Step | Hyp | Ref
| Expression |
1 | | mbfinf.2 |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) |
2 | | mbfinf.5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) |
3 | 2 | anass1rs 634 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℝ) |
4 | | eqid 2771 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 ↦ 𝐵) = (𝑛 ∈ 𝑍 ↦ 𝐵) |
5 | 3, 4 | fmptd 6527 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
6 | | frn 6193 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ → ran (𝑛 ∈ 𝑍 ↦ 𝐵) ⊆ ℝ) |
7 | 5, 6 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran (𝑛 ∈ 𝑍 ↦ 𝐵) ⊆ ℝ) |
8 | | mbfinf.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
9 | | uzid 11903 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
10 | 8, 9 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
11 | | mbfinf.1 |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ≥‘𝑀) |
12 | 10, 11 | syl6eleqr 2861 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
13 | 12 | adantr 466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ 𝑍) |
14 | 4, 3 | dmmptd 6164 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom (𝑛 ∈ 𝑍 ↦ 𝐵) = 𝑍) |
15 | 13, 14 | eleqtrrd 2853 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ dom (𝑛 ∈ 𝑍 ↦ 𝐵)) |
16 | | ne0i 4069 |
. . . . . . . 8
⊢ (𝑀 ∈ dom (𝑛 ∈ 𝑍 ↦ 𝐵) → dom (𝑛 ∈ 𝑍 ↦ 𝐵) ≠ ∅) |
17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom (𝑛 ∈ 𝑍 ↦ 𝐵) ≠ ∅) |
18 | | dm0rn0 5480 |
. . . . . . . 8
⊢ (dom
(𝑛 ∈ 𝑍 ↦ 𝐵) = ∅ ↔ ran (𝑛 ∈ 𝑍 ↦ 𝐵) = ∅) |
19 | 18 | necon3bii 2995 |
. . . . . . 7
⊢ (dom
(𝑛 ∈ 𝑍 ↦ 𝐵) ≠ ∅ ↔ ran (𝑛 ∈ 𝑍 ↦ 𝐵) ≠ ∅) |
20 | 17, 19 | sylib 208 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran (𝑛 ∈ 𝑍 ↦ 𝐵) ≠ ∅) |
21 | | mbfinf.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵) |
22 | | ffn 6185 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ → (𝑛 ∈ 𝑍 ↦ 𝐵) Fn 𝑍) |
23 | 5, 22 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) Fn 𝑍) |
24 | | breq2 4790 |
. . . . . . . . . . 11
⊢ (𝑧 = ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚))) |
25 | 24 | ralrn 6505 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵) Fn 𝑍 → (∀𝑧 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)𝑦 ≤ 𝑧 ↔ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚))) |
26 | 23, 25 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑧 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)𝑦 ≤ 𝑧 ↔ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚))) |
27 | | nfcv 2913 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛𝑦 |
28 | | nfcv 2913 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛
≤ |
29 | | nffvmpt1 6340 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) |
30 | 27, 28, 29 | nfbr 4833 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) |
31 | | nfv 1995 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) |
32 | | fveq2 6332 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
33 | 32 | breq2d 4798 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) ↔ 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛))) |
34 | 30, 31, 33 | cbvral 3316 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) ↔ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
35 | | simpr 471 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
36 | 4 | fvmpt2 6433 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ 𝑍 ∧ 𝐵 ∈ ℝ) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = 𝐵) |
37 | 35, 3, 36 | syl2anc 573 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = 𝐵) |
38 | 37 | breq2d 4798 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → (𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) ↔ 𝑦 ≤ 𝐵)) |
39 | 38 | ralbidva 3134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) ↔ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) |
40 | 34, 39 | syl5bb 272 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) ↔ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) |
41 | 26, 40 | bitrd 268 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑧 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)𝑦 ≤ 𝑧 ↔ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) |
42 | 41 | rexbidv 3200 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)𝑦 ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) |
43 | 21, 42 | mpbird 247 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)𝑦 ≤ 𝑧) |
44 | | infrenegsup 11208 |
. . . . . 6
⊢ ((ran
(𝑛 ∈ 𝑍 ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈ 𝑍 ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)𝑦 ≤ 𝑧) → inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)}, ℝ, < )) |
