MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfinf Structured version   Visualization version   GIF version

Theorem mbfinf 25029
Description: The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
mbfinf.1 𝑍 = (ℤ𝑀)
mbfinf.2 𝐺 = (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
mbfinf.3 (𝜑𝑀 ∈ ℤ)
mbfinf.4 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbfinf.5 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
mbfinf.6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵)
Assertion
Ref Expression
mbfinf (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝜑,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem mbfinf
Dummy variables 𝑚 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfinf.2 . . 3 𝐺 = (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
2 mbfinf.5 . . . . . . . . 9 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
32anass1rs 653 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
43fmpttd 7063 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
54frnd 6676 . . . . . 6 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ⊆ ℝ)
6 mbfinf.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
7 uzid 12778 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
86, 7syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (ℤ𝑀))
9 mbfinf.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
108, 9eleqtrrdi 2849 . . . . . . . . . 10 (𝜑𝑀𝑍)
1110adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀𝑍)
12 eqid 2736 . . . . . . . . . 10 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
1312, 3dmmptd 6646 . . . . . . . . 9 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) = 𝑍)
1411, 13eleqtrrd 2841 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑀 ∈ dom (𝑛𝑍𝐵))
1514ne0d 4295 . . . . . . 7 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) ≠ ∅)
16 dm0rn0 5880 . . . . . . . 8 (dom (𝑛𝑍𝐵) = ∅ ↔ ran (𝑛𝑍𝐵) = ∅)
1716necon3bii 2996 . . . . . . 7 (dom (𝑛𝑍𝐵) ≠ ∅ ↔ ran (𝑛𝑍𝐵) ≠ ∅)
1815, 17sylib 217 . . . . . 6 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ≠ ∅)
19 mbfinf.6 . . . . . . 7 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵)
204ffnd 6669 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
21 breq2 5109 . . . . . . . . . . 11 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑦𝑧𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
2221ralrn 7038 . . . . . . . . . 10 ((𝑛𝑍𝐵) Fn 𝑍 → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
2320, 22syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
24 nfcv 2907 . . . . . . . . . . . 12 𝑛𝑦
25 nfcv 2907 . . . . . . . . . . . 12 𝑛
26 nffvmpt1 6853 . . . . . . . . . . . 12 𝑛((𝑛𝑍𝐵)‘𝑚)
2724, 25, 26nfbr 5152 . . . . . . . . . . 11 𝑛 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)
28 nfv 1917 . . . . . . . . . . 11 𝑚 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛)
29 fveq2 6842 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑛𝑍𝐵)‘𝑚) = ((𝑛𝑍𝐵)‘𝑛))
3029breq2d 5117 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛)))
3127, 28, 30cbvralw 3289 . . . . . . . . . 10 (∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ ∀𝑛𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛))
32 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
3312fvmpt2 6959 . . . . . . . . . . . . 13 ((𝑛𝑍𝐵 ∈ ℝ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3432, 3, 33syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3534breq2d 5117 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛) ↔ 𝑦𝐵))
3635ralbidva 3172 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (∀𝑛𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛) ↔ ∀𝑛𝑍 𝑦𝐵))
3731, 36bitrid 282 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ ∀𝑛𝑍 𝑦𝐵))
3823, 37bitrd 278 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑛𝑍 𝑦𝐵))
3938rexbidv 3175 . . . . . . 7 ((𝜑𝑥𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵))
4019, 39mpbird 256 . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧)
41 infrenegsup 12138 . . . . . 6 ((ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ))
425, 18, 40, 41syl3anc 1371 . . . . 5 ((𝜑𝑥𝐴) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ))
43 rabid 3427 . . . . . . . . . 10 (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ (𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)))
443recnd 11183 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
4544adantlr 713 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
46 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝑟 ∈ ℝ)
4746recnd 11183 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝑟 ∈ ℂ)
48 negcon2 11454 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) → (𝐵 = -𝑟𝑟 = -𝐵))
4945, 47, 48syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (𝐵 = -𝑟𝑟 = -𝐵))
50 eqcom 2743 . . . . . . . . . . . . . . . . . . 19 (𝑟 = -𝐵 ↔ -𝐵 = 𝑟)
5149, 50bitrdi 286 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (𝐵 = -𝑟 ↔ -𝐵 = 𝑟))
5234adantlr 713 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
5352eqeq1d 2738 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) = -𝑟𝐵 = -𝑟))
54 negex 11399 . . . . . . . . . . . . . . . . . . . . 21 -𝐵 ∈ V
55 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 ↦ -𝐵) = (𝑛𝑍 ↦ -𝐵)
5655fvmpt2 6959 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛𝑍 ∧ -𝐵 ∈ V) → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5754, 56mpan2 689 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑍 → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5857adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5958eqeq1d 2738 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟 ↔ -𝐵 = 𝑟))
6051, 53, 593bitr4d 310 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6160ralrimiva 3143 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑛𝑍 (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6226nfeq1 2922 . . . . . . . . . . . . . . . . . 18 𝑛((𝑛𝑍𝐵)‘𝑚) = -𝑟
