MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1climres Structured version   Visualization version   GIF version

Theorem itg1climres 24318
Description: Restricting the simple function 𝐹 to the increasing sequence 𝐴(𝑛) of measurable sets whose union is yields a sequence of simple functions whose integrals approach the integral of 𝐹. (Contributed by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
itg1climres.1 (𝜑𝐴:ℕ⟶dom vol)
itg1climres.2 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ (𝐴‘(𝑛 + 1)))
itg1climres.3 (𝜑 ran 𝐴 = ℝ)
itg1climres.4 (𝜑𝐹 ∈ dom ∫1)
itg1climres.5 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0))
Assertion
Ref Expression
itg1climres (𝜑 → (𝑛 ∈ ℕ ↦ (∫1𝐺)) ⇝ (∫1𝐹))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝐹,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑛)

Proof of Theorem itg1climres
Dummy variables 𝑗 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12269 . . 3 ℕ = (ℤ‘1)
2 1zzd 12001 . . 3 (𝜑 → 1 ∈ ℤ)
3 itg1climres.4 . . . . 5 (𝜑𝐹 ∈ dom ∫1)
4 i1frn 24281 . . . . 5 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
53, 4syl 17 . . . 4 (𝜑 → ran 𝐹 ∈ Fin)
6 difss 4059 . . . 4 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
7 ssfi 8722 . . . 4 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
85, 6, 7sylancl 589 . . 3 (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin)
9 1zzd 12001 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 1 ∈ ℤ)
10 i1fima 24282 . . . . . . . . . . . 12 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑘}) ∈ dom vol)
113, 10syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 “ {𝑘}) ∈ dom vol)
1211ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (𝐹 “ {𝑘}) ∈ dom vol)
13 itg1climres.1 . . . . . . . . . . . 12 (𝜑𝐴:ℕ⟶dom vol)
1413ffvelrnda 6828 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ dom vol)
1514adantlr 714 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ dom vol)
16 inmbl 24146 . . . . . . . . . 10 (((𝐹 “ {𝑘}) ∈ dom vol ∧ (𝐴𝑛) ∈ dom vol) → ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ∈ dom vol)
1712, 15, 16syl2anc 587 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ∈ dom vol)
18 mblvol 24134 . . . . . . . . 9 (((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ∈ dom vol → (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) = (vol*‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))
1917, 18syl 17 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) = (vol*‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))
20 inss1 4155 . . . . . . . . . 10 ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ⊆ (𝐹 “ {𝑘})
2120a1i 11 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ⊆ (𝐹 “ {𝑘}))
22 mblss 24135 . . . . . . . . . 10 ((𝐹 “ {𝑘}) ∈ dom vol → (𝐹 “ {𝑘}) ⊆ ℝ)
2312, 22syl 17 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (𝐹 “ {𝑘}) ⊆ ℝ)
24 mblvol 24134 . . . . . . . . . . 11 ((𝐹 “ {𝑘}) ∈ dom vol → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
2512, 24syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
26 i1fima2sn 24284 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
273, 26sylan 583 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
2827adantr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
2925, 28eqeltrrd 2891 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝐹 “ {𝑘})) ∈ ℝ)
30 ovolsscl 24090 . . . . . . . . 9 ((((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ⊆ (𝐹 “ {𝑘}) ∧ (𝐹 “ {𝑘}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑘})) ∈ ℝ) → (vol*‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ∈ ℝ)
3121, 23, 29, 30syl3anc 1368 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (vol*‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ∈ ℝ)
3219, 31eqeltrd 2890 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ∈ ℝ)
3332fmpttd 6856 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))):ℕ⟶ℝ)
34 itg1climres.2 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ (𝐴‘(𝑛 + 1)))
3534adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ (𝐴‘(𝑛 + 1)))
36 sslin 4161 . . . . . . . . . . . 12 ((𝐴𝑛) ⊆ (𝐴‘(𝑛 + 1)) → ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ⊆ ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))))
