MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfinf Structured version   Visualization version   GIF version

Theorem mbfinf 25582
Description: The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
mbfinf.1 𝑍 = (ℤ𝑀)
mbfinf.2 𝐺 = (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
mbfinf.3 (𝜑𝑀 ∈ ℤ)
mbfinf.4 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbfinf.5 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
mbfinf.6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵)
Assertion
Ref Expression
mbfinf (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝜑,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem mbfinf
Dummy variables 𝑚 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfinf.2 . . 3 𝐺 = (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < ))
2 mbfinf.5 . . . . . . . . 9 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
32anass1rs 655 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
43fmpttd 7053 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
54frnd 6664 . . . . . 6 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ⊆ ℝ)
6 mbfinf.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
7 uzid 12768 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
86, 7syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (ℤ𝑀))
9 mbfinf.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
108, 9eleqtrrdi 2839 . . . . . . . . . 10 (𝜑𝑀𝑍)
1110adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀𝑍)
12 eqid 2729 . . . . . . . . . 10 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
1312, 3dmmptd 6631 . . . . . . . . 9 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) = 𝑍)
1411, 13eleqtrrd 2831 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑀 ∈ dom (𝑛𝑍𝐵))
1514ne0d 4295 . . . . . . 7 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) ≠ ∅)
16 dm0rn0 5871 . . . . . . . 8 (dom (𝑛𝑍𝐵) = ∅ ↔ ran (𝑛𝑍𝐵) = ∅)
1716necon3bii 2977 . . . . . . 7 (dom (𝑛𝑍𝐵) ≠ ∅ ↔ ran (𝑛𝑍𝐵) ≠ ∅)
1815, 17sylib 218 . . . . . 6 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ≠ ∅)
19 mbfinf.6 . . . . . . 7 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵)
204ffnd 6657 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
21 breq2 5099 . . . . . . . . . . 11 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑦𝑧𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
2221ralrn 7026 . . . . . . . . . 10 ((𝑛𝑍𝐵) Fn 𝑍 → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
2320, 22syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)))
24 nfcv 2891 . . . . . . . . . . . 12 𝑛𝑦
25 nfcv 2891 . . . . . . . . . . . 12 𝑛
26 nffvmpt1 6837 . . . . . . . . . . . 12 𝑛((𝑛𝑍𝐵)‘𝑚)
2724, 25, 26nfbr 5142 . . . . . . . . . . 11 𝑛 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚)
28 nfv 1914 . . . . . . . . . . 11 𝑚 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛)
29 fveq2 6826 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑛𝑍𝐵)‘𝑚) = ((𝑛𝑍𝐵)‘𝑛))
3029breq2d 5107 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛)))
3127, 28, 30cbvralw 3272 . . . . . . . . . 10 (∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ ∀𝑛𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛))
32 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
3312fvmpt2 6945 . . . . . . . . . . . . 13 ((𝑛𝑍𝐵 ∈ ℝ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3432, 3, 33syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3534breq2d 5107 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛) ↔ 𝑦𝐵))
3635ralbidva 3150 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (∀𝑛𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑛) ↔ ∀𝑛𝑍 𝑦𝐵))
3731, 36bitrid 283 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑚𝑍 𝑦 ≤ ((𝑛𝑍𝐵)‘𝑚) ↔ ∀𝑛𝑍 𝑦𝐵))
3823, 37bitrd 279 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∀𝑛𝑍 𝑦𝐵))
3938rexbidv 3153 . . . . . . 7 ((𝜑𝑥𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦𝐵))
4019, 39mpbird 257 . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧)
41 infrenegsup 12126 . . . . . 6 ((ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑦𝑧) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ))
