MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfposr Structured version   Visualization version   GIF version

Theorem mbfposr 25605
Description: Converse to mbfpos 25604. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfpos.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
mbfposr.2 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
mbfposr.3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
Assertion
Ref Expression
mbfposr (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mbfposr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mbfpos.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
21fmpttd 7105 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
3 mbfposr.2 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
4 0re 11237 . . . 4 0 ∈ ℝ
5 ifcl 4546 . . . 4 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
61, 4, 5sylancl 586 . . 3 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
73, 6mbfdm2 25590 . 2 (𝜑𝐴 ∈ dom vol)
8 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝑦 < 0)
9 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
109lt0neg1d 11806 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝑦 < 0 ↔ 0 < -𝑦))
118, 10mpbid 232 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 0 < -𝑦)
1211biantrurd 532 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (-𝐵 < -𝑦 ↔ (0 < -𝑦 ∧ -𝐵 < -𝑦)))
131ad4ant14 752 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
149, 13ltnegd 11815 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ -𝐵 < -𝑦))
15 0red 11238 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 0 ∈ ℝ)
1613renegcld 11664 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
179renegcld 11664 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
18 maxlt 13209 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ ∧ -𝑦 ∈ ℝ) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦 ↔ (0 < -𝑦 ∧ -𝐵 < -𝑦)))
1915, 16, 17, 18syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦 ↔ (0 < -𝑦 ∧ -𝐵 < -𝑦)))
2012, 14, 193bitr4rd 312 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦𝑦 < 𝐵))
211renegcld 11664 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
22 ifcl 4546 . . . . . . . . . . . . . 14 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2321, 4, 22sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2423ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2524biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦 ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦)))
2613biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
2720, 25, 263bitr3d 309 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → ((if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
2817rexrd 11285 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
29 elioomnf 13461 . . . . . . . . . . 11 (-𝑦 ∈ ℝ* → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦)))
3028, 29syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦)))
319rexrd 11285 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
32 elioopnf 13460 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (𝐵 ∈ (𝑦(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
3331, 32syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝐵 ∈ (𝑦(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
3427, 30, 333bitr4d 311 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦) ↔ 𝐵 ∈ (𝑦(,)+∞)))
35 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥𝐴)
36 eqid 2735 . . . . . . . . . . . . 13 (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
3736fvmpt2 6997 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) = if(0 ≤ -𝐵, -𝐵, 0))
3835, 23, 37syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) = if(0 ≤ -𝐵, -𝐵, 0))
3938eleq1d 2819 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦)))
4039ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦)))
41 eqid 2735 . . . . . . . . . . . . 13 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4241fvmpt2 6997 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4335, 1, 42syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4443eleq1d 2819 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
4544ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
4634, 40, 453bitr4d 311 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞)))
4746pm5.32da 579 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
4823fmpttd 7105 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ)
49 ffn 6706 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) Fn 𝐴)
50 elpreima 7048 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦))))
5148, 49, 503syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦))))
5251ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦))))
53 ffn 6706 . . . . . . . . 9 ((𝑥𝐴𝐵):𝐴⟶ℝ → (𝑥𝐴𝐵) Fn 𝐴)
54 elpreima 7048 . . . . . . . . 9 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
552, 53, 543syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
5655ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
5747, 52, 563bitr4d 311 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
5857alrimiv 1927 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
59 nfmpt1 5220 . . . . . . . 8 𝑥(𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
6059nfcnv 5858 . . . . . . 7 𝑥(𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
61 nfcv 2898 . . . . . . 7 𝑥(-∞(,)-𝑦)
6260, 61nfima 6055 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦))
63 nfmpt1 5220 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
6463nfcnv 5858 . . . . . . 7 𝑥(𝑥𝐴𝐵)
65 nfcv 2898 . . . . . . 7 𝑥(𝑦(,)+∞)
6664, 65nfima 6055 . . . . . 6 𝑥((𝑥𝐴𝐵) “ (𝑦(,)+∞))
6762, 66cleqf 2927 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
6858, 67sylibr 234 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)))
69 mbfposr.3 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
70 mbfima 25583 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ∈ dom vol)
7169, 48, 70syl2anc 584 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ∈ dom vol)
7271ad2antrr 726 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ∈ dom vol)