3735, 36syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ⊆ ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))))
3813adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐴:ℕ⟶dom vol)
39 peano2nn 11637 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
40 ffvelrn 6826 . . . . . . . . . . . . . 14 ((𝐴:ℕ⟶dom vol ∧ (𝑛 + 1) ∈ ℕ) → (𝐴‘(𝑛 + 1)) ∈ dom vol)
4138, 39, 40syl2an 598 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (𝐴‘(𝑛 + 1)) ∈ dom vol)
42 inmbl 24146 . . . . . . . . . . . . 13 (((𝐹 “ {𝑘}) ∈ dom vol ∧ (𝐴‘(𝑛 + 1)) ∈ dom vol) → ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))) ∈ dom vol)
4312, 41, 42syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))) ∈ dom vol)
44 mblss 24135 . . . . . . . . . . . 12 (((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))) ∈ dom vol → ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))) ⊆ ℝ)
4543, 44syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))) ⊆ ℝ)
46 ovolss 24089 . . . . . . . . . . 11 ((((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ⊆ ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))) ∧ ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))) ⊆ ℝ) → (vol*‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol*‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1)))))
4737, 45, 46syl2anc 587 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (vol*‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol*‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1)))))
48 mblvol 24134 . . . . . . . . . . 11 (((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))) ∈ dom vol → (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1)))) = (vol*‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1)))))
4943, 48syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1)))) = (vol*‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1)))))
5047, 19, 493brtr4d 5062 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1)))))
5150ralrimiva 3149 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ∀𝑛 ∈ ℕ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1)))))
52 fveq2 6645 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
5352ineq2d 4139 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) = ((𝐹 “ {𝑘}) ∩ (𝐴𝑗)))
5453fveq2d 6649 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) = (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗))))
55 eqid 2798 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) = (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))
56 fvex 6658 . . . . . . . . . . . 12 (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗))) ∈ V
5754, 55, 56fvmpt 6745 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) = (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗))))
58 peano2nn 11637 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
59 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → (𝐴𝑛) = (𝐴‘(𝑗 + 1)))
6059ineq2d 4139 . . . . . . . . . . . . . 14 (𝑛 = (𝑗 + 1) → ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) = ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1))))
6160fveq2d 6649 . . . . . . . . . . . . 13 (𝑛 = (𝑗 + 1) → (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) = (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1)))))
62 fvex 6658 . . . . . . . . . . . . 13 (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1)))) ∈ V
6361, 55, 62fvmpt 6745 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘(𝑗 + 1)) = (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1)))))
6458, 63syl 17 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘(𝑗 + 1)) = (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1)))))
6557, 64breq12d 5043 . . . . . . . . . 10 (𝑗 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘(𝑗 + 1)) ↔ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗))) ≤ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1))))))
6665ralbiia 3132 . . . . . . . . 9 (∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘(𝑗 + 1)) ↔ ∀𝑗 ∈ ℕ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗))) ≤ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1)))))
67 fvoveq1 7158 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (𝐴‘(𝑛 + 1)) = (𝐴‘(𝑗 + 1)))
