MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfposr Structured version   Visualization version   GIF version

Theorem mbfposr 24721
Description: Converse to mbfpos 24720. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfpos.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
mbfposr.2 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
mbfposr.3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
Assertion
Ref Expression
mbfposr (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mbfposr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mbfpos.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
21fmpttd 6971 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
3 mbfposr.2 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
4 0re 10908 . . . 4 0 ∈ ℝ
5 ifcl 4501 . . . 4 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
61, 4, 5sylancl 585 . . 3 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
73, 6mbfdm2 24706 . 2 (𝜑𝐴 ∈ dom vol)
8 simplr 765 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝑦 < 0)
9 simpllr 772 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
109lt0neg1d 11474 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝑦 < 0 ↔ 0 < -𝑦))
118, 10mpbid 231 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 0 < -𝑦)
1211biantrurd 532 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (-𝐵 < -𝑦 ↔ (0 < -𝑦 ∧ -𝐵 < -𝑦)))
131ad4ant14 748 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
149, 13ltnegd 11483 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ -𝐵 < -𝑦))
15 0red 10909 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 0 ∈ ℝ)
1613renegcld 11332 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
179renegcld 11332 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
18 maxlt 12856 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ ∧ -𝑦 ∈ ℝ) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦 ↔ (0 < -𝑦 ∧ -𝐵 < -𝑦)))
1915, 16, 17, 18syl3anc 1369 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦 ↔ (0 < -𝑦 ∧ -𝐵 < -𝑦)))
2012, 14, 193bitr4rd 311 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦𝑦 < 𝐵))
211renegcld 11332 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
22 ifcl 4501 . . . . . . . . . . . . . 14 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2321, 4, 22sylancl 585 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2423ad4ant14 748 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2524biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦 ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦)))
2613biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
2720, 25, 263bitr3d 308 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → ((if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
2817rexrd 10956 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
29 elioomnf 13105 . . . . . . . . . . 11 (-𝑦 ∈ ℝ* → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦)))
3028, 29syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦)))
319rexrd 10956 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
32 elioopnf 13104 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (𝐵 ∈ (𝑦(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
3331, 32syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝐵 ∈ (𝑦(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
3427, 30, 333bitr4d 310 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦) ↔ 𝐵 ∈ (𝑦(,)+∞)))
35 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥𝐴)
36 eqid 2738 . . . . . . . . . . . . 13 (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
3736fvmpt2 6868 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) = if(0 ≤ -𝐵, -𝐵, 0))
3835, 23, 37syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) = if(0 ≤ -𝐵, -𝐵, 0))
3938eleq1d 2823 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦)))
4039ad4ant14 748 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦)))
41 eqid 2738 . . . . . . . . . . . . 13 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4241fvmpt2 6868 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4335, 1, 42syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4443eleq1d 2823 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
4544ad4ant14 748 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
4634, 40, 453bitr4d 310 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞)))
4746pm5.32da 578 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
4823fmpttd 6971 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ)
49 ffn 6584 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) Fn 𝐴)
50 elpreima 6917 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦))))
5148, 49, 503syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦))))
5251ad2antrr 722 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦))))
53 ffn 6584 . . . . . . . . 9 ((𝑥𝐴𝐵):𝐴⟶ℝ → (𝑥𝐴𝐵) Fn 𝐴)
54 elpreima 6917 . . . . . . . . 9 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
552, 53, 543syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
5655ad2antrr 722 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
5747, 52, 563bitr4d 310 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
5857alrimiv 1931 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
59 nfmpt1 5178 . . . . . . . 8 𝑥(𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
6059nfcnv 5776 . . . . . . 7 𝑥(𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
61 nfcv 2906 . . . . . . 7 𝑥(-∞(,)-𝑦)
6260, 61nfima 5966 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦))
63 nfmpt1 5178 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
6463nfcnv 5776 . . . . . . 7 𝑥(𝑥𝐴𝐵)
65 nfcv 2906 . . . . . . 7 𝑥(𝑦(,)+∞)
6664, 65nfima 5966 . . . . . 6 𝑥((𝑥𝐴𝐵) “ (𝑦(,)+∞))
6762, 66cleqf 2937 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
6858, 67sylibr 233 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)))
69 mbfposr.3 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
70 mbfima 24699 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ∈ dom vol)
7169, 48, 70syl2anc 583 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ∈ dom vol)
7271ad2antrr 722 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ∈ dom vol)
7368, 72eqeltrrd 2840 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ∈ dom vol)
74 simplr 765 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 0 ≤ 𝑦)
75 0red 10909 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 0 ∈ ℝ)
761ad4ant14 748 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
77 simpllr 772 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
78 maxle 12854 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦 ↔ (0 ≤ 𝑦𝐵𝑦)))
7975, 76, 77, 78syl3anc 1369 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦 ↔ (0 ≤ 𝑦𝐵𝑦)))
8074, 79mpbirand 703 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦𝐵𝑦))
8180notbid 317 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (¬ if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦 ↔ ¬ 𝐵𝑦))
8276, 4, 5sylancl 585 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
8377, 82ltnled 11052 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < if(0 ≤ 𝐵, 𝐵, 0) ↔ ¬ if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦))
8477, 76ltnled 11052 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ ¬ 𝐵𝑦))
8581, 83, 843bitr4d 310 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < if(0 ≤ 𝐵, 𝐵, 0) ↔ 𝑦 < 𝐵))
8682biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < if(0 ≤ 𝐵, 𝐵, 0) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0))))
8776biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
8885, 86, 873bitr3d 308 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0)) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
