Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssmapsn Structured version   Visualization version   GIF version

Theorem ssmapsn 42756
Description: A subset 𝐶 of a set exponentiation to a singleton, is its projection 𝐷 exponentiated to the singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ssmapsn.f 𝑓𝐷
ssmapsn.a (𝜑𝐴𝑉)
ssmapsn.c (𝜑𝐶 ⊆ (𝐵m {𝐴}))
ssmapsn.d 𝐷 = 𝑓𝐶 ran 𝑓
Assertion
Ref Expression
ssmapsn (𝜑𝐶 = (𝐷m {𝐴}))
Distinct variable groups:   𝐴,𝑓   𝐶,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem ssmapsn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ssmapsn.c . . . . . . . . 9 (𝜑𝐶 ⊆ (𝐵m {𝐴}))
21sselda 3921 . . . . . . . 8 ((𝜑𝑓𝐶) → 𝑓 ∈ (𝐵m {𝐴}))
3 elmapi 8637 . . . . . . . 8 (𝑓 ∈ (𝐵m {𝐴}) → 𝑓:{𝐴}⟶𝐵)
42, 3syl 17 . . . . . . 7 ((𝜑𝑓𝐶) → 𝑓:{𝐴}⟶𝐵)
54ffnd 6601 . . . . . 6 ((𝜑𝑓𝐶) → 𝑓 Fn {𝐴})
6 ssmapsn.d . . . . . . . . 9 𝐷 = 𝑓𝐶 ran 𝑓
76a1i 11 . . . . . . . 8 (𝜑𝐷 = 𝑓𝐶 ran 𝑓)
8 ovexd 7310 . . . . . . . . . . 11 (𝜑 → (𝐵m {𝐴}) ∈ V)
98, 1ssexd 5248 . . . . . . . . . 10 (𝜑𝐶 ∈ V)
10 rnexg 7751 . . . . . . . . . . . 12 (𝑓𝐶 → ran 𝑓 ∈ V)
1110rgen 3074 . . . . . . . . . . 11 𝑓𝐶 ran 𝑓 ∈ V
1211a1i 11 . . . . . . . . . 10 (𝜑 → ∀𝑓𝐶 ran 𝑓 ∈ V)
139, 12jca 512 . . . . . . . . 9 (𝜑 → (𝐶 ∈ V ∧ ∀𝑓𝐶 ran 𝑓 ∈ V))
14 iunexg 7806 . . . . . . . . 9 ((𝐶 ∈ V ∧ ∀𝑓𝐶 ran 𝑓 ∈ V) → 𝑓𝐶 ran 𝑓 ∈ V)
1513, 14syl 17 . . . . . . . 8 (𝜑 𝑓𝐶 ran 𝑓 ∈ V)
167, 15eqeltrd 2839 . . . . . . 7 (𝜑𝐷 ∈ V)
1716adantr 481 . . . . . 6 ((𝜑𝑓𝐶) → 𝐷 ∈ V)
18 ssiun2 4977 . . . . . . . . 9 (𝑓𝐶 → ran 𝑓 𝑓𝐶 ran 𝑓)
1918adantl 482 . . . . . . . 8 ((𝜑𝑓𝐶) → ran 𝑓 𝑓𝐶 ran 𝑓)
20 ssmapsn.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
21 snidg 4595 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ {𝐴})
2220, 21syl 17 . . . . . . . . . 10 (𝜑𝐴 ∈ {𝐴})
2322adantr 481 . . . . . . . . 9 ((𝜑𝑓𝐶) → 𝐴 ∈ {𝐴})
24 fnfvelrn 6958 . . . . . . . . 9 ((𝑓 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓𝐴) ∈ ran 𝑓)
255, 23, 24syl2anc 584 . . . . . . . 8 ((𝜑𝑓𝐶) → (𝑓𝐴) ∈ ran 𝑓)
2619, 25sseldd 3922 . . . . . . 7 ((𝜑𝑓𝐶) → (𝑓𝐴) ∈ 𝑓𝐶 ran 𝑓)
2726, 6eleqtrrdi 2850 . . . . . 6 ((𝜑𝑓𝐶) → (𝑓𝐴) ∈ 𝐷)
285, 17, 27elmapsnd 42744 . . . . 5 ((𝜑𝑓𝐶) → 𝑓 ∈ (𝐷m {𝐴}))
2928ex 413 . . . 4 (𝜑 → (𝑓𝐶𝑓 ∈ (𝐷m {𝐴})))
3016adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → 𝐷 ∈ V)
31 snex 5354 . . . . . . . . . 10 {𝐴} ∈ V
3231a1i 11 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → {𝐴} ∈ V)
33 simpr 485 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → 𝑓 ∈ (𝐷m {𝐴}))
3422adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → 𝐴 ∈ {𝐴})
3530, 32, 33, 34fvmap 42737 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → (𝑓𝐴) ∈ 𝐷)
366idi 1 . . . . . . . . 9 𝐷 = 𝑓𝐶 ran 𝑓
37 rneq 5845 . . . . . . . . . 10 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
