Step | Hyp | Ref
| Expression |
1 | | ssmapsn.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ⊆ (𝐵 ↑m {𝐴})) |
2 | 1 | sselda 3921 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓 ∈ (𝐵 ↑m {𝐴})) |
3 | | elmapi 8637 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝐵 ↑m {𝐴}) → 𝑓:{𝐴}⟶𝐵) |
4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓:{𝐴}⟶𝐵) |
5 | 4 | ffnd 6601 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓 Fn {𝐴}) |
6 | | ssmapsn.d |
. . . . . . . . 9
⊢ 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓 |
7 | 6 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓) |
8 | | ovexd 7310 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 ↑m {𝐴}) ∈ V) |
9 | 8, 1 | ssexd 5248 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ V) |
10 | | rnexg 7751 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ 𝐶 → ran 𝑓 ∈ V) |
11 | 10 | rgen 3074 |
. . . . . . . . . . 11
⊢
∀𝑓 ∈
𝐶 ran 𝑓 ∈ V |
12 | 11 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑓 ∈ 𝐶 ran 𝑓 ∈ V) |
13 | 9, 12 | jca 512 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 ∈ V ∧ ∀𝑓 ∈ 𝐶 ran 𝑓 ∈ V)) |
14 | | iunexg 7806 |
. . . . . . . . 9
⊢ ((𝐶 ∈ V ∧ ∀𝑓 ∈ 𝐶 ran 𝑓 ∈ V) → ∪ 𝑓 ∈ 𝐶 ran 𝑓 ∈ V) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑓 ∈ 𝐶 ran 𝑓 ∈ V) |
16 | 7, 15 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ V) |
17 | 16 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝐷 ∈ V) |
18 | | ssiun2 4977 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝐶 → ran 𝑓 ⊆ ∪
𝑓 ∈ 𝐶 ran 𝑓) |
19 | 18 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → ran 𝑓 ⊆ ∪
𝑓 ∈ 𝐶 ran 𝑓) |
20 | | ssmapsn.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
21 | | snidg 4595 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
22 | 20, 21 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
23 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝐴 ∈ {𝐴}) |
24 | | fnfvelrn 6958 |
. . . . . . . . 9
⊢ ((𝑓 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓‘𝐴) ∈ ran 𝑓) |
25 | 5, 23, 24 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → (𝑓‘𝐴) ∈ ran 𝑓) |
26 | 19, 25 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → (𝑓‘𝐴) ∈ ∪
𝑓 ∈ 𝐶 ran 𝑓) |
27 | 26, 6 | eleqtrrdi 2850 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → (𝑓‘𝐴) ∈ 𝐷) |
28 | 5, 17, 27 | elmapsnd 42744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓 ∈ (𝐷 ↑m {𝐴})) |
29 | 28 | ex 413 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ 𝐶 → 𝑓 ∈ (𝐷 ↑m {𝐴}))) |
30 | 16 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → 𝐷 ∈ V) |
31 | | snex 5354 |
. . . . . . . . . 10
⊢ {𝐴} ∈ V |
32 | 31 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → {𝐴} ∈ V) |
33 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → 𝑓 ∈ (𝐷 ↑m {𝐴})) |
34 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → 𝐴 ∈ {𝐴}) |
35 | 30, 32, 33, 34 | fvmap 42737 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → (𝑓‘𝐴) ∈ 𝐷) |
