MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfinf Structured version   Visualization version   GIF version

Theorem mbfinf 25573
Description: The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
mbfinf.1 𝑍 = (ℤ𝑀)
mbfinf.2 𝐺 = (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
mbfinf.3 (𝜑𝑀 ∈ ℤ)
mbfinf.4 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbfinf.5 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
mbfinf.6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵)
Assertion
Ref Expression
mbfinf (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝜑,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem mbfinf
Dummy variables 𝑚 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfinf.2 . . 3 𝐺 = (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
2 mbfinf.5 . . . . . . . . 9 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
32anass1rs 655 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
43fmpttd 7090 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
54frnd 6699 . . . . . 6 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ⊆ ℝ)
6 mbfinf.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
7 uzid 12815 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
86, 7syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (ℤ𝑀))
9 mbfinf.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
108, 9eleqtrrdi 2840 . . . . . . . . . 10 (𝜑𝑀𝑍)
1110adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀𝑍)
12 eqid 2730 . . . . . . . . . 10 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
1312, 3dmmptd 6666 . . . . . . . . 9 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) = 𝑍)
1411, 13eleqtrrd 2832 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑀 ∈ dom (𝑛𝑍𝐵))
1514ne0d 4308 . . . . . . 7 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) ≠ ∅)
16 dm0rn0 5891 . . . . . . . 8 (dom (𝑛𝑍𝐵) = ∅ ↔ ran (𝑛𝑍𝐵) = ∅)
1716necon3bii 2978 . . . . . . 7 (dom (𝑛𝑍𝐵) ≠ ∅ ↔ ran (𝑛𝑍𝐵) ≠ ∅)
1815, 17sylib 218 . . . . . 6 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ≠ ∅)
19 mbfinf.6 . . . . . . 7 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵)
204ffnd 6692 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
21 breq2 5114 . . . . . . . . . . 11 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑦𝑧𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
2221ralrn 7063 . . . . . . . . . 10 ((𝑛𝑍𝐵) Fn 𝑍 → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
2320, 22syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
24 nfcv 2892 . . . . . . . . . . . 12 𝑛𝑦
25 nfcv 2892 . . . . . . . . . . . 12 𝑛
26 nffvmpt1 6872 . . . . . . . . . . . 12 𝑛((𝑛𝑍𝐵)‘𝑚)
2724, 25, 26nfbr 5157 . . . . . . . . . . 11 𝑛 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)
28 nfv 1914 . . . . . . . . . . 11 𝑚 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛)
29 fveq2 6861 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑛𝑍𝐵)‘𝑚) = ((𝑛𝑍𝐵)‘𝑛))
3029breq2d 5122 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛)))
3127, 28, 30cbvralw 3282 . . . . . . . . . 10 (∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ ∀𝑛𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛))
32 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
3312fvmpt2 6982 . . . . . . . . . . . . 13 ((𝑛𝑍𝐵 ∈ ℝ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3432, 3, 33syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3534breq2d 5122 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛) ↔ 𝑦𝐵))
3635ralbidva 3155 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (∀𝑛𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛) ↔ ∀𝑛𝑍 𝑦𝐵))
3731, 36bitrid 283 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ ∀𝑛𝑍 𝑦𝐵))
3823, 37bitrd 279 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑛𝑍 𝑦𝐵))
3938rexbidv 3158 . . . . . . 7 ((𝜑𝑥𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵))
4019, 39mpbird 257 . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧)
41 infrenegsup 12173 . . . . . 6 ((ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ))
425, 18, 40, 41syl3anc 1373 . . . . 5 ((𝜑𝑥𝐴) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ))
43 rabid 3430 . . . . . . . . . 10 (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ (𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)))
443recnd 11209 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
4544adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
46 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝑟 ∈ ℝ)
4746recnd 11209 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝑟 ∈ ℂ)
48 negcon2 11482 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) → (𝐵 = -𝑟𝑟 = -𝐵))
4945, 47, 48syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (𝐵 = -𝑟𝑟 = -𝐵))
50 eqcom 2737 . . . . . . . . . . . . . . . . . . 19 (𝑟 = -𝐵 ↔ -𝐵 = 𝑟)
5149, 50bitrdi 287 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (𝐵 = -𝑟 ↔ -𝐵 = 𝑟))
5234adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
5352eqeq1d 2732 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) = -𝑟𝐵 = -𝑟))
54 negex 11426 . . . . . . . . . . . . . . . . . . . . 21 -𝐵 ∈ V
55 eqid 2730 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 ↦ -𝐵) = (𝑛𝑍 ↦ -𝐵)
5655fvmpt2 6982 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛𝑍 ∧ -𝐵 ∈ V) → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5754, 56mpan2 691 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑍 → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5857adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5958eqeq1d 2732 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟 ↔ -𝐵 = 𝑟))
6051, 53, 593bitr4d 311 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6160ralrimiva 3126 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑛𝑍 (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6226nfeq1 2908 . . . . . . . . . . . . . . . . . 18 𝑛((𝑛𝑍𝐵)‘𝑚) = -𝑟