3837cbviunv 4970 . . . . . . . . 9 𝑓𝐶 ran 𝑓 = 𝑔𝐶 ran 𝑔
3936, 38eqtri 2766 . . . . . . . 8 𝐷 = 𝑔𝐶 ran 𝑔
4035, 39eleqtrdi 2849 . . . . . . 7 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → (𝑓𝐴) ∈ 𝑔𝐶 ran 𝑔)
41 eliun 4928 . . . . . . 7 ((𝑓𝐴) ∈ 𝑔𝐶 ran 𝑔 ↔ ∃𝑔𝐶 (𝑓𝐴) ∈ ran 𝑔)
4240, 41sylib 217 . . . . . 6 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → ∃𝑔𝐶 (𝑓𝐴) ∈ ran 𝑔)
43 simp3 1137 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → (𝑓𝐴) ∈ ran 𝑔)
44 simp1l 1196 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝜑)
4544, 20syl 17 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝐴𝑉)
46 eqid 2738 . . . . . . . . . . 11 {𝐴} = {𝐴}
47 simp1r 1197 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓 ∈ (𝐷m {𝐴}))
48 elmapfn 8653 . . . . . . . . . . . 12 (𝑓 ∈ (𝐷m {𝐴}) → 𝑓 Fn {𝐴})
4947, 48syl 17 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓 Fn {𝐴})
501sselda 3921 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐶) → 𝑔 ∈ (𝐵m {𝐴}))
51 elmapfn 8653 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝐵m {𝐴}) → 𝑔 Fn {𝐴})
5250, 51syl 17 . . . . . . . . . . . . 13 ((𝜑𝑔𝐶) → 𝑔 Fn {𝐴})
53523adant3 1131 . . . . . . . . . . . 12 ((𝜑𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴})
54533adant1r 1176 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴})
5545, 46, 49, 54fsneqrn 42751 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → (𝑓 = 𝑔 ↔ (𝑓𝐴) ∈ ran 𝑔))
5643, 55mpbird 256 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓 = 𝑔)
57 simp2 1136 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑔𝐶)
5856, 57eqeltrd 2839 . . . . . . . 8 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓𝐶)
59583exp 1118 . . . . . . 7 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → (𝑔𝐶 → ((𝑓𝐴) ∈ ran 𝑔𝑓𝐶)))
6059rexlimdv 3212 . . . . . 6 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → (∃𝑔𝐶 (𝑓𝐴) ∈ ran 𝑔𝑓𝐶))
6142, 60mpd 15 . . . . 5 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → 𝑓𝐶)
6261ex 413 . . . 4 (𝜑 → (𝑓 ∈ (𝐷m {𝐴}) → 𝑓𝐶))
6329, 62impbid 211 . . 3 (𝜑 → (𝑓𝐶𝑓 ∈ (𝐷m {𝐴})))
6463alrimiv 1930 . 2 (𝜑 → ∀𝑓(𝑓𝐶𝑓 ∈ (𝐷m {𝐴})))
65 nfcv 2907 . . 3 𝑓𝐶
66 ssmapsn.f . . . 4 𝑓𝐷
67 nfcv 2907 . . . 4 𝑓m
68 nfcv 2907 . . . 4 𝑓{𝐴}
6966, 67, 68nfov 7305 . . 3 𝑓(𝐷m {𝐴})
7065, 69cleqf 2938 . 2 (𝐶 = (𝐷m {𝐴}) ↔ ∀𝑓(𝑓𝐶𝑓 ∈ (𝐷m {𝐴})))
7164, 70sylibr 233 1 (𝜑𝐶 = (𝐷m {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wcel 2106  wnfc 2887  wral 3064  wrex 3065  Vcvv 3432  wss 3887  {csn 4561   ciun 4924  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617
This theorem is referenced by:  vonvolmbllem  44198  vonvolmbl2  44201  vonvol2  44202
  Copyright terms: Public domain W3C validator