6867ineq2d 4139 . . . . . . . . . . . 12 (𝑛 = 𝑗 → ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))) = ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1))))
6968fveq2d 6649 . . . . . . . . . . 11 (𝑛 = 𝑗 → (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1)))) = (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1)))))
7054, 69breq12d 5043 . . . . . . . . . 10 (𝑛 = 𝑗 → ((vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1)))) ↔ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗))) ≤ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1))))))
7170cbvralvw 3396 . . . . . . . . 9 (∀𝑛 ∈ ℕ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1)))) ↔ ∀𝑗 ∈ ℕ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗))) ≤ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1)))))
7266, 71bitr4i 281 . . . . . . . 8 (∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘(𝑗 + 1)) ↔ ∀𝑛 ∈ ℕ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1)))))
7351, 72sylibr 237 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘(𝑗 + 1)))
7473r19.21bi 3173 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘(𝑗 + 1)))
75 ovolss 24089 . . . . . . . . . . 11 ((((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ⊆ (𝐹 “ {𝑘}) ∧ (𝐹 “ {𝑘}) ⊆ ℝ) → (vol*‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol*‘(𝐹 “ {𝑘})))
7620, 23, 75sylancr 590 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (vol*‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol*‘(𝐹 “ {𝑘})))
7776, 19, 253brtr4d 5062 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol‘(𝐹 “ {𝑘})))
7877ralrimiva 3149 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ∀𝑛 ∈ ℕ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol‘(𝐹 “ {𝑘})))
7957breq1d 5040 . . . . . . . . . 10 (𝑗 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ (vol‘(𝐹 “ {𝑘})) ↔ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗))) ≤ (vol‘(𝐹 “ {𝑘}))))
8079ralbiia 3132 . . . . . . . . 9 (∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ (vol‘(𝐹 “ {𝑘})) ↔ ∀𝑗 ∈ ℕ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗))) ≤ (vol‘(𝐹 “ {𝑘})))
8154breq1d 5040 . . . . . . . . . 10 (𝑛 = 𝑗 → ((vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol‘(𝐹 “ {𝑘})) ↔ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗))) ≤ (vol‘(𝐹 “ {𝑘}))))
8281cbvralvw 3396 . . . . . . . . 9 (∀𝑛 ∈ ℕ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol‘(𝐹 “ {𝑘})) ↔ ∀𝑗 ∈ ℕ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗))) ≤ (vol‘(𝐹 “ {𝑘})))
8380, 82bitr4i 281 . . . . . . . 8 (∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ (vol‘(𝐹 “ {𝑘})) ↔ ∀𝑛 ∈ ℕ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) ≤ (vol‘(𝐹 “ {𝑘})))
8478, 83sylibr 237 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ (vol‘(𝐹 “ {𝑘})))
85 brralrspcev 5090 . . . . . . 7 (((vol‘(𝐹 “ {𝑘})) ∈ ℝ ∧ ∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ (vol‘(𝐹 “ {𝑘}))) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ 𝑥)
8627, 84, 85syl2anc 587 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ 𝑥)
871, 9, 33, 74, 86climsup 15018 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) ⇝ sup(ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))), ℝ, < ))
8817fmpttd 6856 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))):ℕ⟶dom vol)
8937ralrimiva 3149 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ∀𝑛 ∈ ℕ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ⊆ ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))))
90 eqid 2798 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) = (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))
91 fvex 6658 . . . . . . . . . . . . 13 (𝐴𝑗) ∈ V
9291inex2 5186 . . . . . . . . . . . 12 ((𝐹 “ {𝑘}) ∩ (𝐴𝑗)) ∈ V
9353, 90, 92fvmpt 6745 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘𝑗) = ((𝐹 “ {𝑘}) ∩ (𝐴𝑗)))
94 fvex 6658 . . . . . . . . . . . . . 14 (𝐴‘(𝑗 + 1)) ∈ V
9594inex2 5186 . . . . . . . . . . . . 13 ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1))) ∈ V
9660, 90, 95fvmpt 6745 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘(𝑗 + 1)) = ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1))))