36 | 6 | idi 1 |
. . . . . . . . 9
⊢ 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓 |
37 | | rneq 5845 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔) |
38 | 37 | cbviunv 4970 |
. . . . . . . . 9
⊢ ∪ 𝑓 ∈ 𝐶 ran 𝑓 = ∪ 𝑔 ∈ 𝐶 ran 𝑔 |
39 | 36, 38 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐷 = ∪ 𝑔 ∈ 𝐶 ran 𝑔 |
40 | 35, 39 | eleqtrdi 2849 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → (𝑓‘𝐴) ∈ ∪
𝑔 ∈ 𝐶 ran 𝑔) |
41 | | eliun 4928 |
. . . . . . 7
⊢ ((𝑓‘𝐴) ∈ ∪
𝑔 ∈ 𝐶 ran 𝑔 ↔ ∃𝑔 ∈ 𝐶 (𝑓‘𝐴) ∈ ran 𝑔) |
42 | 40, 41 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → ∃𝑔 ∈ 𝐶 (𝑓‘𝐴) ∈ ran 𝑔) |
43 | | simp3 1137 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → (𝑓‘𝐴) ∈ ran 𝑔) |
44 | | simp1l 1196 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝜑) |
45 | 44, 20 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝐴 ∈ 𝑉) |
46 | | eqid 2738 |
. . . . . . . . . . 11
⊢ {𝐴} = {𝐴} |
47 | | simp1r 1197 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑓 ∈ (𝐷 ↑m {𝐴})) |
48 | | elmapfn 8653 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝐷 ↑m {𝐴}) → 𝑓 Fn {𝐴}) |
49 | 47, 48 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑓 Fn {𝐴}) |
50 | 1 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → 𝑔 ∈ (𝐵 ↑m {𝐴})) |
51 | | elmapfn 8653 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ (𝐵 ↑m {𝐴}) → 𝑔 Fn {𝐴}) |
52 | 50, 51 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → 𝑔 Fn {𝐴}) |
53 | 52 | 3adant3 1131 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴}) |
54 | 53 | 3adant1r 1176 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴}) |
55 | 45, 46, 49, 54 | fsneqrn 42751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → (𝑓 = 𝑔 ↔ (𝑓‘𝐴) ∈ ran 𝑔)) |
56 | 43, 55 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑓 = 𝑔) |
57 | | simp2 1136 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑔 ∈ 𝐶) |
58 | 56, 57 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑓 ∈ 𝐶) |
59 | 58 | 3exp 1118 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → (𝑔 ∈ 𝐶 → ((𝑓‘𝐴) ∈ ran 𝑔 → 𝑓 ∈ 𝐶))) |
60 | 59 | rexlimdv 3212 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → (∃𝑔 ∈ 𝐶 (𝑓‘𝐴) ∈ ran 𝑔 → 𝑓 ∈ 𝐶)) |
61 | 42, 60 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑m {𝐴})) → 𝑓 ∈ 𝐶) |
62 | 61 | ex 413 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (𝐷 ↑m {𝐴}) → 𝑓 ∈ 𝐶)) |
63 | 29, 62 | impbid 211 |
. . 3
⊢ (𝜑 → (𝑓 ∈ 𝐶 ↔ 𝑓 ∈ (𝐷 ↑m {𝐴}))) |
64 | 63 | alrimiv 1930 |
. 2
⊢ (𝜑 → ∀𝑓(𝑓 ∈ 𝐶 ↔ 𝑓 ∈ (𝐷 ↑m {𝐴}))) |
65 | | nfcv 2907 |
. . 3
⊢
Ⅎ𝑓𝐶 |
66 | | ssmapsn.f |
. . . 4
⊢
Ⅎ𝑓𝐷 |
67 | | nfcv 2907 |
. . . 4
⊢
Ⅎ𝑓
↑m |
68 | | nfcv 2907 |
. . . 4
⊢
Ⅎ𝑓{𝐴} |
69 | 66, 67, 68 | nfov 7305 |
. . 3
⊢
Ⅎ𝑓(𝐷 ↑m {𝐴}) |
70 | 65, 69 | cleqf 2938 |
. 2
⊢ (𝐶 = (𝐷 ↑m {𝐴}) ↔ ∀𝑓(𝑓 ∈ 𝐶 ↔ 𝑓 ∈ (𝐷 ↑m {𝐴}))) |
71 | 64, 70 | sylibr 233 |
1
⊢ (𝜑 → 𝐶 = (𝐷 ↑m {𝐴})) |