Step | Hyp | Ref
| Expression |
1 | | cfval 10239 |
. . . 4
β’ (π΄ β On β
(cfβπ΄) = β© {π₯
β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))}) |
2 | | cardon 9936 |
. . . . . . . . 9
β’
(cardβπ¦)
β On |
3 | | eleq1 2822 |
. . . . . . . . 9
β’ (π₯ = (cardβπ¦) β (π₯ β On β (cardβπ¦) β On)) |
4 | 2, 3 | mpbiri 258 |
. . . . . . . 8
β’ (π₯ = (cardβπ¦) β π₯ β On) |
5 | 4 | adantr 482 |
. . . . . . 7
β’ ((π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )) β π₯ β On) |
6 | 5 | exlimiv 1934 |
. . . . . 6
β’
(βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )) β π₯ β On) |
7 | 6 | abssi 4067 |
. . . . 5
β’ {π₯ β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))} β On |
8 | | cflem 10238 |
. . . . . 6
β’ (π΄ β On β βπ₯βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))) |
9 | | abn0 4380 |
. . . . . 6
β’ ({π₯ β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))} β β
β βπ₯βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))) |
10 | 8, 9 | sylibr 233 |
. . . . 5
β’ (π΄ β On β {π₯ β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))} β β
) |
11 | | onint 7775 |
. . . . 5
β’ (({π₯ β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))} β On β§ {π₯ β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))} β β
) β β© {π₯
β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))} β {π₯ β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))}) |
12 | 7, 10, 11 | sylancr 588 |
. . . 4
β’ (π΄ β On β β© {π₯
β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))} β {π₯ β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))}) |
13 | 1, 12 | eqeltrd 2834 |
. . 3
β’ (π΄ β On β
(cfβπ΄) β {π₯ β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))}) |
14 | | fvex 6902 |
. . . 4
β’
(cfβπ΄) β
V |
15 | | eqeq1 2737 |
. . . . . 6
β’ (π₯ = (cfβπ΄) β (π₯ = (cardβπ¦) β (cfβπ΄) = (cardβπ¦))) |
16 | 15 | anbi1d 631 |
. . . . 5
β’ (π₯ = (cfβπ΄) β ((π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )) β ((cfβπ΄) = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )))) |
17 | 16 | exbidv 1925 |
. . . 4
β’ (π₯ = (cfβπ΄) β (βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )) β βπ¦((cfβπ΄) = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )))) |
18 | 14, 17 | elab 3668 |
. . 3
β’
((cfβπ΄) β
{π₯ β£ βπ¦(π₯ = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))} β βπ¦((cfβπ΄) = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))) |
19 | 13, 18 | sylib 217 |
. 2
β’ (π΄ β On β βπ¦((cfβπ΄) = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ))) |
20 | | simplr 768 |
. . . . . 6
β’ (((π΄ β On β§ (cfβπ΄) = (cardβπ¦)) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )) β (cfβπ΄) = (cardβπ¦)) |