425, 18, 40, 41syl3anc 1373 . . . . 5 ((𝜑𝑥𝐴) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ))
43 rabid 3418 . . . . . . . . . 10 (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ (𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)))
443recnd 11162 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
4544adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
46 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝑟 ∈ ℝ)
4746recnd 11162 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → 𝑟 ∈ ℂ)
48 negcon2 11435 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) → (𝐵 = -𝑟𝑟 = -𝐵))
4945, 47, 48syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (𝐵 = -𝑟𝑟 = -𝐵))
50 eqcom 2736 . . . . . . . . . . . . . . . . . . 19 (𝑟 = -𝐵 ↔ -𝐵 = 𝑟)
5149, 50bitrdi 287 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (𝐵 = -𝑟 ↔ -𝐵 = 𝑟))
5234adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
5352eqeq1d 2731 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) = -𝑟𝐵 = -𝑟))
54 negex 11379 . . . . . . . . . . . . . . . . . . . . 21 -𝐵 ∈ V
55 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 ↦ -𝐵) = (𝑛𝑍 ↦ -𝐵)
5655fvmpt2 6945 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛𝑍 ∧ -𝐵 ∈ V) → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5754, 56mpan2 691 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑍 → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5857adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ -𝐵)‘𝑛) = -𝐵)
5958eqeq1d 2731 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟 ↔ -𝐵 = 𝑟))
6051, 53, 593bitr4d 311 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6160ralrimiva 3121 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑛𝑍 (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6226nfeq1 2907 . . . . . . . . . . . . . . . . . 18 𝑛((𝑛𝑍𝐵)‘𝑚) = -𝑟
63 nffvmpt1 6837 . . . . . . . . . . . . . . . . . . 19 𝑛((𝑛𝑍 ↦ -𝐵)‘𝑚)
6463nfeq1 2907 . . . . . . . . . . . . . . . . . 18 𝑛((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟
6562, 64nfbi 1903 . . . . . . . . . . . . . . . . 17 𝑛(((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟)
66 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑚(((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟)
67 fveqeq2 6835 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍𝐵)‘𝑛) = -𝑟))
68 fveqeq2 6835 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
6967, 68bibi12d 345 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟)))
7065, 66, 69cbvralw 3272 . . . . . . . . . . . . . . . 16 (∀𝑚𝑍 (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟) ↔ ∀𝑛𝑍 (((𝑛𝑍𝐵)‘𝑛) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑛) = 𝑟))
7161, 70sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → ∀𝑚𝑍 (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7271r19.21bi 3221 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) ∧ 𝑚𝑍) → (((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7372rexbidva 3151 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟 ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
7420adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍𝐵) Fn 𝑍)
75 fvelrnb 6887 . . . . . . . . . . . . . 14 ((𝑛𝑍𝐵) Fn 𝑍 → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟))
7674, 75syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) = -𝑟))
773renegcld 11565 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → -𝐵 ∈ ℝ)
7877fmpttd 7053 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ -𝐵):𝑍⟶ℝ)
7978adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍 ↦ -𝐵):𝑍⟶ℝ)
8079ffnd 6657 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑛𝑍 ↦ -𝐵) Fn 𝑍)
81 fvelrnb 6887 . . . . . . . . . . . . . 14 ((𝑛𝑍 ↦ -𝐵) Fn 𝑍 → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
8280, 81syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ ∃𝑚𝑍 ((𝑛𝑍 ↦ -𝐵)‘𝑚) = 𝑟))
8373, 76, 823bitr4d 311 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑟 ∈ ℝ) → (-𝑟 ∈ ran (𝑛𝑍𝐵) ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
8483pm5.32da 579 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵))))