9758, 96syl 17 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘(𝑗 + 1)) = ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1))))
9893, 97sseq12d 3948 . . . . . . . . . 10 (𝑗 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘𝑗) ⊆ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘(𝑗 + 1)) ↔ ((𝐹 “ {𝑘}) ∩ (𝐴𝑗)) ⊆ ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1)))))
9998ralbiia 3132 . . . . . . . . 9 (∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘𝑗) ⊆ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘(𝑗 + 1)) ↔ ∀𝑗 ∈ ℕ ((𝐹 “ {𝑘}) ∩ (𝐴𝑗)) ⊆ ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1))))
10053, 68sseq12d 3948 . . . . . . . . . 10 (𝑛 = 𝑗 → (((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ⊆ ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))) ↔ ((𝐹 “ {𝑘}) ∩ (𝐴𝑗)) ⊆ ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1)))))
101100cbvralvw 3396 . . . . . . . . 9 (∀𝑛 ∈ ℕ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ⊆ ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))) ↔ ∀𝑗 ∈ ℕ ((𝐹 “ {𝑘}) ∩ (𝐴𝑗)) ⊆ ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑗 + 1))))
10299, 101bitr4i 281 . . . . . . . 8 (∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘𝑗) ⊆ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘(𝑗 + 1)) ↔ ∀𝑛 ∈ ℕ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ⊆ ((𝐹 “ {𝑘}) ∩ (𝐴‘(𝑛 + 1))))
10389, 102sylibr 237 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘𝑗) ⊆ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘(𝑗 + 1)))
104 volsup 24160 . . . . . . 7 (((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))):ℕ⟶dom vol ∧ ∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘𝑗) ⊆ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘(𝑗 + 1))) → (vol‘ ran (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))), ℝ*, < ))
10588, 103, 104syl2anc 587 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘ ran (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))), ℝ*, < ))
10693iuneq2i 4902 . . . . . . . . . 10 𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘𝑗) = 𝑗 ∈ ℕ ((𝐹 “ {𝑘}) ∩ (𝐴𝑗))
10753cbviunv 4927 . . . . . . . . . 10 𝑛 ∈ ℕ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) = 𝑗 ∈ ℕ ((𝐹 “ {𝑘}) ∩ (𝐴𝑗))
108 iunin2 4956 . . . . . . . . . 10 𝑛 ∈ ℕ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) = ((𝐹 “ {𝑘}) ∩ 𝑛 ∈ ℕ (𝐴𝑛))
109106, 107, 1083eqtr2i 2827 . . . . . . . . 9 𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘𝑗) = ((𝐹 “ {𝑘}) ∩ 𝑛 ∈ ℕ (𝐴𝑛))
110 ffn 6487 . . . . . . . . . . . . . 14 (𝐴:ℕ⟶dom vol → 𝐴 Fn ℕ)
111 fniunfv 6984 . . . . . . . . . . . . . 14 (𝐴 Fn ℕ → 𝑛 ∈ ℕ (𝐴𝑛) = ran 𝐴)
11213, 110, 1113syl 18 . . . . . . . . . . . . 13 (𝜑 𝑛 ∈ ℕ (𝐴𝑛) = ran 𝐴)
113 itg1climres.3 . . . . . . . . . . . . 13 (𝜑 ran 𝐴 = ℝ)
114112, 113eqtrd 2833 . . . . . . . . . . . 12 (𝜑 𝑛 ∈ ℕ (𝐴𝑛) = ℝ)
115114adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑛 ∈ ℕ (𝐴𝑛) = ℝ)
116115ineq2d 4139 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ((𝐹 “ {𝑘}) ∩ 𝑛 ∈ ℕ (𝐴𝑛)) = ((𝐹 “ {𝑘}) ∩ ℝ))
11711adantr 484 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ∈ dom vol)
118117, 22syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ⊆ ℝ)
119 df-ss 3898 . . . . . . . . . . 11 ((𝐹 “ {𝑘}) ⊆ ℝ ↔ ((𝐹 “ {𝑘}) ∩ ℝ) = (𝐹 “ {𝑘}))
120118, 119sylib 221 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ((𝐹 “ {𝑘}) ∩ ℝ) = (𝐹 “ {𝑘}))
121116, 120eqtrd 2833 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ((𝐹 “ {𝑘}) ∩ 𝑛 ∈ ℕ (𝐴𝑛)) = (𝐹 “ {𝑘}))
122109, 121syl5eq 2845 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘𝑗) = (𝐹 “ {𝑘}))
123 ffn 6487 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))):ℕ⟶dom vol → (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) Fn ℕ)
124 fniunfv 6984 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))) Fn ℕ → 𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘𝑗) = ran (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))
12588, 123, 1243syl 18 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))‘𝑗) = ran (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))
126122, 125eqtr3d 2835 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) = ran (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))