21 | | onss 7769 |
. . . . . . . . 9
β’ (π΄ β On β π΄ β On) |
22 | | sstr 3990 |
. . . . . . . . 9
β’ ((π¦ β π΄ β§ π΄ β On) β π¦ β On) |
23 | 21, 22 | sylan2 594 |
. . . . . . . 8
β’ ((π¦ β π΄ β§ π΄ β On) β π¦ β On) |
24 | 23 | ancoms 460 |
. . . . . . 7
β’ ((π΄ β On β§ π¦ β π΄) β π¦ β On) |
25 | 24 | ad2ant2r 746 |
. . . . . 6
β’ (((π΄ β On β§ (cfβπ΄) = (cardβπ¦)) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )) β π¦ β On) |
26 | | vex 3479 |
. . . . . . . . . . 11
β’ π¦ β V |
27 | | onssnum 10032 |
. . . . . . . . . . 11
β’ ((π¦ β V β§ π¦ β On) β π¦ β dom
card) |
28 | 26, 27 | mpan 689 |
. . . . . . . . . 10
β’ (π¦ β On β π¦ β dom
card) |
29 | | cardid2 9945 |
. . . . . . . . . 10
β’ (π¦ β dom card β
(cardβπ¦) β
π¦) |
30 | 28, 29 | syl 17 |
. . . . . . . . 9
β’ (π¦ β On β
(cardβπ¦) β
π¦) |
31 | 30 | adantl 483 |
. . . . . . . 8
β’
(((cfβπ΄) =
(cardβπ¦) β§ π¦ β On) β
(cardβπ¦) β
π¦) |
32 | | breq1 5151 |
. . . . . . . . 9
β’
((cfβπ΄) =
(cardβπ¦) β
((cfβπ΄) β π¦ β (cardβπ¦) β π¦)) |
33 | 32 | adantr 482 |
. . . . . . . 8
β’
(((cfβπ΄) =
(cardβπ¦) β§ π¦ β On) β
((cfβπ΄) β π¦ β (cardβπ¦) β π¦)) |
34 | 31, 33 | mpbird 257 |
. . . . . . 7
β’
(((cfβπ΄) =
(cardβπ¦) β§ π¦ β On) β
(cfβπ΄) β π¦) |
35 | | bren 8946 |
. . . . . . 7
β’
((cfβπ΄)
β π¦ β
βπ π:(cfβπ΄)β1-1-ontoβπ¦) |
36 | 34, 35 | sylib 217 |
. . . . . 6
β’
(((cfβπ΄) =
(cardβπ¦) β§ π¦ β On) β βπ π:(cfβπ΄)β1-1-ontoβπ¦) |
37 | 20, 25, 36 | syl2anc 585 |
. . . . 5
β’ (((π΄ β On β§ (cfβπ΄) = (cardβπ¦)) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )) β βπ π:(cfβπ΄)β1-1-ontoβπ¦) |
38 | | f1of1 6830 |
. . . . . . . . . . 11
β’ (π:(cfβπ΄)β1-1-ontoβπ¦ β π:(cfβπ΄)β1-1βπ¦) |
39 | | f1ss 6791 |
. . . . . . . . . . . 12
β’ ((π:(cfβπ΄)β1-1βπ¦ β§ π¦ β π΄) β π:(cfβπ΄)β1-1βπ΄) |
40 | 39 | ancoms 460 |
. . . . . . . . . . 11
β’ ((π¦ β π΄ β§ π:(cfβπ΄)β1-1βπ¦) β π:(cfβπ΄)β1-1βπ΄) |
41 | 38, 40 | sylan2 594 |
. . . . . . . . . 10
β’ ((π¦ β π΄ β§ π:(cfβπ΄)β1-1-ontoβπ¦) β π:(cfβπ΄)β1-1βπ΄) |
42 | 41 | adantlr 714 |
. . . . . . . . 9
β’ (((π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ) β§ π:(cfβπ΄)β1-1-ontoβπ¦) β π:(cfβπ΄)β1-1βπ΄) |
43 | 42 | 3adant1 1131 |
. . . . . . . 8
β’ (((π΄ β On β§ (cfβπ΄) = (cardβπ¦)) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ) β§ π:(cfβπ΄)β1-1-ontoβπ¦) β π:(cfβπ΄)β1-1βπ΄) |
44 | | f1ofo 6838 |
. . . . . . . . . . . 12
β’ (π:(cfβπ΄)β1-1-ontoβπ¦ β π:(cfβπ΄)βontoβπ¦) |
45 | | foelrn 7105 |
. . . . . . . . . . . . . . 15
β’ ((π:(cfβπ΄)βontoβπ¦ β§ π β π¦) β βπ€ β (cfβπ΄)π = (πβπ€)) |
46 | | sseq2 4008 |
. . . . . . . . . . . . . . . . 17