8578frnd 6664 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ran (𝑛𝑍 ↦ -𝐵) ⊆ ℝ)
8685sseld 3936 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) → 𝑟 ∈ ℝ))
8786pm4.71rd 562 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵) ↔ (𝑟 ∈ ℝ ∧ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵))))
8884, 87bitr4d 282 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑟 ∈ ℝ ∧ -𝑟 ∈ ran (𝑛𝑍𝐵)) ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
8943, 88bitrid 283 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
9089alrimiv 1927 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
91 nfrab1 3417 . . . . . . . . 9 𝑟{𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}
92 nfcv 2891 . . . . . . . . 9 𝑟ran (𝑛𝑍 ↦ -𝐵)
9391, 92cleqf 2920 . . . . . . . 8 ({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} = ran (𝑛𝑍 ↦ -𝐵) ↔ ∀𝑟(𝑟 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} ↔ 𝑟 ∈ ran (𝑛𝑍 ↦ -𝐵)))
9490, 93sylibr 234 . . . . . . 7 ((𝜑𝑥𝐴) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)} = ran (𝑛𝑍 ↦ -𝐵))
9594supeq1d 9355 . . . . . 6 ((𝜑𝑥𝐴) → sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ) = sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9695negeqd 11375 . . . . 5 ((𝜑𝑥𝐴) → -sup({𝑟 ∈ ℝ ∣ -𝑟 ∈ ran (𝑛𝑍𝐵)}, ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9742, 96eqtrd 2764 . . . 4 ((𝜑𝑥𝐴) → inf(ran (𝑛𝑍𝐵), ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
9897mpteq2dva 5188 . . 3 (𝜑 → (𝑥𝐴 ↦ inf(ran (𝑛𝑍𝐵), ℝ, < )) = (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )))
991, 98eqtrid 2776 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )))
100 ltso 11214 . . . . 5 < Or ℝ
101100supex 9373 . . . 4 sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ) ∈ V
102101a1i 11 . . 3 ((𝜑𝑥𝐴) → sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ) ∈ V)
103 eqid 2729 . . . 4 (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) = (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < ))
1042anassrs 467 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
105 mbfinf.4 . . . . 5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
106104, 105mbfneg 25567 . . . 4 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ -𝐵) ∈ MblFn)
1072renegcld 11565 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → -𝐵 ∈ ℝ)
108 renegcl 11445 . . . . . . 7 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
109108ad2antrl 728 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → -𝑦 ∈ ℝ)
110 simplr 768 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
1113adantlr 715 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
112110, 111lenegd 11717 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) ∧ 𝑛𝑍) → (𝑦𝐵 ↔ -𝐵 ≤ -𝑦))
113112ralbidva 3150 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛𝑍 𝑦𝐵 ↔ ∀𝑛𝑍 -𝐵 ≤ -𝑦))
114113biimpd 229 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ ℝ) → (∀𝑛𝑍 𝑦𝐵 → ∀𝑛𝑍 -𝐵 ≤ -𝑦))
115114impr 454 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → ∀𝑛𝑍 -𝐵 ≤ -𝑦)
116 brralrspcev 5155 . . . . . 6 ((-𝑦 ∈ ℝ ∧ ∀𝑛𝑍 -𝐵 ≤ -𝑦) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
117109, 115, 116syl2anc 584 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦𝐵)) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
11819, 117rexlimddv 3136 . . . 4 ((𝜑𝑥𝐴) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -𝐵𝑧)
1199, 103, 6, 106, 107, 118mbfsup 25581 . . 3 (𝜑 → (𝑥𝐴 ↦ sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) ∈ MblFn)
120102, 119mbfneg 25567 . 2 (𝜑 → (𝑥𝐴 ↦ -sup(ran (𝑛𝑍 ↦ -𝐵), ℝ, < )) ∈ MblFn)
12199, 120eqeltrd 2828 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  wss 3905  c0 4286   class class class wbr 5095  cmpt 5176  dom cdm 5623  ran crn 5624   Fn wfn 6481  wf 6482  cfv 6486  supcsup 9349  infcinf 9350  cc 11026  cr 11027   < clt 11168  cle 11169  -cneg 11366  cz 12489  cuz 12753  MblFncmbf 25531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xadd 13033  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-xmet 21272  df-met 21273  df-ovol 25381  df-vol 25382  df-mbf 25536
This theorem is referenced by:  mbflimsup  25583
  Copyright terms: Public domain W3C validator