MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfposr Structured version   Visualization version   GIF version

Theorem mbfposr 25503
Description: Converse to mbfpos 25502. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfpos.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
mbfposr.2 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
mbfposr.3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
Assertion
Ref Expression
mbfposr (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mbfposr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mbfpos.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
21fmpttd 7106 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
3 mbfposr.2 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
4 0re 11213 . . . 4 0 ∈ ℝ
5 ifcl 4565 . . . 4 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
61, 4, 5sylancl 585 . . 3 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
73, 6mbfdm2 25488 . 2 (𝜑𝐴 ∈ dom vol)
8 simplr 766 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝑦 < 0)
9 simpllr 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
109lt0neg1d 11780 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝑦 < 0 ↔ 0 < -𝑦))
118, 10mpbid 231 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 0 < -𝑦)
1211biantrurd 532 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (-𝐵 < -𝑦 ↔ (0 < -𝑦 ∧ -𝐵 < -𝑦)))
131ad4ant14 749 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
149, 13ltnegd 11789 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ -𝐵 < -𝑦))
15 0red 11214 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 0 ∈ ℝ)
1613renegcld 11638 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
179renegcld 11638 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
18 maxlt 13169 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ ∧ -𝑦 ∈ ℝ) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦 ↔ (0 < -𝑦 ∧ -𝐵 < -𝑦)))
1915, 16, 17, 18syl3anc 1368 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦 ↔ (0 < -𝑦 ∧ -𝐵 < -𝑦)))
2012, 14, 193bitr4rd 312 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦𝑦 < 𝐵))
211renegcld 11638 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
22 ifcl 4565 . . . . . . . . . . . . . 14 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2321, 4, 22sylancl 585 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2423ad4ant14 749 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2524biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦 ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦)))
2613biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
2720, 25, 263bitr3d 309 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → ((if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
2817rexrd 11261 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
29 elioomnf 13418 . . . . . . . . . . 11 (-𝑦 ∈ ℝ* → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦)))
3028, 29syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦)))
319rexrd 11261 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
32 elioopnf 13417 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (𝐵 ∈ (𝑦(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
3331, 32syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝐵 ∈ (𝑦(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
3427, 30, 333bitr4d 311 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦) ↔ 𝐵 ∈ (𝑦(,)+∞)))
35 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥𝐴)
36 eqid 2724 . . . . . . . . . . . . 13 (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
3736fvmpt2 6999 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) = if(0 ≤ -𝐵, -𝐵, 0))
3835, 23, 37syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) = if(0 ≤ -𝐵, -𝐵, 0))
3938eleq1d 2810 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦)))
4039ad4ant14 749 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦)))
41 eqid 2724 . . . . . . . . . . . . 13 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4241fvmpt2 6999 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4335, 1, 42syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4443eleq1d 2810 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
4544ad4ant14 749 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
4634, 40, 453bitr4d 311 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞)))
4746pm5.32da 578 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
4823fmpttd 7106 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ)
49 ffn 6707 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) Fn 𝐴)
50 elpreima 7049 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦))))
5148, 49, 503syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦))))
5251ad2antrr 723 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦))))
53 ffn 6707 . . . . . . . . 9 ((𝑥𝐴𝐵):𝐴⟶ℝ → (𝑥𝐴𝐵) Fn 𝐴)
54 elpreima 7049 . . . . . . . . 9 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
552, 53, 543syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
5655ad2antrr 723 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
5747, 52, 563bitr4d 311 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
5857alrimiv 1922 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
59 nfmpt1 5246 . . . . . . . 8 𝑥(𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
6059nfcnv 5868 . . . . . . 7 𝑥(𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
61 nfcv 2895 . . . . . . 7 𝑥(-∞(,)-𝑦)
6260, 61nfima 6057 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦))
63 nfmpt1 5246 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
6463nfcnv 5868 . . . . . . 7 𝑥(𝑥𝐴𝐵)
65 nfcv 2895 . . . . . . 7 𝑥(𝑦(,)+∞)
6664, 65nfima 6057 . . . . . 6 𝑥((𝑥𝐴𝐵) “ (𝑦(,)+∞))
6762, 66cleqf 2926 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
6858, 67sylibr 233 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)))
69 mbfposr.3 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
70 mbfima 25481 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ∈ dom vol)
7169, 48, 70syl2anc 583 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ∈ dom vol)
7271ad2antrr 723 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ∈ dom vol)