127126fveq2d 6649 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) = (vol‘ ran (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))
12833frnd 6494 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) ⊆ ℝ)
12933fdmd 6497 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → dom (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) = ℕ)
130 1nn 11636 . . . . . . . . . . 11 1 ∈ ℕ
131 ne0i 4250 . . . . . . . . . . 11 (1 ∈ ℕ → ℕ ≠ ∅)
132130, 131mp1i 13 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ℕ ≠ ∅)
133129, 132eqnetrd 3054 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → dom (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) ≠ ∅)
134 dm0rn0 5759 . . . . . . . . . 10 (dom (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) = ∅)
135134necon3bii 3039 . . . . . . . . 9 (dom (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) ≠ ∅ ↔ ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) ≠ ∅)
136133, 135sylib 221 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) ≠ ∅)
137 ffn 6487 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))):ℕ⟶ℝ → (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) Fn ℕ)
138 breq1 5033 . . . . . . . . . . . 12 (𝑧 = ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) → (𝑧𝑥 ↔ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ 𝑥))
139138ralrn 6831 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))𝑧𝑥 ↔ ∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ 𝑥))
14033, 137, 1393syl 18 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))𝑧𝑥 ↔ ∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ 𝑥))
141140rexbidv 3256 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ≤ 𝑥))
14286, 141mpbird 260 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))𝑧𝑥)
143 supxrre 12708 . . . . . . . 8 ((ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))𝑧𝑥) → sup(ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))), ℝ*, < ) = sup(ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))), ℝ, < ))
144128, 136, 142, 143syl3anc 1368 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → sup(ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))), ℝ*, < ) = sup(ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))), ℝ, < ))
145 rnco2 6073 . . . . . . . . 9 ran (vol ∘ (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) = (vol “ ran (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))
146 volf 24133 . . . . . . . . . . . 12 vol:dom vol⟶(0[,]+∞)
147146a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → vol:dom vol⟶(0[,]+∞))
148147, 17cofmpt 6871 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol ∘ (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) = (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))
149148rneqd 5772 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ran (vol ∘ (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) = ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))
150145, 149syl5reqr 2848 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) = (vol “ ran (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))
151150supeq1d 8894 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → sup(ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))), ℝ*, < ) = sup((vol “ ran (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))), ℝ*, < ))
152144, 151eqtr3d 2835 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → sup(ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))), ℝ, < ) = sup((vol “ ran (𝑛 ∈ ℕ ↦ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))), ℝ*, < ))
153105, 127, 1523eqtr4d 2843 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) = sup(ran (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))), ℝ, < ))
15487, 153breqtrrd 5058 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) ⇝ (vol‘(𝐹 “ {𝑘})))
155 i1ff 24280 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
156 frn 6493 . . . . . . . 8 (𝐹:ℝ⟶ℝ → ran 𝐹 ⊆ ℝ)
1573, 155, 1563syl 18 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℝ)
158157ssdifssd 4070 . . . . . 6 (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ℝ)
159158sselda 3915 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ)
160159recnd 10658 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ)
161 nnex 11631 . . . . . 6 ℕ ∈ V
162161mptex 6963 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))) ∈ V
163162a1i 11 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))) ∈ V)
16433ffvelrnda 6828 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ∈ ℝ)
165164recnd 10658 . . . 4 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗) ∈ ℂ)
16654oveq2d 7151 . . . . . . 7 (𝑛 = 𝑗 → (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) = (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗)))))
167 eqid 2798 . . . . . . 7 (𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))) = (𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))
168 ovex 7168 . . . . . . 7 (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗)))) ∈ V
169166, 167, 168fvmpt 6745 . . . . . 6 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))‘𝑗) = (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗)))))
17057oveq2d 7151 . . . . . 6 (𝑗 ∈ ℕ → (𝑘 · ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗)) = (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗)))))
171169, 170eqtr4d 2836 . . . . 5 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))‘𝑗) = (𝑘 · ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗)))
172171adantl 485 . . . 4 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))‘𝑗) = (𝑘 · ((𝑛 ∈ ℕ ↦ (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))‘𝑗)))
1731, 9, 154, 160, 163, 165, 172climmulc2 14985 . . 3 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))) ⇝ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
174161mptex 6963 . . . 4 (𝑛 ∈ ℕ ↦ (∫1𝐺)) ∈ V
175174a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ (∫1𝐺)) ∈ V)
176159adantr 484 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → 𝑘 ∈ ℝ)
177176, 32remulcld 10660 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑛 ∈ ℕ) → (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) ∈ ℝ)
178177fmpttd 6856 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))):ℕ⟶ℝ)
179178ffvelrnda 6828 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))‘𝑗) ∈ ℝ)
180179recnd 10658 . . . 4 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))‘𝑗) ∈ ℂ)
181180anasss 470 . . 3 ((𝜑 ∧ (𝑘 ∈ (ran 𝐹 ∖ {0}) ∧ 𝑗 ∈ ℕ)) → ((𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))‘𝑗) ∈ ℂ)
1823adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐹 ∈ dom ∫1)
183 itg1climres.5 . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0))
184183i1fres 24309 . . . . . . . . 9 ((𝐹 ∈ dom ∫1 ∧ (𝐴𝑛) ∈ dom vol) → 𝐺 ∈ dom ∫1)
185182, 14, 184syl2anc 587 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ dom ∫1)
1868adantr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (ran 𝐹 ∖ {0}) ∈ Fin)
187 ffn 6487 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
1883, 155, 1873syl 18 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℝ)
189188adantr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐹 Fn ℝ)
190 fnfvelrn 6825 . . . . . . . . . . . 12 ((𝐹 Fn ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran 𝐹)
191189, 190sylan 583 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran 𝐹)
192 i1f0rn 24286 . . . . . . . . . . . . 13 (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹)
1933, 192syl 17 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ran 𝐹)
194193ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran 𝐹)
195191, 194ifcld 4470 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) ∈ ran 𝐹)
196195, 183fmptd 6855 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐺:ℝ⟶ran 𝐹)
197 frn 6493 . . . . . . . . 9 (𝐺:ℝ⟶ran 𝐹 → ran 𝐺 ⊆ ran 𝐹)
198 ssdif 4067 . . . . . . . . 9 (ran 𝐺 ⊆ ran 𝐹 → (ran 𝐺 ∖ {0}) ⊆ (ran 𝐹 ∖ {0}))
199196, 197, 1983syl 18 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (ran 𝐺 ∖ {0}) ⊆ (ran 𝐹 ∖ {0}))
200157adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ran 𝐹 ⊆ ℝ)
201200ssdifd 4068 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (ran 𝐹 ∖ {0}) ⊆ (ℝ ∖ {0}))
202 itg1val2 24288 . . . . . . . 8 ((𝐺 ∈ dom ∫1 ∧ ((ran 𝐹 ∖ {0}) ∈ Fin ∧ (ran 𝐺 ∖ {0}) ⊆ (ran 𝐹 ∖ {0}) ∧ (ran 𝐹 ∖ {0}) ⊆ (ℝ ∖ {0}))) → (∫1𝐺) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐺 “ {𝑘}))))
203185, 186, 199, 201, 202syl13anc 1369 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∫1𝐺) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐺 “ {𝑘}))))
204 fvex 6658 . . . . . . . . . . . . . . . . . . . . 21 (𝐹𝑥) ∈ V
205 c0ex 10624 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ V
206204, 205ifex 4473 . . . . . . . . . . . . . . . . . . . 20 if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) ∈ V
207183fvmpt2 6756 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) ∈ V) → (𝐺𝑥) = if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0))
208206, 207mpan2 690 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (𝐺𝑥) = if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0))
209208adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝐺𝑥) = if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0))
210209eqeq1d 2800 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑥) = 𝑘 ↔ if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) = 𝑘))
211 eldifsni 4683 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ran 𝐹 ∖ {0}) → 𝑘 ≠ 0)
212211ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ≠ 0)
213 neeq1 3049 . . . . . . . . . . . . . . . . . . . 20 (if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) = 𝑘 → (if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) ≠ 0 ↔ 𝑘 ≠ 0))
214212, 213syl5ibrcom 250 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) = 𝑘 → if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) ≠ 0))
215 iffalse 4434 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ (𝐴𝑛) → if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) = 0)
216215necon1ai 3014 . . . . . . . . . . . . . . . . . . 19 (if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) ≠ 0 → 𝑥 ∈ (𝐴𝑛))
217214, 216syl6 35 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) = 𝑘𝑥 ∈ (𝐴𝑛)))
218217pm4.71rd 566 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) = 𝑘 ↔ (𝑥 ∈ (𝐴𝑛) ∧ if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) = 𝑘)))
219210, 218bitrd 282 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑥) = 𝑘 ↔ (𝑥 ∈ (𝐴𝑛) ∧ if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) = 𝑘)))
220 iftrue 4431 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴𝑛) → if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) = (𝐹𝑥))
221220eqeq1d 2800 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴𝑛) → (if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) = 𝑘 ↔ (𝐹𝑥) = 𝑘))
222221pm5.32i 578 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝐴𝑛) ∧ if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) = 𝑘) ↔ (𝑥 ∈ (𝐴𝑛) ∧ (𝐹𝑥) = 𝑘))
223222biancomi 466 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐴𝑛) ∧ if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0) = 𝑘) ↔ ((𝐹𝑥) = 𝑘𝑥 ∈ (𝐴𝑛)))
224219, 223syl6bb 290 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑥) = 𝑘 ↔ ((𝐹𝑥) = 𝑘𝑥 ∈ (𝐴𝑛))))
225224pm5.32da 582 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → ((𝑥 ∈ ℝ ∧ (𝐺𝑥) = 𝑘) ↔ (𝑥 ∈ ℝ ∧ ((𝐹𝑥) = 𝑘𝑥 ∈ (𝐴𝑛)))))
226 anass 472 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) ∧ 𝑥 ∈ (𝐴𝑛)) ↔ (𝑥 ∈ ℝ ∧ ((𝐹𝑥) = 𝑘𝑥 ∈ (𝐴𝑛))))
227225, 226syl6bbr 292 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → ((𝑥 ∈ ℝ ∧ (𝐺𝑥) = 𝑘) ↔ ((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) ∧ 𝑥 ∈ (𝐴𝑛))))
228 i1ff 24280 . . . . . . . . . . . . . . . 16 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
229 ffn 6487 . . . . . . . . . . . . . . . 16 (𝐺:ℝ⟶ℝ → 𝐺 Fn ℝ)
230185, 228, 2293syl 18 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝐺 Fn ℝ)
231230adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐺 Fn ℝ)
232 fniniseg 6807 . . . . . . . . . . . . . 14 (𝐺 Fn ℝ → (𝑥 ∈ (𝐺 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐺𝑥) = 𝑘)))
233231, 232syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐺 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐺𝑥) = 𝑘)))
234 elin 3897 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ↔ (𝑥 ∈ (𝐹 “ {𝑘}) ∧ 𝑥 ∈ (𝐴𝑛)))
235189adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐹 Fn ℝ)
236 fniniseg 6807 . . . . . . . . . . . . . . . 16 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
237235, 236syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