63 nffvmpt1 6853 . . . . . . . . . . . . . . . . . . 19 𝑛((𝑛𝑍 ↦ -𝐵)‘𝑚)
6463nfeq1 2922 . . . . . . . . . . . . . . . . . 18 𝑛((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟
6562, 64nfbi 1906 . . . . . . . . . . . . . . . . 17 𝑛(((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟)
66 nfv 1917 . . . . . . . . . . . . . . . . 17 𝑚(((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟)
67 fveqeq2 6851 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍𝐵)‘𝑛) = -𝑟))
68 fveqeq2 6851 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6967, 68bibi12d 345 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟)))
7065, 66, 69cbvralw 3289 . . . . . . . . . . . . . . . 16 (∀𝑚𝑍 (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ ∀𝑛𝑍 (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
7161, 70sylibr 233 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑚𝑍 (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7271r19.21bi 3234 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑚𝑍) → (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7372rexbidva 3173 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7420adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍𝐵) Fn 𝑍)
75 fvelrnb 6903 . . . . . . . . . . . . . 14 ((𝑛𝑍𝐵) Fn 𝑍 → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟))
7674, 75syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟))
773renegcld 11582 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → -𝐵 ∈ ℝ)
7877fmpttd 7063 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ -𝐵):𝑍⟶ℝ)
7978adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍 ↦ -𝐵):𝑍⟶ℝ)
8079ffnd 6669 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍 ↦ -𝐵) Fn 𝑍)
81 fvelrnb 6903 . . . . . . . . . . . . . 14 ((𝑛𝑍 ↦ -𝐵) Fn 𝑍 → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
8280, 81syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
8373, 76, 823bitr4d 310 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
8483pm5.32da 579 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵))))
8578frnd 6676 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ran (𝑛𝑍 ↦ -𝐵) ⊆ ℝ)
8685sseld 3943 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) → 𝑟 ∈ ℝ))
8786pm4.71rd 563 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵))))
8884, 87bitr4d 281 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)) ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
8943, 88bitrid 282 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
9089alrimiv 1930 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
91 nfrab1 3426 . . . . . . . . 9 𝑟{𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}
92 nfcv 2907 . . . . . . . . 9 𝑟ran (𝑛𝑍 ↦ -𝐵)
9391, 92cleqf 2938 . . . . . . . 8 ({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} = ran (𝑛𝑍 ↦ -𝐵) ↔ ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
9490, 93sylibr 233 . . . . . . 7 ((𝜑𝑥𝐴) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} = ran (𝑛𝑍 ↦ -𝐵))
9594supeq1d 9382 . . . . . 6 ((𝜑𝑥𝐴) → sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ) = sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9695negeqd 11395 . . . . 5 ((𝜑𝑥𝐴) → -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9742, 96eqtrd 2776 . . . 4 ((𝜑𝑥𝐴) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9897mpteq2dva 5205 . . 3 (𝜑 → (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )))
991, 98eqtrid 2788 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )))
100 ltso 11235 . . . . 5 < Or ℝ
101100supex 9399 . . . 4 sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ) ∈ V
102101a1i 11 . . 3 ((𝜑𝑥𝐴) → sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ) ∈ V)
103 eqid 2736 . . . 4 (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) = (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
1042anassrs 468 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
105 mbfinf.4 . . . . 5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
106104, 105mbfneg 25014 . . . 4 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ -𝐵) ∈ MblFn)
1072renegcld 11582 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → -𝐵 ∈ ℝ)
108 renegcl 11464 . . . . . . 7 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
109108ad2antrl 726 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → -𝑦 ∈ ℝ)
110 simplr 767 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
1113adantlr 713 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
112110, 111lenegd 11734 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → (𝑦𝐵 ↔ -𝐵 ≤ -𝑦))
113112ralbidva 3172 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛𝑍 𝑦𝐵 ↔ ∀𝑛𝑍 -𝐵 ≤ -𝑦))
114113biimpd 228 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛𝑍 𝑦𝐵 → ∀𝑛𝑍 -𝐵 ≤ -𝑦))
115114impr 455 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → ∀𝑛𝑍 -𝐵 ≤ -𝑦)
116 brralrspcev 5165 . . . . . 6 ((-𝑦 ∈ ℝ ∧ ∀𝑛𝑍 -𝐵 ≤ -𝑦) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
117109, 115, 116syl2anc 584 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
11819, 117rexlimddv 3158 . . . 4 ((𝜑𝑥𝐴) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
1199, 103, 6, 106, 107, 118mbfsup 25028 . . 3 (𝜑 → (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) ∈ MblFn)
120102, 119mbfneg 25014 . 2 (𝜑 → (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) ∈ MblFn)
12199, 120eqeltrd 2838 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  c0 4282   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  supcsup 9376  infcinf 9377  cc 11049  cr 11050   < clt 11189  cle 11190  -cneg 11386  cz 12499  cuz 12763  MblFncmbf 24978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xadd 13034  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-xmet 20789  df-met 20790  df-ovol 24828  df-vol 24829  df-mbf 24983
This theorem is referenced by:  mbflimsup  25030
  Copyright terms: Public domain W3C validator