7368, 72eqeltrrd 2826 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ∈ dom vol)
74 simplr 766 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 0 ≤ 𝑦)
75 0red 11214 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 0 ∈ ℝ)
761ad4ant14 749 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
77 simpllr 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
78 maxle 13167 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦 ↔ (0 ≤ 𝑦𝐵𝑦)))
7975, 76, 77, 78syl3anc 1368 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦 ↔ (0 ≤ 𝑦𝐵𝑦)))
8074, 79mpbirand 704 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦𝐵𝑦))
8180notbid 318 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (¬ if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦 ↔ ¬ 𝐵𝑦))
8276, 4, 5sylancl 585 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
8377, 82ltnled 11358 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < if(0 ≤ 𝐵, 𝐵, 0) ↔ ¬ if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦))
8477, 76ltnled 11358 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ ¬ 𝐵𝑦))
8581, 83, 843bitr4d 311 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < if(0 ≤ 𝐵, 𝐵, 0) ↔ 𝑦 < 𝐵))
8682biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < if(0 ≤ 𝐵, 𝐵, 0) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0))))
8776biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
8885, 86, 873bitr3d 309 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0)) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
8977rexrd 11261 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
90 elioopnf 13417 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0))))
9189, 90syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0))))
9289, 32syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝐵 ∈ (𝑦(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
9388, 91, 923bitr4d 311 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
94 eqid 2724 . . . . . . . . . . . . 13 (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
9594fvmpt2 6999 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) = if(0 ≤ 𝐵, 𝐵, 0))
9635, 6, 95syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) = if(0 ≤ 𝐵, 𝐵, 0))
9796eleq1d 2810 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞)))
9897ad4ant14 749 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞)))
9944ad4ant14 749 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
10093, 98, 993bitr4d 311 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞)))
101100pm5.32da 578 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
1026fmpttd 7106 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ)
103 ffn 6707 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) Fn 𝐴)
104 elpreima 7049 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞))))
105102, 103, 1043syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞))))
106105ad2antrr 723 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞))))
10755ad2antrr 723 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
108101, 106, 1073bitr4d 311 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
109108alrimiv 1922 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
110 nfmpt1 5246 . . . . . . . 8 𝑥(𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
111110nfcnv 5868 . . . . . . 7 𝑥(𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
112111, 65nfima 6057 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞))
113112, 66cleqf 2926 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
114109, 113sylibr 233 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)))
115 mbfima 25481 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ∈ dom vol)
1163, 102, 115syl2anc 583 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ∈ dom vol)
117116ad2antrr 723 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ∈ dom vol)
118114, 117eqeltrrd 2826 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ∈ dom vol)
119 simpr 484 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
120 0red 11214 . . 3 ((𝜑𝑦 ∈ ℝ) → 0 ∈ ℝ)
12173, 118, 119, 120ltlecasei 11319 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ∈ dom vol)
122 simplr 766 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 0 < 𝑦)
123 0red 11214 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 0 ∈ ℝ)
1241ad4ant14 749 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
125 simpllr 773 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
126 maxlt 13169 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦 ↔ (0 < 𝑦𝐵 < 𝑦)))
127123, 124, 125, 126syl3anc 1368 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦 ↔ (0 < 𝑦𝐵 < 𝑦)))
128122, 127mpbirand 704 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦𝐵 < 𝑦))
1296ad4ant14 749 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
130129biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦 ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦)))
131124biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (𝐵 < 𝑦 ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
132128, 130, 1313bitr3d 309 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
133125rexrd 11261 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
134 elioomnf 13418 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦)))
135133, 134syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦)))
136 elioomnf 13418 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
137133, 136syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (𝐵 ∈ (-∞(,)𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
138132, 135, 1373bitr4d 311 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
13996eleq1d 2810 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦)))
140139ad4ant14 749 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦)))
14143eleq1d 2810 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
142141ad4ant14 749 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
143138, 140, 1423bitr4d 311 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦)))
144143pm5.32da 578 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
145 elpreima 7049 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦))))
146102, 103, 1453syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦))))