238237anbi1d 632 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → ((𝑥 ∈ (𝐹 “ {𝑘}) ∧ 𝑥 ∈ (𝐴𝑛)) ↔ ((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) ∧ 𝑥 ∈ (𝐴𝑛))))
239234, 238syl5bb 286 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ↔ ((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) ∧ 𝑥 ∈ (𝐴𝑛))))
240227, 233, 2393bitr4d 314 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐺 “ {𝑘}) ↔ 𝑥 ∈ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))
241240alrimiv 1928 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → ∀𝑥(𝑥 ∈ (𝐺 “ {𝑘}) ↔ 𝑥 ∈ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))
242 nfmpt1 5128 . . . . . . . . . . . . . . 15 𝑥(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴𝑛), (𝐹𝑥), 0))
243183, 242nfcxfr 2953 . . . . . . . . . . . . . 14 𝑥𝐺
244243nfcnv 5713 . . . . . . . . . . . . 13 𝑥𝐺
245 nfcv 2955 . . . . . . . . . . . . 13 𝑥{𝑘}
246244, 245nfima 5904 . . . . . . . . . . . 12 𝑥(𝐺 “ {𝑘})
247 nfcv 2955 . . . . . . . . . . . 12 𝑥((𝐹 “ {𝑘}) ∩ (𝐴𝑛))
248246, 247cleqf 2983 . . . . . . . . . . 11 ((𝐺 “ {𝑘}) = ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)) ↔ ∀𝑥(𝑥 ∈ (𝐺 “ {𝑘}) ↔ 𝑥 ∈ ((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))
249241, 248sylibr 237 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐺 “ {𝑘}) = ((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))
250249fveq2d 6649 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐺 “ {𝑘})) = (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))
251250oveq2d 7151 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐺 “ {𝑘}))) = (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))
252251sumeq2dv 15052 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐺 “ {𝑘}))) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))
253203, 252eqtrd 2833 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫1𝐺) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))
254253mpteq2dva 5125 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ (∫1𝐺)) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))))
255254fveq1d 6647 . . . 4 (𝜑 → ((𝑛 ∈ ℕ ↦ (∫1𝐺))‘𝑗) = ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))‘𝑗))
256166sumeq2sdv 15053 . . . . . 6 (𝑛 = 𝑗 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗)))))
257 eqid 2798 . . . . . 6 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛))))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))
258 sumex 15036 . . . . . 6 Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗)))) ∈ V
259256, 257, 258fvmpt 6745 . . . . 5 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))‘𝑗) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗)))))
260169sumeq2sdv 15053 . . . . 5 (𝑗 ∈ ℕ → Σ𝑘 ∈ (ran 𝐹 ∖ {0})((𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))‘𝑗) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑗)))))
261259, 260eqtr4d 2836 . . . 4 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))‘𝑗) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})((𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))‘𝑗))
262255, 261sylan9eq 2853 . . 3 ((𝜑𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫1𝐺))‘𝑗) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})((𝑛 ∈ ℕ ↦ (𝑘 · (vol‘((𝐹 “ {𝑘}) ∩ (𝐴𝑛)))))‘𝑗))
2631, 2, 8, 173, 175, 181, 262climfsum 15167 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ (∫1𝐺)) ⇝ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
264 itg1val 24287 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
2653, 264syl 17 . 2 (𝜑 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
266263, 265breqtrrd 5058 1 (𝜑 → (𝑛 ∈ ℕ ↦ (∫1𝐺)) ⇝ (∫1𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  cin 3880  wss 3881  c0 4243  ifcif 4425  {csn 4525   cuni 4800   ciun 4881   class class class wbr 5030  cmpt 5110  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  ccom 5523   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  supcsup 8888  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cn 11625  [,]cicc 12729  cli 14833  Σcsu 15034  vol*covol 24066  volcvol 24067  1citg1 24219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224
This theorem is referenced by:  itg2monolem1  24354
  Copyright terms: Public domain W3C validator