7368, 72eqeltrrd 2835 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ∈ dom vol)
74 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 0 ≤ 𝑦)
75 0red 11238 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 0 ∈ ℝ)
761ad4ant14 752 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
77 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
78 maxle 13207 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦 ↔ (0 ≤ 𝑦𝐵𝑦)))
7975, 76, 77, 78syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦 ↔ (0 ≤ 𝑦𝐵𝑦)))
8074, 79mpbirand 707 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦𝐵𝑦))
8180notbid 318 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (¬ if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦 ↔ ¬ 𝐵𝑦))
8276, 4, 5sylancl 586 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
8377, 82ltnled 11382 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < if(0 ≤ 𝐵, 𝐵, 0) ↔ ¬ if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦))
8477, 76ltnled 11382 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ ¬ 𝐵𝑦))
8581, 83, 843bitr4d 311 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < if(0 ≤ 𝐵, 𝐵, 0) ↔ 𝑦 < 𝐵))
8682biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < if(0 ≤ 𝐵, 𝐵, 0) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0))))
8776biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
8885, 86, 873bitr3d 309 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0)) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
8977rexrd 11285 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
90 elioopnf 13460 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0))))
9189, 90syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0))))
9289, 32syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝐵 ∈ (𝑦(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
9388, 91, 923bitr4d 311 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
94 eqid 2735 . . . . . . . . . . . . 13 (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
9594fvmpt2 6997 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) = if(0 ≤ 𝐵, 𝐵, 0))
9635, 6, 95syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) = if(0 ≤ 𝐵, 𝐵, 0))
9796eleq1d 2819 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞)))
9897ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞)))
9944ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
10093, 98, 993bitr4d 311 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞)))
101100pm5.32da 579 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
1026fmpttd 7105 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ)
103 ffn 6706 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) Fn 𝐴)
104 elpreima 7048 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞))))
105102, 103, 1043syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞))))
106105ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞))))
10755ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
108101, 106, 1073bitr4d 311 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
109108alrimiv 1927 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
110 nfmpt1 5220 . . . . . . . 8 𝑥(𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
111110nfcnv 5858 . . . . . . 7 𝑥(𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
112111, 65nfima 6055 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞))
113112, 66cleqf 2927 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
114109, 113sylibr 234 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)))
115 mbfima 25583 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ∈ dom vol)
1163, 102, 115syl2anc 584 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ∈ dom vol)
117116ad2antrr 726 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ∈ dom vol)
118114, 117eqeltrrd 2835 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ∈ dom vol)
119 simpr 484 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
120 0red 11238 . . 3 ((𝜑𝑦 ∈ ℝ) → 0 ∈ ℝ)
12173, 118, 119, 120ltlecasei 11343 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ∈ dom vol)
122 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 0 < 𝑦)
123 0red 11238 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 0 ∈ ℝ)
1241ad4ant14 752 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
125 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
126 maxlt 13209 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦 ↔ (0 < 𝑦𝐵 < 𝑦)))
127123, 124, 125, 126syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦 ↔ (0 < 𝑦𝐵 < 𝑦)))
128122, 127mpbirand 707 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦𝐵 < 𝑦))
1296ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
130129biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦 ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦)))
131124biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (𝐵 < 𝑦 ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
132128, 130, 1313bitr3d 309 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
133125rexrd 11285 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
134 elioomnf 13461 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦)))
135133, 134syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦)))
136 elioomnf 13461 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
137133, 136syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (𝐵 ∈ (-∞(,)𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
138132, 135, 1373bitr4d 311 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
13996eleq1d 2819 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦)))
140139ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦)))
14143eleq1d 2819 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
142141ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
143138, 140, 1423bitr4d 311 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦)))
144143pm5.32da 579 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
145 elpreima 7048 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦))))
