MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfinf Structured version   Visualization version   GIF version

Theorem mbfinf 25415
Description: The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
mbfinf.1 𝑍 = (ℤ𝑀)
mbfinf.2 𝐺 = (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
mbfinf.3 (𝜑𝑀 ∈ ℤ)
mbfinf.4 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbfinf.5 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
mbfinf.6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵)
Assertion
Ref Expression
mbfinf (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝜑,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem mbfinf
Dummy variables 𝑚 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfinf.2 . . 3 𝐺 = (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
2 mbfinf.5 . . . . . . . . 9 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
32anass1rs 652 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
43fmpttd 7116 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
54frnd 6725 . . . . . 6 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ⊆ ℝ)
6 mbfinf.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
7 uzid 12842 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
86, 7syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (ℤ𝑀))
9 mbfinf.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
108, 9eleqtrrdi 2843 . . . . . . . . . 10 (𝜑𝑀𝑍)
1110adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀𝑍)
12 eqid 2731 . . . . . . . . . 10 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
1312, 3dmmptd 6695 . . . . . . . . 9 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) = 𝑍)
1411, 13eleqtrrd 2835 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑀 ∈ dom (𝑛𝑍𝐵))
1514ne0d 4335 . . . . . . 7 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) ≠ ∅)
16 dm0rn0 5924 . . . . . . . 8 (dom (𝑛𝑍𝐵) = ∅ ↔ ran (𝑛𝑍𝐵) = ∅)
1716necon3bii 2992 . . . . . . 7 (dom (𝑛𝑍𝐵) ≠ ∅ ↔ ran (𝑛𝑍𝐵) ≠ ∅)
1815, 17sylib 217 . . . . . 6 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ≠ ∅)
19 mbfinf.6 . . . . . . 7 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵)
204ffnd 6718 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
21 breq2 5152 . . . . . . . . . . 11 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑦𝑧𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
2221ralrn 7089 . . . . . . . . . 10 ((𝑛𝑍𝐵) Fn 𝑍 → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
2320, 22syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
24 nfcv 2902 . . . . . . . . . . . 12 𝑛𝑦
25 nfcv 2902 . . . . . . . . . . . 12 𝑛
26 nffvmpt1 6902 . . . . . . . . . . . 12 𝑛((𝑛𝑍𝐵)‘𝑚)
2724, 25, 26nfbr 5195 . . . . . . . . . . 11 𝑛 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)
28 nfv 1916 . . . . . . . . . . 11 𝑚 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛)
29 fveq2 6891 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑛𝑍𝐵)‘𝑚) = ((𝑛𝑍𝐵)‘𝑛))
3029breq2d 5160 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛)))
3127, 28, 30cbvralw 3302 . . . . . . . . . 10 (∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ ∀𝑛𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛))
32 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
3312fvmpt2 7009 . . . . . . . . . . . . 13 ((𝑛𝑍𝐵 ∈ ℝ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3432, 3, 33syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3534breq2d 5160 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛) ↔ 𝑦𝐵))
3635ralbidva 3174 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (∀𝑛𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛) ↔ ∀𝑛𝑍 𝑦𝐵))
3731, 36bitrid 283 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ ∀𝑛𝑍 𝑦𝐵))
3823, 37bitrd 279 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑛𝑍 𝑦𝐵))
3938rexbidv 3177 . . . . . . 7 ((𝜑𝑥𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵))
4019, 39mpbird 257 . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧)
41 infrenegsup 12202 . . . . . 6 ((ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ))
425, 18, 40, 41syl3anc 1370 . . . . 5 ((𝜑𝑥𝐴) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ))
43 rabid 3451 . . . . . . . . . 10 (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ (𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)))
443recnd 11247 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
4544adantlr 712 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
46 simplr 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝑟 ∈ ℝ)
4746recnd 11247 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝑟 ∈ ℂ)
48 negcon2 11518 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) → (𝐵 = -𝑟𝑟 = -𝐵))
4945, 47, 48syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (𝐵 = -𝑟𝑟 = -𝐵))
50 eqcom 2738 . . . . . . . . . . . . . . . . . . 19 (𝑟 = -𝐵 ↔ -𝐵 = 𝑟)
5149, 50bitrdi 287 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (𝐵 = -𝑟 ↔ -𝐵 = 𝑟))
5234adantlr 712 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
5352eqeq1d 2733 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) = -𝑟𝐵 = -𝑟))
54 negex 11463 . . . . . . . . . . . . . . . . . . . . 21 -𝐵 ∈ V
55 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 ↦ -𝐵) = (𝑛𝑍 ↦ -𝐵)
5655fvmpt2 7009 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛𝑍 ∧ -𝐵 ∈ V) → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5754, 56mpan2 688 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑍 → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5857adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5958eqeq1d 2733 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟 ↔ -𝐵 = 𝑟))
6051, 53, 593bitr4d 311 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6160ralrimiva 3145 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑛𝑍 (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6226nfeq1 2917 . . . . . . . . . . . . . . . . . 18 𝑛((𝑛𝑍𝐵)‘𝑚) = -𝑟
63 nffvmpt1 6902 . . . . . . . . . . . . . . . . . . 19 𝑛((𝑛𝑍 ↦ -𝐵)‘𝑚)
6463nfeq1 2917 . . . . . . . . . . . . . . . . . 18 𝑛((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟
6562, 64nfbi 1905 . . . . . . . . . . . . . . . . 17 𝑛(((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟)
