 ⊆ (𝑓‘𝑤))) |
48 | 47 | reximdv 3201 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ⊆ 𝑠 → (∃𝑤 ∈ (cf‘𝐴)𝑠 = (𝑓‘𝑤) → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
49 | 45, 48 | syl5com 31 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(cf‘𝐴)–onto→𝑦 ∧ 𝑠 ∈ 𝑦) → (𝑧 ⊆ 𝑠 → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
50 | 49 | rexlimdva 3212 |
. . . . . . . . . . . . 13
⊢ (𝑓:(cf‘𝐴)–onto→𝑦 → (∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
51 | 50 | ralimdv 3103 |
. . . . . . . . . . . 12
⊢ (𝑓:(cf‘𝐴)–onto→𝑦 → (∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
52 | 44, 51 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑓:(cf‘𝐴)–1-1-onto→𝑦 → (∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
53 | 52 | impcom 407 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)) |
54 | 53 | adantll 710 |
. . . . . . . . 9
⊢ (((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)) |
55 | 54 | 3adant1 1128 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)) |
56 | 43, 55 | jca 511 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → (𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
57 | 56 | 3expia 1119 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → (𝑓:(cf‘𝐴)–1-1-onto→𝑦 → (𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
58 | 57 | eximdv 1921 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → (∃𝑓 𝑓:(cf‘𝐴)–1-1-onto→𝑦 → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
59 | 37, 58 | mpd 15 |
. . . 4
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
60 | 59 | expl 457 |
. . 3
⊢ (𝐴 ∈ On →
(((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
61 | 60 | exlimdv 1937 |
. 2
⊢ (𝐴 ∈ On → (∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
62 | 19, 61 | mpd 15 |
1
⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |