MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfinf Structured version   Visualization version   GIF version

Theorem mbfinf 23726
Description: The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
mbfinf.1 𝑍 = (ℤ𝑀)
mbfinf.2 𝐺 = (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
mbfinf.3 (𝜑𝑀 ∈ ℤ)
mbfinf.4 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbfinf.5 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
mbfinf.6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵)
Assertion
Ref Expression
mbfinf (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝜑,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem mbfinf
Dummy variables 𝑚 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfinf.2 . . 3 𝐺 = (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
2 mbfinf.5 . . . . . . . . 9 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
32anass1rs 645 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
43fmpttd 6577 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
54frnd 6232 . . . . . 6 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ⊆ ℝ)
6 mbfinf.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
7 uzid 11904 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
86, 7syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (ℤ𝑀))
9 mbfinf.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
108, 9syl6eleqr 2855 . . . . . . . . . 10 (𝜑𝑀𝑍)
1110adantr 472 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀𝑍)
12 eqid 2765 . . . . . . . . . 10 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
1312, 3dmmptd 6204 . . . . . . . . 9 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) = 𝑍)
1411, 13eleqtrrd 2847 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑀 ∈ dom (𝑛𝑍𝐵))
1514ne0d 4088 . . . . . . 7 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) ≠ ∅)
16 dm0rn0 5512 . . . . . . . 8 (dom (𝑛𝑍𝐵) = ∅ ↔ ran (𝑛𝑍𝐵) = ∅)
1716necon3bii 2989 . . . . . . 7 (dom (𝑛𝑍𝐵) ≠ ∅ ↔ ran (𝑛𝑍𝐵) ≠ ∅)
1815, 17sylib 209 . . . . . 6 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ≠ ∅)
19 mbfinf.6 . . . . . . 7 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵)
204ffnd 6226 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
21 breq2 4815 . . . . . . . . . . 11 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑦𝑧𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
2221ralrn 6554 . . . . . . . . . 10 ((𝑛𝑍𝐵) Fn 𝑍 → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
2320, 22syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
24 nfcv 2907 . . . . . . . . . . . 12 𝑛𝑦
25 nfcv 2907 . . . . . . . . . . . 12 𝑛
26 nffvmpt1 6388 . . . . . . . . . . . 12 𝑛((𝑛𝑍𝐵)‘𝑚)
2724, 25, 26nfbr 4858 . . . . . . . . . . 11 𝑛 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)
28 nfv 2009 . . . . . . . . . . 11 𝑚 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛)
29 fveq2 6377 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑛𝑍𝐵)‘𝑚) = ((𝑛𝑍𝐵)‘𝑛))
3029breq2d 4823 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛)))
3127, 28, 30cbvral 3315 . . . . . . . . . 10 (∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ ∀𝑛𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛))
32 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
3312fvmpt2 6482 . . . . . . . . . . . . 13 ((𝑛𝑍𝐵 ∈ ℝ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3432, 3, 33syl2anc 579 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3534breq2d 4823 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛) ↔ 𝑦𝐵))
3635ralbidva 3132 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (∀𝑛𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛) ↔ ∀𝑛𝑍 𝑦𝐵))
3731, 36syl5bb 274 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ ∀𝑛𝑍 𝑦𝐵))
3823, 37bitrd 270 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑛𝑍 𝑦𝐵))
3938rexbidv 3199 . . . . . . 7 ((𝜑𝑥𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵))
4019, 39mpbird 248 . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧)
41 infrenegsup 11262 . . . . . 6 ((ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ))
425, 18, 40, 41syl3anc 1490 . . . . 5 ((𝜑𝑥𝐴) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ))
43 rabid 3263 . . . . . . . . . 10 (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ (𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)))
443recnd 10324 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
4544adantlr 706 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
46 simplr 785 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝑟 ∈ ℝ)
4746recnd 10324 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝑟 ∈ ℂ)
48 negcon2 10590 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) → (𝐵 = -𝑟𝑟 = -𝐵))
4945, 47, 48syl2anc 579 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (𝐵 = -𝑟𝑟 = -𝐵))
50 eqcom 2772 . . . . . . . . . . . . . . . . . . 19 (𝑟 = -𝐵 ↔ -𝐵 = 𝑟)
5149, 50syl6bb 278 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (𝐵 = -𝑟 ↔ -𝐵 = 𝑟))
5234adantlr 706 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
5352eqeq1d 2767 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) = -𝑟𝐵 = -𝑟))
54 negex 10535 . . . . . . . . . . . . . . . . . . . . 21 -𝐵 ∈ V
55 eqid 2765 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 ↦ -𝐵) = (𝑛𝑍 ↦ -𝐵)
5655fvmpt2 6482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛𝑍 ∧ -𝐵 ∈ V) → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5754, 56mpan2 682 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑍 → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5857adantl 473 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5958eqeq1d 2767 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟 ↔ -𝐵 = 𝑟))
6051, 53, 593bitr4d 302 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6160ralrimiva 3113 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑛𝑍 (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6226nfeq1 2921 . . . . . . . . . . . . . . . . . 18 𝑛((𝑛𝑍𝐵)‘𝑚) = -𝑟
63 nffvmpt1 6388 . . . . . . . . . . . . . . . . . . 19 𝑛((𝑛𝑍 ↦ -𝐵)‘𝑚)
6463nfeq1 2921 . . . . . . . . . . . . . . . . . 18 𝑛((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟
6562, 64nfbi 2002 . . . . . . . . . . . . . . . . 17 𝑛(((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟)