β’ (π = (πβπ€) β (π§ β π β π§ β (πβπ€))) |
47 | 46 | biimpcd 248 |
. . . . . . . . . . . . . . . 16
β’ (π§ β π β (π = (πβπ€) β π§ β (πβπ€))) |
48 | 47 | reximdv 3171 |
. . . . . . . . . . . . . . 15
β’ (π§ β π β (βπ€ β (cfβπ΄)π = (πβπ€) β βπ€ β (cfβπ΄)π§ β (πβπ€))) |
49 | 45, 48 | syl5com 31 |
. . . . . . . . . . . . . 14
β’ ((π:(cfβπ΄)βontoβπ¦ β§ π β π¦) β (π§ β π β βπ€ β (cfβπ΄)π§ β (πβπ€))) |
50 | 49 | rexlimdva 3156 |
. . . . . . . . . . . . 13
β’ (π:(cfβπ΄)βontoβπ¦ β (βπ β π¦ π§ β π β βπ€ β (cfβπ΄)π§ β (πβπ€))) |
51 | 50 | ralimdv 3170 |
. . . . . . . . . . . 12
β’ (π:(cfβπ΄)βontoβπ¦ β (βπ§ β π΄ βπ β π¦ π§ β π β βπ§ β π΄ βπ€ β (cfβπ΄)π§ β (πβπ€))) |
52 | 44, 51 | syl 17 |
. . . . . . . . . . 11
β’ (π:(cfβπ΄)β1-1-ontoβπ¦ β (βπ§ β π΄ βπ β π¦ π§ β π β βπ§ β π΄ βπ€ β (cfβπ΄)π§ β (πβπ€))) |
53 | 52 | impcom 409 |
. . . . . . . . . 10
β’
((βπ§ β
π΄ βπ β π¦ π§ β π β§ π:(cfβπ΄)β1-1-ontoβπ¦) β βπ§ β π΄ βπ€ β (cfβπ΄)π§ β (πβπ€)) |
54 | 53 | adantll 713 |
. . . . . . . . 9
β’ (((π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ) β§ π:(cfβπ΄)β1-1-ontoβπ¦) β βπ§ β π΄ βπ€ β (cfβπ΄)π§ β (πβπ€)) |
55 | 54 | 3adant1 1131 |
. . . . . . . 8
β’ (((π΄ β On β§ (cfβπ΄) = (cardβπ¦)) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ) β§ π:(cfβπ΄)β1-1-ontoβπ¦) β βπ§ β π΄ βπ€ β (cfβπ΄)π§ β (πβπ€)) |
56 | 43, 55 | jca 513 |
. . . . . . 7
β’ (((π΄ β On β§ (cfβπ΄) = (cardβπ¦)) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π ) β§ π:(cfβπ΄)β1-1-ontoβπ¦) β (π:(cfβπ΄)β1-1βπ΄ β§ βπ§ β π΄ βπ€ β (cfβπ΄)π§ β (πβπ€))) |
57 | 56 | 3expia 1122 |
. . . . . 6
β’ (((π΄ β On β§ (cfβπ΄) = (cardβπ¦)) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )) β (π:(cfβπ΄)β1-1-ontoβπ¦ β (π:(cfβπ΄)β1-1βπ΄ β§ βπ§ β π΄ βπ€ β (cfβπ΄)π§ β (πβπ€)))) |
58 | 57 | eximdv 1921 |
. . . . 5
β’ (((π΄ β On β§ (cfβπ΄) = (cardβπ¦)) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )) β (βπ π:(cfβπ΄)β1-1-ontoβπ¦ β βπ(π:(cfβπ΄)β1-1βπ΄ β§ βπ§ β π΄ βπ€ β (cfβπ΄)π§ β (πβπ€)))) |
59 | 37, 58 | mpd 15 |
. . . 4
β’ (((π΄ β On β§ (cfβπ΄) = (cardβπ¦)) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )) β βπ(π:(cfβπ΄)β1-1βπ΄ β§ βπ§ β π΄ βπ€ β (cfβπ΄)π§ β (πβπ€))) |
60 | 59 | expl 459 |
. . 3
β’ (π΄ β On β
(((cfβπ΄) =
(cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )) β βπ(π:(cfβπ΄)β1-1βπ΄ β§ βπ§ β π΄ βπ€ β (cfβπ΄)π§ β (πβπ€)))) |
61 | 60 | exlimdv 1937 |
. 2
β’ (π΄ β On β (βπ¦((cfβπ΄) = (cardβπ¦) β§ (π¦ β π΄ β§ βπ§ β π΄ βπ β π¦ π§ β π )) β βπ(π:(cfβπ΄)β1-1βπ΄ β§ βπ§ β π΄ βπ€ β (cfβπ΄)π§ β (πβπ€)))) |
62 | 19, 61 | mpd 15 |
1
β’ (π΄ β On β βπ(π:(cfβπ΄)β1-1βπ΄ β§ βπ§ β π΄ βπ€ β (cfβπ΄)π§ β (πβπ€))) |