147146ad2antrr 723 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦))))
148 elpreima 7049 . . . . . . . . 9 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
1492, 53, 1483syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
150149ad2antrr 723 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
151144, 147, 1503bitr4d 311 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
152151alrimiv 1922 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
153 nfcv 2895 . . . . . . 7 𝑥(-∞(,)𝑦)
154111, 153nfima 6057 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦))
15564, 153nfima 6057 . . . . . 6 𝑥((𝑥𝐴𝐵) “ (-∞(,)𝑦))
156154, 155cleqf 2926 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
157152, 156sylibr 233 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)))
158 mbfima 25481 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ∈ dom vol)
1593, 102, 158syl2anc 583 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ∈ dom vol)
160159ad2antrr 723 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ∈ dom vol)
161157, 160eqeltrrd 2826 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ∈ dom vol)
162 simplr 766 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝑦 ≤ 0)
163 simpllr 773 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
164163le0neg1d 11782 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝑦 ≤ 0 ↔ 0 ≤ -𝑦))
165162, 164mpbid 231 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 0 ≤ -𝑦)
166165biantrurd 532 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝐵 ≤ -𝑦 ↔ (0 ≤ -𝑦 ∧ -𝐵 ≤ -𝑦)))
1671ad4ant14 749 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
168163, 167lenegd 11790 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝑦𝐵 ↔ -𝐵 ≤ -𝑦))
169 0red 11214 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 0 ∈ ℝ)
170167renegcld 11638 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
171163renegcld 11638 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
172 maxle 13167 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ ∧ -𝑦 ∈ ℝ) → (if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦 ↔ (0 ≤ -𝑦 ∧ -𝐵 ≤ -𝑦)))
173169, 170, 171, 172syl3anc 1368 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦 ↔ (0 ≤ -𝑦 ∧ -𝐵 ≤ -𝑦)))
174166, 168, 1733bitr4rd 312 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦𝑦𝐵))
175174notbid 318 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (¬ if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦 ↔ ¬ 𝑦𝐵))
17623ad4ant14 749 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
177171, 176ltnled 11358 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝑦 < if(0 ≤ -𝐵, -𝐵, 0) ↔ ¬ if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦))
178167, 163ltnled 11358 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝐵 < 𝑦 ↔ ¬ 𝑦𝐵))
179175, 177, 1783bitr4d 311 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝑦 < if(0 ≤ -𝐵, -𝐵, 0) ↔ 𝐵 < 𝑦))
180176biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝑦 < if(0 ≤ -𝐵, -𝐵, 0) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0))))
181167biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝐵 < 𝑦 ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
182179, 180, 1813bitr3d 309 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → ((if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0)) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
183171rexrd 11261 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
184 elioopnf 13417 . . . . . . . . . . 11 (-𝑦 ∈ ℝ* → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0))))
185183, 184syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0))))
186163rexrd 11261 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
187186, 136syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝐵 ∈ (-∞(,)𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
188182, 185, 1873bitr4d 311 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞) ↔ 𝐵 ∈ (-∞(,)𝑦)))
18938eleq1d 2810 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞)))
190189ad4ant14 749 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞)))
191141ad4ant14 749 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
192188, 190, 1913bitr4d 311 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦)))
193192pm5.32da 578 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
194 elpreima 7049 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞))))
19548, 49, 1943syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞))))
196195ad2antrr 723 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞))))
197149ad2antrr 723 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
198193, 196, 1973bitr4d 311 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
199198alrimiv 1922 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
200 nfcv 2895 . . . . . . 7 𝑥(-𝑦(,)+∞)
20160, 200nfima 6057 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞))
202201, 155cleqf 2926 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
203199, 202sylibr 233 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)))
204 mbfima 25481 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ∈ dom vol)
20569, 48, 204syl2anc 583 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ∈ dom vol)
206205ad2antrr 723 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ∈ dom vol)
207203, 206eqeltrrd 2826 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ∈ dom vol)
208161, 207, 120, 119ltlecasei 11319 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ∈ dom vol)
2092, 7, 121, 208ismbf2d 25491 1 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wcel 2098  ifcif 4520   class class class wbr 5138  cmpt 5221  ccnv 5665  dom cdm 5666  cima 5669   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7401  cr 11105  0cc0 11106  +∞cpnf 11242  -∞cmnf 11243  *cxr 11244   < clt 11245  cle 11246  -cneg 11442  (,)cioo 13321  volcvol 25314  MblFncmbf 25465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-q 12930  df-rp 12972  df-xadd 13090  df-ioo 13325  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-sum 15630  df-xmet 21221  df-met 21222  df-ovol 25315  df-vol 25316  df-mbf 25470
This theorem is referenced by:  mbfposb  25504
  Copyright terms: Public domain W3C validator