63 nffvmpt1 6872 . . . . . . . . . . . . . . . . . . 19 𝑛((𝑛𝑍 ↦ -𝐵)‘𝑚)
6463nfeq1 2908 . . . . . . . . . . . . . . . . . 18 𝑛((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟
6562, 64nfbi 1903 . . . . . . . . . . . . . . . . 17 𝑛(((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟)
66 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑚(((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟)
67 fveqeq2 6870 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍𝐵)‘𝑛) = -𝑟))
68 fveqeq2 6870 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6967, 68bibi12d 345 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟)))
7065, 66, 69cbvralw 3282 . . . . . . . . . . . . . . . 16 (∀𝑚𝑍 (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ ∀𝑛𝑍 (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
7161, 70sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑚𝑍 (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7271r19.21bi 3230 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑚𝑍) → (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7372rexbidva 3156 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7420adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍𝐵) Fn 𝑍)
75 fvelrnb 6924 . . . . . . . . . . . . . 14 ((𝑛𝑍𝐵) Fn 𝑍 → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟))
7674, 75syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟))
773renegcld 11612 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → -𝐵 ∈ ℝ)
7877fmpttd 7090 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ -𝐵):𝑍⟶ℝ)
7978adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍 ↦ -𝐵):𝑍⟶ℝ)
8079ffnd 6692 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍 ↦ -𝐵) Fn 𝑍)
81 fvelrnb 6924 . . . . . . . . . . . . . 14 ((𝑛𝑍 ↦ -𝐵) Fn 𝑍 → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
8280, 81syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
8373, 76, 823bitr4d 311 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
8483pm5.32da 579 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵))))
8578frnd 6699 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ran (𝑛𝑍 ↦ -𝐵) ⊆ ℝ)
8685sseld 3948 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) → 𝑟 ∈ ℝ))
8786pm4.71rd 562 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵))))
8884, 87bitr4d 282 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)) ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
8943, 88bitrid 283 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
9089alrimiv 1927 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
91 nfrab1 3429 . . . . . . . . 9 𝑟{𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}
92 nfcv 2892 . . . . . . . . 9 𝑟ran (𝑛𝑍 ↦ -𝐵)
9391, 92cleqf 2921 . . . . . . . 8 ({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} = ran (𝑛𝑍 ↦ -𝐵) ↔ ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
9490, 93sylibr 234 . . . . . . 7 ((𝜑𝑥𝐴) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} = ran (𝑛𝑍 ↦ -𝐵))
9594supeq1d 9404 . . . . . 6 ((𝜑𝑥𝐴) → sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ) = sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9695negeqd 11422 . . . . 5 ((𝜑𝑥𝐴) → -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9742, 96eqtrd 2765 . . . 4 ((𝜑𝑥𝐴) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9897mpteq2dva 5203 . . 3 (𝜑 → (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )))
991, 98eqtrid 2777 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )))
100 ltso 11261 . . . . 5 < Or ℝ
101100supex 9422 . . . 4 sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ) ∈ V
102101a1i 11 . . 3 ((𝜑𝑥𝐴) → sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ) ∈ V)
103 eqid 2730 . . . 4 (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) = (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
1042anassrs 467 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
105 mbfinf.4 . . . . 5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
106104, 105mbfneg 25558 . . . 4 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ -𝐵) ∈ MblFn)
1072renegcld 11612 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → -𝐵 ∈ ℝ)
108 renegcl 11492 . . . . . . 7 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
109108ad2antrl 728 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → -𝑦 ∈ ℝ)
110 simplr 768 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
1113adantlr 715 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
112110, 111lenegd 11764 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → (𝑦𝐵 ↔ -𝐵 ≤ -𝑦))
113112ralbidva 3155 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛𝑍 𝑦𝐵 ↔ ∀𝑛𝑍 -𝐵 ≤ -𝑦))
114113biimpd 229 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛𝑍 𝑦𝐵 → ∀𝑛𝑍 -𝐵 ≤ -𝑦))
115114impr 454 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → ∀𝑛𝑍 -𝐵 ≤ -𝑦)
116 brralrspcev 5170 . . . . . 6 ((-𝑦 ∈ ℝ ∧ ∀𝑛𝑍 -𝐵 ≤ -𝑦) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
117109, 115, 116syl2anc 584 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
11819, 117rexlimddv 3141 . . . 4 ((𝜑𝑥𝐴) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
1199, 103, 6, 106, 107, 118mbfsup 25572 . . 3 (𝜑 → (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) ∈ MblFn)
120102, 119mbfneg 25558 . 2 (𝜑 → (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) ∈ MblFn)
12199, 120eqeltrd 2829 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  supcsup 9398  infcinf 9399  cc 11073  cr 11074   < clt 11215  cle 11216  -cneg 11413  cz 12536  cuz 12800  MblFncmbf 25522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xadd 13080  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-xmet 21264  df-met 21265  df-ovol 25372  df-vol 25373  df-mbf 25527
This theorem is referenced by:  mbflimsup  25574
  Copyright terms: Public domain W3C validator