45 | 7, 20, 43, 44 | syl3anc 1476 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)}, ℝ, < )) |
46 | | rabid 3264 |
. . . . . . . . . 10
⊢ (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} ↔ (𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵))) |
47 | 3 | recnd 10270 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℂ) |
48 | 47 | adantlr 694 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℂ) |
49 | | simplr 752 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → 𝑟 ∈ ℝ) |
50 | 49 | recnd 10270 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → 𝑟 ∈ ℂ) |
51 | | negcon2 10536 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) → (𝐵 = -𝑟 ↔ 𝑟 = -𝐵)) |
52 | 48, 50, 51 | syl2anc 573 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (𝐵 = -𝑟 ↔ 𝑟 = -𝐵)) |
53 | | eqcom 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = -𝐵 ↔ -𝐵 = 𝑟) |
54 | 52, 53 | syl6bb 276 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (𝐵 = -𝑟 ↔ -𝐵 = 𝑟)) |
55 | 37 | adantlr 694 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = 𝐵) |
56 | 55 | eqeq1d 2773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟 ↔ 𝐵 = -𝑟)) |
57 | | negex 10481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ -𝐵 ∈ V |
58 | | eqid 2771 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ 𝑍 ↦ -𝐵) = (𝑛 ∈ 𝑍 ↦ -𝐵) |
59 | 58 | fvmpt2 6433 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ 𝑍 ∧ -𝐵 ∈ V) → ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = -𝐵) |
60 | 57, 59 | mpan2 671 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ 𝑍 → ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = -𝐵) |
61 | 60 | adantl 467 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = -𝐵) |
62 | 61 | eqeq1d 2773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟 ↔ -𝐵 = 𝑟)) |
63 | 54, 56, 62 | 3bitr4d 300 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟)) |
64 | 63 | ralrimiva 3115 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟)) |
65 | 29 | nfeq1 2927 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 |
66 | | nffvmpt1 6340 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) |
67 | 66 | nfeq1 2927 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟 |
68 | 65, 67 | nfbi 1985 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟) |
69 | | nfv 1995 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟) |
70 | 32 | eqeq1d 2773 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟)) |
71 | | fveq2 6332 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑛 → ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛)) |
72 | 71 | eqeq1d 2773 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟)) |
73 | 70, 72 | bibi12d 334 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → ((((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟))) |
74 | 68, 69, 73 | cbvral 3316 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑚 ∈
𝑍 (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟)) |
75 | 64, 74 | sylibr 224 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑚 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟)) |
76 | 75 | r19.21bi 3081 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑚 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟)) |
77 | 76 | rexbidva 3197 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (∃𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ∃𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟)) |
78 | 23 | adantr 466 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛 ∈ 𝑍 ↦ 𝐵) Fn 𝑍) |
79 | | fvelrnb 6385 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵) Fn 𝑍 → (-𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵) ↔ ∃𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟)) |
80 | 78, 79 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵) ↔ ∃𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟)) |
81 | 3 | renegcld 10659 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → -𝐵 ∈ ℝ) |
82 | 81, 58 | fmptd 6527 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ -𝐵):𝑍⟶ℝ) |
83 | 82 | adantr 466 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛 ∈ 𝑍 ↦ -𝐵):𝑍⟶ℝ) |
84 | | ffn 6185 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ 𝑍 ↦ -𝐵):𝑍⟶ℝ → (𝑛 ∈ 𝑍 ↦ -𝐵) Fn 𝑍) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛 ∈ 𝑍 ↦ -𝐵) Fn 𝑍) |
86 | | fvelrnb 6385 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ 𝑍 ↦ -𝐵) Fn 𝑍 → (𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵) ↔ ∃𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟)) |