146102, 103, 1453syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦))))
147146ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦))))
148 elpreima 7048 . . . . . . . . 9 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
1492, 53, 1483syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
150149ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
151144, 147, 1503bitr4d 311 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
152151alrimiv 1927 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
153 nfcv 2898 . . . . . . 7 𝑥(-∞(,)𝑦)
154111, 153nfima 6055 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦))
15564, 153nfima 6055 . . . . . 6 𝑥((𝑥𝐴𝐵) “ (-∞(,)𝑦))
156154, 155cleqf 2927 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
157152, 156sylibr 234 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)))
158 mbfima 25583 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ∈ dom vol)
1593, 102, 158syl2anc 584 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ∈ dom vol)
160159ad2antrr 726 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ∈ dom vol)
161157, 160eqeltrrd 2835 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ∈ dom vol)
162 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝑦 ≤ 0)
163 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
164163le0neg1d 11808 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝑦 ≤ 0 ↔ 0 ≤ -𝑦))
165162, 164mpbid 232 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 0 ≤ -𝑦)
166165biantrurd 532 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝐵 ≤ -𝑦 ↔ (0 ≤ -𝑦 ∧ -𝐵 ≤ -𝑦)))
1671ad4ant14 752 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
168163, 167lenegd 11816 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝑦𝐵 ↔ -𝐵 ≤ -𝑦))
169 0red 11238 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 0 ∈ ℝ)
170167renegcld 11664 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
171163renegcld 11664 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
172 maxle 13207 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ ∧ -𝑦 ∈ ℝ) → (if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦 ↔ (0 ≤ -𝑦 ∧ -𝐵 ≤ -𝑦)))
173169, 170, 171, 172syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦 ↔ (0 ≤ -𝑦 ∧ -𝐵 ≤ -𝑦)))
174166, 168, 1733bitr4rd 312 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦𝑦𝐵))
175174notbid 318 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (¬ if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦 ↔ ¬ 𝑦𝐵))
17623ad4ant14 752 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
177171, 176ltnled 11382 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝑦 < if(0 ≤ -𝐵, -𝐵, 0) ↔ ¬ if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦))
178167, 163ltnled 11382 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝐵 < 𝑦 ↔ ¬ 𝑦𝐵))
179175, 177, 1783bitr4d 311 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝑦 < if(0 ≤ -𝐵, -𝐵, 0) ↔ 𝐵 < 𝑦))
180176biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝑦 < if(0 ≤ -𝐵, -𝐵, 0) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0))))
181167biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝐵 < 𝑦 ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
182179, 180, 1813bitr3d 309 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → ((if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0)) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
183171rexrd 11285 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
184 elioopnf 13460 . . . . . . . . . . 11 (-𝑦 ∈ ℝ* → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0))))
185183, 184syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0))))
186163rexrd 11285 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
187186, 136syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝐵 ∈ (-∞(,)𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
188182, 185, 1873bitr4d 311 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞) ↔ 𝐵 ∈ (-∞(,)𝑦)))
18938eleq1d 2819 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞)))
190189ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞)))
191141ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
192188, 190, 1913bitr4d 311 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦)))
193192pm5.32da 579 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
194 elpreima 7048 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞))))
19548, 49, 1943syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞))))
196195ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞))))
197149ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
198193, 196, 1973bitr4d 311 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
199198alrimiv 1927 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
200 nfcv 2898 . . . . . . 7 𝑥(-𝑦(,)+∞)
20160, 200nfima 6055 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞))
202201, 155cleqf 2927 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
203199, 202sylibr 234 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)))
204 mbfima 25583 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ∈ dom vol)
20569, 48, 204syl2anc 584 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ∈ dom vol)
206205ad2antrr 726 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ∈ dom vol)
207203, 206eqeltrrd 2835 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ∈ dom vol)
208161, 207, 120, 119ltlecasei 11343 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ∈ dom vol)
2092, 7, 121, 208ismbf2d 25593 1 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  ifcif 4500   class class class wbr 5119  cmpt 5201  ccnv 5653  dom cdm 5654  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  +∞cpnf 11266  -∞cmnf 11267  *cxr 11268   < clt 11269  cle 11270  -cneg 11467  (,)cioo 13362  volcvol 25416  MblFncmbf 25567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xadd 13129  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-xmet 21308  df-met 21309  df-ovol 25417  df-vol 25418  df-mbf 25572
This theorem is referenced by:  mbfposb  25606
  Copyright terms: Public domain W3C validator