Step | Hyp | Ref
| Expression |
1 | | mbfinf.2 |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) |
2 | | mbfinf.5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) |
3 | 2 | anass1rs 651 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℝ) |
4 | 3 | fmpttd 6971 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
5 | 4 | frnd 6592 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran (𝑛 ∈ 𝑍 ↦ 𝐵) ⊆ ℝ) |
6 | | mbfinf.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | | uzid 12526 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
8 | 6, 7 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
9 | | mbfinf.1 |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ≥‘𝑀) |
10 | 8, 9 | eleqtrrdi 2850 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
11 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ 𝑍) |
12 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 ↦ 𝐵) = (𝑛 ∈ 𝑍 ↦ 𝐵) |
13 | 12, 3 | dmmptd 6562 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom (𝑛 ∈ 𝑍 ↦ 𝐵) = 𝑍) |
14 | 11, 13 | eleqtrrd 2842 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ dom (𝑛 ∈ 𝑍 ↦ 𝐵)) |
15 | 14 | ne0d 4266 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom (𝑛 ∈ 𝑍 ↦ 𝐵) ≠ ∅) |
16 | | dm0rn0 5823 |
. . . . . . . 8
⊢ (dom
(𝑛 ∈ 𝑍 ↦ 𝐵) = ∅ ↔ ran (𝑛 ∈ 𝑍 ↦ 𝐵) = ∅) |
17 | 16 | necon3bii 2995 |
. . . . . . 7
⊢ (dom
(𝑛 ∈ 𝑍 ↦ 𝐵) ≠ ∅ ↔ ran (𝑛 ∈ 𝑍 ↦ 𝐵) ≠ ∅) |
18 | 15, 17 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran (𝑛 ∈ 𝑍 ↦ 𝐵) ≠ ∅) |
19 | | mbfinf.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵) |
20 | 4 | ffnd 6585 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) Fn 𝑍) |
21 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑧 = ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚))) |
22 | 21 | ralrn 6946 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵) Fn 𝑍 → (∀𝑧 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)𝑦 ≤ 𝑧 ↔ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚))) |
23 | 20, 22 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑧 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)𝑦 ≤ 𝑧 ↔ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚))) |
24 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛𝑦 |
25 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛
≤ |
26 | | nffvmpt1 6767 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) |
27 | 24, 25, 26 | nfbr 5117 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) |
28 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) |
29 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
30 | 29 | breq2d 5082 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) ↔ 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛))) |
31 | 27, 28, 30 | cbvralw 3363 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) ↔ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
32 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
33 | 12 | fvmpt2 6868 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ 𝑍 ∧ 𝐵 ∈ ℝ) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = 𝐵) |
34 | 32, 3, 33 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = 𝐵) |
35 | 34 | breq2d 5082 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → (𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) ↔ 𝑦 ≤ 𝐵)) |
36 | 35 | ralbidva 3119 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) ↔ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) |
37 | 31, 36 | syl5bb 282 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) ↔ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) |
38 | 23, 37 | bitrd 278 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑧 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)𝑦 ≤ 𝑧 ↔ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) |
39 | 38 | rexbidv 3225 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)𝑦 ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) |
40 | 19, 39 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)𝑦 ≤ 𝑧) |
41 | | infrenegsup 11888 |
. . . . . 6
⊢ ((ran
(𝑛 ∈ 𝑍 ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈ 𝑍 ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)𝑦 ≤ 𝑧) → inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)}, ℝ, < )) |
42 | 5, 18, 40, 41 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)}, ℝ, < )) |
43 | | rabid 3304 |
. . . . . . . . . 10
⊢ (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} ↔ (𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵))) |
44 | 3 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℂ) |
45 | 44 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℂ) |
46 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → 𝑟 ∈ ℝ) |
47 | 46 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → 𝑟 ∈ ℂ) |
48 | | negcon2 11204 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) → (𝐵 = -𝑟 ↔ 𝑟 = -𝐵)) |
49 | 45, 47, 48 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (𝐵 = -𝑟 ↔ 𝑟 = -𝐵)) |
50 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = -𝐵 ↔ -𝐵 = 𝑟) |
51 | 49, 50 | bitrdi 286 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (𝐵 = -𝑟 ↔ -𝐵 = 𝑟)) |
52 | 34 | adantlr 711 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = 𝐵) |
53 | 52 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟 ↔ 𝐵 = -𝑟)) |
54 | | negex 11149 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ -𝐵 ∈ V |
55 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ 𝑍 ↦ -𝐵) = (𝑛 ∈ 𝑍 ↦ -𝐵) |
56 | 55 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ 𝑍 ∧ -𝐵 ∈ V) → ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = -𝐵) |
57 | 54, 56 | mpan2 687 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ 𝑍 → ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = -𝐵) |
58 | 57 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = -𝐵) |
59 | 58 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟 ↔ -𝐵 = 𝑟)) |
60 | 51, 53, 59 | 3bitr4d 310 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟)) |
61 | 60 | ralrimiva 3107 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟)) |
62 | 26 | nfeq1 2921 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 |
63 | | nffvmpt1 6767 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) |
64 | 63 | nfeq1 2921 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟 |
65 | 62, 64 | nfbi 1907 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟) |
66 | | nfv 1918 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟) |
67 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟)) |
68 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟)) |
69 | 67, 68 | bibi12d 345 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → ((((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟))) |
70 | 65, 66, 69 | cbvralw 3363 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑚 ∈
𝑍 (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ ∀𝑛 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑛) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑛) = 𝑟)) |
71 | 61, 70 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑚 ∈ 𝑍 (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟)) |
72 | 71 | r19.21bi 3132 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑚 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟)) |
73 | 72 | rexbidva 3224 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (∃𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟 ↔ ∃𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟)) |
74 | 20 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛 ∈ 𝑍 ↦ 𝐵) Fn 𝑍) |
75 | | fvelrnb 6812 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵) Fn 𝑍 → (-𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵) ↔ ∃𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟)) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵) ↔ ∃𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑚) = -𝑟)) |
77 | 3 | renegcld 11332 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → -𝐵 ∈ ℝ) |
78 | 77 | fmpttd 6971 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ -𝐵):𝑍⟶ℝ) |
79 | 78 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛 ∈ 𝑍 ↦ -𝐵):𝑍⟶ℝ) |
80 | 79 | ffnd 6585 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛 ∈ 𝑍 ↦ -𝐵) Fn 𝑍) |
81 | | fvelrnb 6812 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ 𝑍 ↦ -𝐵) Fn 𝑍 → (𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵) ↔ ∃𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟)) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵) ↔ ∃𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ -𝐵)‘𝑚) = 𝑟)) |
83 | 73, 76, 82 | 3bitr4d 310 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵) ↔ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵))) |
84 | 83 | pm5.32da 578 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵)))) |
85 | 78 | frnd 6592 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran (𝑛 ∈ 𝑍 ↦ -𝐵) ⊆ ℝ) |
86 | 85 | sseld 3916 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵) → 𝑟 ∈ ℝ)) |
87 | 86 | pm4.71rd 562 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵)))) |
88 | 84, 87 | bitr4d 281 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)) ↔ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵))) |
89 | 43, 88 | syl5bb 282 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} ↔ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵))) |
90 | 89 | alrimiv 1931 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} ↔ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵))) |
91 | | nfrab1 3310 |
. . . . . . . . 9
⊢
Ⅎ𝑟{𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} |
92 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑟ran
(𝑛 ∈ 𝑍 ↦ -𝐵) |
93 | 91, 92 | cleqf 2937 |
. . . . . . . 8
⊢ ({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} = ran (𝑛 ∈ 𝑍 ↦ -𝐵) ↔ ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} ↔ 𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ -𝐵))) |
94 | 90, 93 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)} = ran (𝑛 ∈ 𝑍 ↦ -𝐵)) |
95 | 94 | supeq1d 9135 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)}, ℝ, < ) = sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) |
96 | 95 | negeqd 11145 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛 ∈ 𝑍 ↦ 𝐵)}, ℝ, < ) = -sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) |
97 | 42, 96 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = -sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) |
98 | 97 | mpteq2dva 5170 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) = (𝑥 ∈ 𝐴 ↦ -sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < ))) |
99 | 1, 98 | syl5eq 2791 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ -sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < ))) |
100 | | ltso 10986 |
. . . . 5
⊢ < Or
ℝ |
101 | 100 | supex 9152 |
. . . 4
⊢ sup(ran
(𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < ) ∈ V |
102 | 101 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < ) ∈
V) |
103 | | eqid 2738 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) = (𝑥 ∈ 𝐴 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) |
104 | 2 | anassrs 467 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
105 | | mbfinf.4 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
106 | 104, 105 | mbfneg 24719 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ MblFn) |
107 | 2 | renegcld 11332 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → -𝐵 ∈ ℝ) |
108 | | renegcl 11214 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ → -𝑦 ∈
ℝ) |
109 | 108 | ad2antrl 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) → -𝑦 ∈ ℝ) |
110 | | simplr 765 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → 𝑦 ∈ ℝ) |
111 | 3 | adantlr 711 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℝ) |
112 | 110, 111 | lenegd 11484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (𝑦 ≤ 𝐵 ↔ -𝐵 ≤ -𝑦)) |
113 | 112 | ralbidva 3119 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ↔ ∀𝑛 ∈ 𝑍 -𝐵 ≤ -𝑦)) |
114 | 113 | biimpd 228 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 → ∀𝑛 ∈ 𝑍 -𝐵 ≤ -𝑦)) |
115 | 114 | impr 454 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) → ∀𝑛 ∈ 𝑍 -𝐵 ≤ -𝑦) |
116 | | brralrspcev 5130 |
. . . . . 6
⊢ ((-𝑦 ∈ ℝ ∧
∀𝑛 ∈ 𝑍 -𝐵 ≤ -𝑦) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -𝐵 ≤ 𝑧) |
117 | 109, 115,
116 | syl2anc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵)) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -𝐵 ≤ 𝑧) |
118 | 19, 117 | rexlimddv 3219 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑧 ∈ ℝ ∀𝑛 ∈ 𝑍 -𝐵 ≤ 𝑧) |
119 | 9, 103, 6, 106, 107, 118 | mbfsup 24733 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) ∈
MblFn) |
120 | 102, 119 | mbfneg 24719 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -sup(ran (𝑛 ∈ 𝑍 ↦ -𝐵), ℝ, < )) ∈
MblFn) |
121 | 99, 120 | eqeltrd 2839 |
1
⊢ (𝜑 → 𝐺 ∈ MblFn) |