| Step | Hyp | Ref
| Expression |
| 1 | | ssmapsn.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ⊆ (𝐵 ↑m {𝐴})) |
| 2 | 1 | sselda 3958 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓 ∈ (𝐵 ↑m {𝐴})) |
| 3 | | elmapi 8863 |
. . . . . . 7
⊢ (𝑓 ∈ (𝐵 ↑m {𝐴}) → 𝑓:{𝐴}⟶𝐵) |
| 4 | 2, 3 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓:{𝐴}⟶𝐵) |
| 5 | 4 | ffnd 6707 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓 Fn {𝐴}) |
| 6 | | ssmapsn.d |
. . . . . . . 8
⊢ 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓 |
| 7 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓) |
| 8 | | ovexd 7440 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ↑m {𝐴}) ∈ V) |
| 9 | 8, 1 | ssexd 5294 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ V) |
| 10 | | rnexg 7898 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝐶 → ran 𝑓 ∈ V) |
| 11 | 10 | rgen 3053 |
. . . . . . . 8
⊢
∀𝑓 ∈
𝐶 ran 𝑓 ∈ V |
| 12 | | iunexg 7962 |
. . . . . . . 8
⊢ ((𝐶 ∈ V ∧ ∀𝑓 ∈ 𝐶 ran 𝑓 ∈ V) → ∪ 𝑓 ∈ 𝐶 ran 𝑓 ∈ V) |
| 13 | 9, 11, 12 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑓 ∈ 𝐶 ran 𝑓 ∈ V) |
| 14 | 7, 13 | eqeltrd 2834 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ V) |
| 15 | 14 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝐷 ∈ V) |
| 16 | | ssiun2 5023 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐶 → ran 𝑓 ⊆ ∪
𝑓 ∈ 𝐶 ran 𝑓) |
| 17 | 16 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → ran 𝑓 ⊆ ∪
𝑓 ∈ 𝐶 ran 𝑓) |
| 18 | | ssmapsn.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 19 | | snidg 4636 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
| 20 | 18, 19 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
| 21 | 20 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝐴 ∈ {𝐴}) |
| 22 | 5, 21 | fnfvelrnd 7072 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → (𝑓‘𝐴) ∈ ran 𝑓) |
| 23 | 17, 22 | sseldd 3959 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → (𝑓‘𝐴) ∈ ∪
𝑓 ∈ 𝐶 ran 𝑓) |
| 24 | 23, 6 | eleqtrrdi 2845 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → (𝑓‘𝐴) ∈ 𝐷) |
| 25 | 5, 15, 24 | elmapsnd 45228 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓 ∈ (𝐷 ↑m {𝐴})) |
| 26 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → 𝐷 ∈ V) |
| 27 | | snex 5406 |
. . . . . . . . 9
⊢ {𝐴} ∈ V |
| 28 | 27 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → {𝐴} ∈ V) |
| 29 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → 𝑓 ∈ (𝐷 ↑m {𝐴})) |
| 30 | 20 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → 𝐴 ∈ {𝐴}) |
| 31 | 26, 28, 29, 30 | fvmap 45222 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → (𝑓‘𝐴) ∈ 𝐷) |
| 32 | | rneq 5916 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔) |
| 33 | 32 | cbviunv 5016 |
. . . . . . . 8
⊢ ∪ 𝑓 ∈ 𝐶 ran 𝑓 = ∪ 𝑔 ∈ 𝐶 ran 𝑔 |
| 34 | 6, 33 | eqtri 2758 |
. . . . . . 7
⊢ 𝐷 = ∪ 𝑔 ∈ 𝐶 ran 𝑔 |
| 35 | 31, 34 | eleqtrdi 2844 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → (𝑓‘𝐴) ∈ ∪
𝑔 ∈ 𝐶 ran 𝑔) |
| 36 | | eliun 4971 |
. . . . . 6
⊢ ((𝑓‘𝐴) ∈ ∪
𝑔 ∈ 𝐶 ran 𝑔 ↔ ∃𝑔 ∈ 𝐶 (𝑓‘𝐴) ∈ ran 𝑔) |
| 37 | 35, 36 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → ∃𝑔 ∈ 𝐶 (𝑓‘𝐴) ∈ ran 𝑔) |
| 38 | | simp3 1138 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → (𝑓‘𝐴) ∈ ran 𝑔) |
| 39 | | simp1l 1198 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝜑) |
| 40 | 39, 18 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝐴 ∈ 𝑉) |
| 41 | | eqid 2735 |
. . . . . . . . 9
⊢ {𝐴} = {𝐴} |
| 42 | | simp1r 1199 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑓 ∈ (𝐷 ↑m {𝐴})) |
| 43 | | elmapfn 8879 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (𝐷 ↑m {𝐴}) → 𝑓 Fn {𝐴}) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑓 Fn {𝐴}) |
| 45 | 1 | sselda 3958 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → 𝑔 ∈ (𝐵 ↑m {𝐴})) |
| 46 | | elmapfn 8879 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ (𝐵 ↑m {𝐴}) → 𝑔 Fn {𝐴}) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → 𝑔 Fn {𝐴}) |
| 48 | 47 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴}) |
| 49 | 48 | 3adant1r 1178 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴}) |
| 50 | 40, 41, 44, 49 | fsneqrn 45235 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → (𝑓 = 𝑔 ↔ (𝑓‘𝐴) ∈ ran 𝑔)) |
| 51 | 38, 50 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑓 = 𝑔) |
| 52 | | simp2 1137 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑔 ∈ 𝐶) |
| 53 | 51, 52 | eqeltrd 2834 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑓 ∈ 𝐶) |
| 54 | 53 | rexlimdv3a 3145 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → (∃𝑔 ∈ 𝐶 (𝑓‘𝐴) ∈ ran 𝑔 → 𝑓 ∈ 𝐶)) |
| 55 | 37, 54 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → 𝑓 ∈ 𝐶) |
| 56 | 25, 55 | impbida 800 |
. . 3
⊢ (𝜑 → (𝑓 ∈ 𝐶 ↔ 𝑓 ∈ (𝐷 ↑m {𝐴}))) |
| 57 | 56 | alrimiv 1927 |
. 2
⊢ (𝜑 → ∀𝑓(𝑓 ∈ 𝐶 ↔ 𝑓 ∈ (𝐷 ↑m {𝐴}))) |
| 58 | | nfcv 2898 |
. . 3
⊢
Ⅎ𝑓𝐶 |
| 59 | | ssmapsn.f |
. . . 4
⊢
Ⅎ𝑓𝐷 |
| 60 | | nfcv 2898 |
. . . 4
⊢
Ⅎ𝑓
↑m |
| 61 | | nfcv 2898 |
. . . 4
⊢
Ⅎ𝑓{𝐴} |
| 62 | 59, 60, 61 | nfov 7435 |
. . 3
⊢
Ⅎ𝑓(𝐷 ↑m {𝐴}) |
| 63 | 58, 62 | cleqf 2927 |
. 2
⊢ (𝐶 = (𝐷 ↑m {𝐴}) ↔ ∀𝑓(𝑓 ∈ 𝐶 ↔ 𝑓 ∈ (𝐷 ↑m {𝐴}))) |
| 64 | 57, 63 | sylibr 234 |
1
⊢ (𝜑 → 𝐶 = (𝐷 ↑m {𝐴})) |