Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssmapsn Structured version   Visualization version   GIF version

Theorem ssmapsn 42645
Description: A subset 𝐶 of a set exponentiation to a singleton, is its projection 𝐷 exponentiated to the singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ssmapsn.f 𝑓𝐷
ssmapsn.a (𝜑𝐴𝑉)
ssmapsn.c (𝜑𝐶 ⊆ (𝐵m {𝐴}))
ssmapsn.d 𝐷 = 𝑓𝐶 ran 𝑓
Assertion
Ref Expression
ssmapsn (𝜑𝐶 = (𝐷m {𝐴}))
Distinct variable groups:   𝐴,𝑓   𝐶,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem ssmapsn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ssmapsn.c . . . . . . . . 9 (𝜑𝐶 ⊆ (𝐵m {𝐴}))
21sselda 3917 . . . . . . . 8 ((𝜑𝑓𝐶) → 𝑓 ∈ (𝐵m {𝐴}))
3 elmapi 8595 . . . . . . . 8 (𝑓 ∈ (𝐵m {𝐴}) → 𝑓:{𝐴}⟶𝐵)
42, 3syl 17 . . . . . . 7 ((𝜑𝑓𝐶) → 𝑓:{𝐴}⟶𝐵)
54ffnd 6585 . . . . . 6 ((𝜑𝑓𝐶) → 𝑓 Fn {𝐴})
6 ssmapsn.d . . . . . . . . 9 𝐷 = 𝑓𝐶 ran 𝑓
76a1i 11 . . . . . . . 8 (𝜑𝐷 = 𝑓𝐶 ran 𝑓)
8 ovexd 7290 . . . . . . . . . . 11 (𝜑 → (𝐵m {𝐴}) ∈ V)
98, 1ssexd 5243 . . . . . . . . . 10 (𝜑𝐶 ∈ V)
10 rnexg 7725 . . . . . . . . . . . 12 (𝑓𝐶 → ran 𝑓 ∈ V)
1110rgen 3073 . . . . . . . . . . 11 𝑓𝐶 ran 𝑓 ∈ V
1211a1i 11 . . . . . . . . . 10 (𝜑 → ∀𝑓𝐶 ran 𝑓 ∈ V)
139, 12jca 511 . . . . . . . . 9 (𝜑 → (𝐶 ∈ V ∧ ∀𝑓𝐶 ran 𝑓 ∈ V))
14 iunexg 7779 . . . . . . . . 9 ((𝐶 ∈ V ∧ ∀𝑓𝐶 ran 𝑓 ∈ V) → 𝑓𝐶 ran 𝑓 ∈ V)
1513, 14syl 17 . . . . . . . 8 (𝜑 𝑓𝐶 ran 𝑓 ∈ V)
167, 15eqeltrd 2839 . . . . . . 7 (𝜑𝐷 ∈ V)
1716adantr 480 . . . . . 6 ((𝜑𝑓𝐶) → 𝐷 ∈ V)
18 ssiun2 4973 . . . . . . . . 9 (𝑓𝐶 → ran 𝑓 𝑓𝐶 ran 𝑓)
1918adantl 481 . . . . . . . 8 ((𝜑𝑓𝐶) → ran 𝑓 𝑓𝐶 ran 𝑓)
20 ssmapsn.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
21 snidg 4592 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ {𝐴})
2220, 21syl 17 . . . . . . . . . 10 (𝜑𝐴 ∈ {𝐴})
2322adantr 480 . . . . . . . . 9 ((𝜑𝑓𝐶) → 𝐴 ∈ {𝐴})
24 fnfvelrn 6940 . . . . . . . . 9 ((𝑓 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓𝐴) ∈ ran 𝑓)
255, 23, 24syl2anc 583 . . . . . . . 8 ((𝜑𝑓𝐶) → (𝑓𝐴) ∈ ran 𝑓)
2619, 25sseldd 3918 . . . . . . 7 ((𝜑𝑓𝐶) → (𝑓𝐴) ∈ 𝑓𝐶 ran 𝑓)
2726, 6eleqtrrdi 2850 . . . . . 6 ((𝜑𝑓𝐶) → (𝑓𝐴) ∈ 𝐷)
285, 17, 27elmapsnd 42633 . . . . 5 ((𝜑𝑓𝐶) → 𝑓 ∈ (𝐷m {𝐴}))
2928ex 412 . . . 4 (𝜑 → (𝑓𝐶𝑓 ∈ (𝐷m {𝐴})))
3016adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → 𝐷 ∈ V)
31 snex 5349 . . . . . . . . . 10 {𝐴} ∈ V
3231a1i 11 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → {𝐴} ∈ V)
33 simpr 484 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → 𝑓 ∈ (𝐷m {𝐴}))
3422adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → 𝐴 ∈ {𝐴})
3530, 32, 33, 34fvmap 42626 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → (𝑓𝐴) ∈ 𝐷)
366idi 1 . . . . . . . . 9 𝐷 = 𝑓𝐶 ran 𝑓
37 rneq 5834 . . . . . . . . . 10 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