66 nfv 2009 . . . . . . . . . . . . . . . . 17 𝑚(((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟)
67 fveqeq2 6386 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍𝐵)‘𝑛) = -𝑟))
68 fveqeq2 6386 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6967, 68bibi12d 336 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟)))
7065, 66, 69cbvral 3315 . . . . . . . . . . . . . . . 16 (∀𝑚𝑍 (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ ∀𝑛𝑍 (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
7161, 70sylibr 225 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑚𝑍 (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7271r19.21bi 3079 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑚𝑍) → (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7372rexbidva 3196 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7420adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍𝐵) Fn 𝑍)
75 fvelrnb 6434 . . . . . . . . . . . . . 14 ((𝑛𝑍𝐵) Fn 𝑍 → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟))
7674, 75syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟))
773renegcld 10713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → -𝐵 ∈ ℝ)
7877fmpttd 6577 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ -𝐵):𝑍⟶ℝ)
7978adantr 472 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍 ↦ -𝐵):𝑍⟶ℝ)
8079ffnd 6226 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍 ↦ -𝐵) Fn 𝑍)
81 fvelrnb 6434 . . . . . . . . . . . . . 14 ((𝑛𝑍 ↦ -𝐵) Fn 𝑍 → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
8280, 81syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
8373, 76, 823bitr4d 302 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
8483pm5.32da 574 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵))))
8578frnd 6232 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ran (𝑛𝑍 ↦ -𝐵) ⊆ ℝ)
8685sseld 3762 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) → 𝑟 ∈ ℝ))
8786pm4.71rd 558 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵))))
8884, 87bitr4d 273 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)) ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
8943, 88syl5bb 274 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
9089alrimiv 2022 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
91 nfrab1 3270 . . . . . . . . 9 𝑟{𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}
92 nfcv 2907 . . . . . . . . 9 𝑟ran (𝑛𝑍 ↦ -𝐵)
9391, 92cleqf 2933 . . . . . . . 8 ({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} = ran (𝑛𝑍 ↦ -𝐵) ↔ ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
9490, 93sylibr 225 . . . . . . 7 ((𝜑𝑥𝐴) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} = ran (𝑛𝑍 ↦ -𝐵))
9594supeq1d 8561 . . . . . 6 ((𝜑𝑥𝐴) → sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ) = sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9695negeqd 10531 . . . . 5 ((𝜑𝑥𝐴) → -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9742, 96eqtrd 2799 . . . 4 ((𝜑𝑥𝐴) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9897mpteq2dva 4905 . . 3 (𝜑 → (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )))
991, 98syl5eq 2811 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )))
100 ltso 10374 . . . . 5 < Or ℝ
101100supex 8578 . . . 4 sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ) ∈ V
102101a1i 11 . . 3 ((𝜑𝑥𝐴) → sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ) ∈ V)
103 eqid 2765 . . . 4 (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) = (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
1042anassrs 459 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
105 mbfinf.4 . . . . 5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
106104, 105mbfneg 23711 . . . 4 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ -𝐵) ∈ MblFn)
1072renegcld 10713 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → -𝐵 ∈ ℝ)
108 renegcl 10600 . . . . . . 7 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
109108ad2antrl 719 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → -𝑦 ∈ ℝ)
110 simplr 785 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
1113adantlr 706 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
112110, 111lenegd 10862 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → (𝑦𝐵 ↔ -𝐵 ≤ -𝑦))
113112ralbidva 3132 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛𝑍 𝑦𝐵 ↔ ∀𝑛𝑍 -𝐵 ≤ -𝑦))
114113biimpd 220 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛𝑍 𝑦𝐵 → ∀𝑛𝑍 -𝐵 ≤ -𝑦))
115114impr 446 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → ∀𝑛𝑍 -𝐵 ≤ -𝑦)
116 brralrspcev 4871 . . . . . 6 ((-𝑦 ∈ ℝ ∧ ∀𝑛𝑍 -𝐵 ≤ -𝑦) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
117109, 115, 116syl2anc 579 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
11819, 117rexlimddv 3182 . . . 4 ((𝜑𝑥𝐴) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
1199, 103, 6, 106, 107, 118mbfsup 23725 . . 3 (𝜑 → (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) ∈ MblFn)
120102, 119mbfneg 23711 . 2 (𝜑 → (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) ∈ MblFn)
12199, 120eqeltrd 2844 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1650   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  wss 3734  c0 4081   class class class wbr 4811  cmpt 4890  dom cdm 5279  ran crn 5280   Fn wfn 6065  wf 6066  cfv 6070  supcsup 8555  infcinf 8556  cc 10189  cr 10190   < clt 10330  cle 10331  -cneg 10523  cz 11626  cuz 11889  MblFncmbf 23675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cc 9512  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-disj 4780  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-omul 7771  df-er 7949  df-map 8064  df-pm 8065  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-sup 8557  df-inf 8558  df-oi 8624  df-card 9018  df-acn 9021  df-cda 9245  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-z 11627  df-uz 11890  df-q 11993  df-rp 12032  df-xadd 12150  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12537  df-fzo 12677  df-fl 12804  df-seq 13012  df-exp 13071  df-hash 13325  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-clim 14507  df-rlim 14508  df-sum 14705  df-xmet 20015  df-met 20016  df-ovol 23525  df-vol 23526  df-mbf 23680
This theorem is referenced by:  mbflimsup  23727
  Copyright terms: Public domain W3C validator