66 nfv 1916 . . . . . . . . . . . . . . . . 17 𝑚(((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟)
67 fveqeq2 6900 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍𝐵)‘𝑛) = -𝑟))
68 fveqeq2 6900 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6967, 68bibi12d 345 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟)))
7065, 66, 69cbvralw 3302 . . . . . . . . . . . . . . . 16 (∀𝑚𝑍 (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ ∀𝑛𝑍 (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
7161, 70sylibr 233 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑚𝑍 (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7271r19.21bi 3247 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑚𝑍) → (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7372rexbidva 3175 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7420adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍𝐵) Fn 𝑍)
75 fvelrnb 6952 . . . . . . . . . . . . . 14 ((𝑛𝑍𝐵) Fn 𝑍 → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟))
7674, 75syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟))
773renegcld 11646 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → -𝐵 ∈ ℝ)
7877fmpttd 7116 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ -𝐵):𝑍⟶ℝ)
7978adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍 ↦ -𝐵):𝑍⟶ℝ)
8079ffnd 6718 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍 ↦ -𝐵) Fn 𝑍)
81 fvelrnb 6952 . . . . . . . . . . . . . 14 ((𝑛𝑍 ↦ -𝐵) Fn 𝑍 → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
8280, 81syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
8373, 76, 823bitr4d 311 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
8483pm5.32da 578 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵))))
8578frnd 6725 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ran (𝑛𝑍 ↦ -𝐵) ⊆ ℝ)
8685sseld 3981 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) → 𝑟 ∈ ℝ))
8786pm4.71rd 562 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵))))
8884, 87bitr4d 282 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)) ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
8943, 88bitrid 283 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
9089alrimiv 1929 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
91 nfrab1 3450 . . . . . . . . 9 𝑟{𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}
92 nfcv 2902 . . . . . . . . 9 𝑟ran (𝑛𝑍 ↦ -𝐵)
9391, 92cleqf 2933 . . . . . . . 8 ({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} = ran (𝑛𝑍 ↦ -𝐵) ↔ ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
9490, 93sylibr 233 . . . . . . 7 ((𝜑𝑥𝐴) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} = ran (𝑛𝑍 ↦ -𝐵))
9594supeq1d 9445 . . . . . 6 ((𝜑𝑥𝐴) → sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ) = sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9695negeqd 11459 . . . . 5 ((𝜑𝑥𝐴) → -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9742, 96eqtrd 2771 . . . 4 ((𝜑𝑥𝐴) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9897mpteq2dva 5248 . . 3 (𝜑 → (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )))
991, 98eqtrid 2783 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )))
100 ltso 11299 . . . . 5 < Or ℝ
101100supex 9462 . . . 4 sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ) ∈ V
102101a1i 11 . . 3 ((𝜑𝑥𝐴) → sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ) ∈ V)
103 eqid 2731 . . . 4 (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) = (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
1042anassrs 467 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
105 mbfinf.4 . . . . 5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
106104, 105mbfneg 25400 . . . 4 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ -𝐵) ∈ MblFn)
1072renegcld 11646 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → -𝐵 ∈ ℝ)
108 renegcl 11528 . . . . . . 7 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
109108ad2antrl 725 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → -𝑦 ∈ ℝ)
110 simplr 766 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
1113adantlr 712 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
112110, 111lenegd 11798 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → (𝑦𝐵 ↔ -𝐵 ≤ -𝑦))
113112ralbidva 3174 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛𝑍 𝑦𝐵 ↔ ∀𝑛𝑍 -𝐵 ≤ -𝑦))
114113biimpd 228 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛𝑍 𝑦𝐵 → ∀𝑛𝑍 -𝐵 ≤ -𝑦))
115114impr 454 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → ∀𝑛𝑍 -𝐵 ≤ -𝑦)
116 brralrspcev 5208 . . . . . 6 ((-𝑦 ∈ ℝ ∧ ∀𝑛𝑍 -𝐵 ≤ -𝑦) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
117109, 115, 116syl2anc 583 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
11819, 117rexlimddv 3160 . . . 4 ((𝜑𝑥𝐴) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
1199, 103, 6, 106, 107, 118mbfsup 25414 . . 3 (𝜑 → (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) ∈ MblFn)
120102, 119mbfneg 25400 . 2 (𝜑 → (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) ∈ MblFn)
12199, 120eqeltrd 2832 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1538   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  {crab 3431  Vcvv 3473  wss 3948  c0 4322   class class class wbr 5148  cmpt 5231  dom cdm 5676  ran crn 5677   Fn wfn 6538  wf 6539  cfv 6543  supcsup 9439  infcinf 9440  cc 11112  cr 11113   < clt 11253  cle 11254  -cneg 11450  cz 12563  cuz 12827  MblFncmbf 25364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640  ax-cc 10434  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-oadd 8474  df-omul 8475  df-er 8707  df-map 8826  df-pm 8827  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-sup 9441  df-inf 9442  df-oi 9509  df-dju 9900  df-card 9938  df-acn 9941  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-q 12938  df-rp 12980  df-xadd 13098  df-ioo 13333  df-ioc 13334  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-rlim 15438  df-sum 15638  df-xmet 21138  df-met 21139  df-ovol 25214  df-vol 25215  df-mbf 25369
This theorem is referenced by:  mbflimsup  25416
  Copyright terms: Public domain W3C validator