3837cbviunv 4966 . . . . . . . . 9 𝑓𝐶 ran 𝑓 = 𝑔𝐶 ran 𝑔
3936, 38eqtri 2766 . . . . . . . 8 𝐷 = 𝑔𝐶 ran 𝑔
4035, 39eleqtrdi 2849 . . . . . . 7 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → (𝑓𝐴) ∈ 𝑔𝐶 ran 𝑔)
41 eliun 4925 . . . . . . 7 ((𝑓𝐴) ∈ 𝑔𝐶 ran 𝑔 ↔ ∃𝑔𝐶 (𝑓𝐴) ∈ ran 𝑔)
4240, 41sylib 217 . . . . . 6 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → ∃𝑔𝐶 (𝑓𝐴) ∈ ran 𝑔)
43 simp3 1136 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → (𝑓𝐴) ∈ ran 𝑔)
44 simp1l 1195 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝜑)
4544, 20syl 17 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝐴𝑉)
46 eqid 2738 . . . . . . . . . . 11 {𝐴} = {𝐴}
47 simp1r 1196 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓 ∈ (𝐷m {𝐴}))
48 elmapfn 8611 . . . . . . . . . . . 12 (𝑓 ∈ (𝐷m {𝐴}) → 𝑓 Fn {𝐴})
4947, 48syl 17 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓 Fn {𝐴})
501sselda 3917 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐶) → 𝑔 ∈ (𝐵m {𝐴}))
51 elmapfn 8611 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝐵m {𝐴}) → 𝑔 Fn {𝐴})
5250, 51syl 17 . . . . . . . . . . . . 13 ((𝜑𝑔𝐶) → 𝑔 Fn {𝐴})
53523adant3 1130 . . . . . . . . . . . 12 ((𝜑𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴})
54533adant1r 1175 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴})
5545, 46, 49, 54fsneqrn 42640 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → (𝑓 = 𝑔 ↔ (𝑓𝐴) ∈ ran 𝑔))
5643, 55mpbird 256 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓 = 𝑔)
57 simp2 1135 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑔𝐶)
5856, 57eqeltrd 2839 . . . . . . . 8 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓𝐶)
59583exp 1117 . . . . . . 7 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → (𝑔𝐶 → ((𝑓𝐴) ∈ ran 𝑔𝑓𝐶)))
6059rexlimdv 3211 . . . . . 6 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → (∃𝑔𝐶 (𝑓𝐴) ∈ ran 𝑔𝑓𝐶))
6142, 60mpd 15 . . . . 5 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → 𝑓𝐶)
6261ex 412 . . . 4 (𝜑 → (𝑓 ∈ (𝐷m {𝐴}) → 𝑓𝐶))
6329, 62impbid 211 . . 3 (𝜑 → (𝑓𝐶𝑓 ∈ (𝐷m {𝐴})))
6463alrimiv 1931 . 2 (𝜑 → ∀𝑓(𝑓𝐶𝑓 ∈ (𝐷m {𝐴})))
65 nfcv 2906 . . 3 𝑓𝐶
66 ssmapsn.f . . . 4 𝑓𝐷
67 nfcv 2906 . . . 4 𝑓m
68 nfcv 2906 . . . 4 𝑓{𝐴}
6966, 67, 68nfov 7285 . . 3 𝑓(𝐷m {𝐴})
7065, 69cleqf 2937 . 2 (𝐶 = (𝐷m {𝐴}) ↔ ∀𝑓(𝑓𝐶𝑓 ∈ (𝐷m {𝐴})))
7164, 70sylibr 233 1 (𝜑𝐶 = (𝐷m {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wnfc 2886  wral 3063  wrex 3064  Vcvv 3422  wss 3883  {csn 4558   ciun 4921  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575
This theorem is referenced by:  vonvolmbllem  44088  vonvolmbl2  44091  vonvol2  44092
  Copyright terms: Public domain W3C validator