87 | 85, 86 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵) ↔ ∃𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟)) |
88 | 77, 80, 87 | 3bitr4d 300 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵) ↔ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵))) |
89 | 88 | pm5.32da 568 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵)))) |
90 | | frn 6193 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ 𝑍 ↦ -𝐵):𝑍⟶ℝ → ran (𝑛 ∈ 𝑍 ↦ -𝐵) ⊆ ℝ) |
91 | 82, 90 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran (𝑛 ∈ 𝑍 ↦ -𝐵) ⊆ ℝ) |
92 | 91 | sseld 3751 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵) → 𝑟 ∈ ℝ)) |
93 | 92 | pm4.71rd 552 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵)))) |
94 | 89, 93 | bitr4d 271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)) ↔ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵))) |
95 | 46, 94 | syl5bb 272 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} ↔ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵))) |
96 | 95 | alrimiv 2007 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} ↔ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵))) |
97 | | nfrab1 3271 |
. . . . . . . . 9
⊢
Ⅎ𝑟{𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} |
98 | | nfcv 2913 |
. . . . . . . . 9
⊢
Ⅎ𝑟ran
(𝑛 ∈ 𝑍 ↦ -𝐵) |
99 | 97, 98 | cleqf 2939 |
. . . . . . . 8
⊢ ({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} = ran (𝑛 ∈ 𝑍 ↦ -𝐵) ↔ ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} ↔ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵))) |
100 | 96, 99 | sylibr 224 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} = ran (𝑛 ∈ 𝑍 ↦ -𝐵)) |
101 | 100 | supeq1d 8508 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)}, ℝ, < ) = sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) |
102 | 101 | negeqd 10477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)}, ℝ, < ) = -sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) |
103 | 45, 102 | eqtrd 2805 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = -sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) |
104 | 103 | mpteq2dva 4878 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) = (𝑥 ∈ 𝐴 ↦ -sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < ))) |
105 | 1, 104 | syl5eq 2817 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ -sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < ))) |
106 | | ltso 10320 |
. . . . 5
⊢ < Or
ℝ |
107 | 106 | supex 8525 |
. . . 4
⊢ sup(ran
(𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < ) ∈ V |
108 | 107 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < ) ∈
V) |
109 | | eqid 2771 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) = (𝑥 ∈ 𝐴 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) |
110 | 2 | anassrs 458 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
111 | | mbfinf.4 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
112 | 110, 111 | mbfneg 23637 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ MblFn) |
113 | 2 | renegcld 10659 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → -𝐵 ∈ ℝ) |
114 | | renegcl 10546 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ → -𝑦 ∈
ℝ) |
115 | 114 | ad2antrl 707 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) → -𝑦 ∈ ℝ) |
116 | | simplr 752 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → 𝑦 ∈ ℝ) |
117 | 3 | adantlr 694 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℝ) |
118 | 116, 117 | lenegd 10808 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (𝑦 ≤ 𝐵 ↔ -𝐵 ≤ -𝑦)) |
119 | 118 | ralbidva 3134 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ↔ ∀𝑛 ∈ 𝑍 -𝐵 ≤ -𝑦)) |
120 | 119 | biimpd 219 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 → ∀𝑛 ∈ 𝑍 -𝐵 ≤ -𝑦)) |
121 | 120 | impr 442 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) → ∀𝑛 ∈ 𝑍 -𝐵 ≤ -𝑦) |
122 | | breq2 4790 |
. . . . . . . 8
⊢ (𝑧 = -𝑦 → (-𝐵 ≤ 𝑧 ↔ -𝐵 ≤ -𝑦)) |
123 | 122 | ralbidv 3135 |
. . . . . . 7
⊢ (𝑧 = -𝑦 → (∀𝑛 ∈ 𝑍 -𝐵 ≤ 𝑧 ↔ ∀𝑛 ∈ 𝑍 -𝐵 ≤ -𝑦)) |
124 | 123 | rspcev 3460 |
. . . . . 6
⊢ ((-𝑦 ∈ ℝ ∧
∀𝑛 ∈ 𝑍 -𝐵 ≤ -𝑦) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -𝐵 ≤ 𝑧) |
125 | 115, 121,
124 | syl2anc 573 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -𝐵 ≤ 𝑧) |
126 | 21, 125 | rexlimddv 3183 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -𝐵 ≤ 𝑧) |
127 | 11, 109, 8, 112, 113, 126 | mbfsup 23651 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) ∈
MblFn) |
128 | 108, 127 | mbfneg 23637 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) ∈
MblFn) |
129 | 105, 128 | eqeltrd 2850 |
1
⊢ (𝜑 → 𝐺 ∈ MblFn) |