8977rexrd 10956 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
90 elioopnf 13104 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0))))
9189, 90syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0))))
9289, 32syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝐵 ∈ (𝑦(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
9388, 91, 923bitr4d 310 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
94 eqid 2738 . . . . . . . . . . . . 13 (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
9594fvmpt2 6868 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) = if(0 ≤ 𝐵, 𝐵, 0))
9635, 6, 95syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) = if(0 ≤ 𝐵, 𝐵, 0))
9796eleq1d 2823 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞)))
9897ad4ant14 748 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞)))
9944ad4ant14 748 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
10093, 98, 993bitr4d 310 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞)))
101100pm5.32da 578 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
1026fmpttd 6971 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ)
103 ffn 6584 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) Fn 𝐴)
104 elpreima 6917 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞))))
105102, 103, 1043syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞))))
106105ad2antrr 722 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞))))
10755ad2antrr 722 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
108101, 106, 1073bitr4d 310 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
109108alrimiv 1931 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
110 nfmpt1 5178 . . . . . . . 8 𝑥(𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
111110nfcnv 5776 . . . . . . 7 𝑥(𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
112111, 65nfima 5966 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞))
113112, 66cleqf 2937 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
114109, 113sylibr 233 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)))
115 mbfima 24699 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ∈ dom vol)
1163, 102, 115syl2anc 583 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ∈ dom vol)
117116ad2antrr 722 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ∈ dom vol)
118114, 117eqeltrrd 2840 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ∈ dom vol)
119 simpr 484 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
120 0red 10909 . . 3 ((𝜑𝑦 ∈ ℝ) → 0 ∈ ℝ)
12173, 118, 119, 120ltlecasei 11013 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ∈ dom vol)
122 simplr 765 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 0 < 𝑦)
123 0red 10909 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 0 ∈ ℝ)
1241ad4ant14 748 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
125 simpllr 772 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
126 maxlt 12856 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦 ↔ (0 < 𝑦𝐵 < 𝑦)))
127123, 124, 125, 126syl3anc 1369 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦 ↔ (0 < 𝑦𝐵 < 𝑦)))
128122, 127mpbirand 703 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦𝐵 < 𝑦))
1296ad4ant14 748 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
130129biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦 ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦)))
131124biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (𝐵 < 𝑦 ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
132128, 130, 1313bitr3d 308 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
133125rexrd 10956 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
134 elioomnf 13105 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦)))
135133, 134syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦)))
136 elioomnf 13105 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
137133, 136syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (𝐵 ∈ (-∞(,)𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
138132, 135, 1373bitr4d 310 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
13996eleq1d 2823 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦)))
140139ad4ant14 748 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦)))
14143eleq1d 2823 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
142141ad4ant14 748 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
143138, 140, 1423bitr4d 310 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦)))
144143pm5.32da 578 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
145 elpreima 6917 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦))))
146102, 103, 1453syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦))))
147146ad2antrr 722 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦))))
148 elpreima 6917 . . . . . . . . 9 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
1492, 53, 1483syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
150149ad2antrr 722 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
151144, 147, 1503bitr4d 310 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
152151alrimiv 1931 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
153 nfcv 2906 . . . . . . 7 𝑥(-∞(,)𝑦)
154111, 153nfima 5966 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦))
15564, 153nfima 5966 . . . . . 6 𝑥((𝑥𝐴𝐵) “ (-∞(,)𝑦))
156154, 155cleqf 2937 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
157152, 156sylibr 233 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)))
158 mbfima 24699 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ∈ dom vol)
1593, 102, 158syl2anc 583 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ∈ dom vol)
160159ad2antrr 722 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ∈ dom vol)
161157, 160eqeltrrd 2840 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ∈ dom vol)
162 simplr 765 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝑦 ≤ 0)
163 simpllr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
164163le0neg1d 11476 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝑦 ≤ 0 ↔ 0 ≤ -𝑦))
165162, 164mpbid 231 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 0 ≤ -𝑦)
166165biantrurd 532 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝐵 ≤ -𝑦 ↔ (0 ≤ -𝑦 ∧ -𝐵 ≤ -𝑦)))
1671ad4ant14 748 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
168163, 167lenegd 11484 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝑦𝐵 ↔ -𝐵 ≤ -𝑦))
169 0red 10909 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 0 ∈ ℝ)
170167renegcld 11332 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
171163renegcld 11332 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
172 maxle 12854 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ ∧ -𝑦 ∈ ℝ) → (if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦 ↔ (0 ≤ -𝑦 ∧ -𝐵 ≤ -𝑦)))
173169, 170, 171, 172syl3anc 1369 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦 ↔ (0 ≤ -𝑦 ∧ -𝐵 ≤ -𝑦)))
174166, 168, 1733bitr4rd 311 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦𝑦𝐵))
175174notbid 317 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (¬ if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦 ↔ ¬ 𝑦𝐵))
17623ad4ant14 748 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
177171, 176ltnled 11052 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝑦 < if(0 ≤ -𝐵, -𝐵, 0) ↔ ¬ if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦))
178167, 163ltnled 11052 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝐵 < 𝑦 ↔ ¬ 𝑦𝐵))
179175, 177, 1783bitr4d 310 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝑦 < if(0 ≤ -𝐵, -𝐵, 0) ↔ 𝐵 < 𝑦))
180176biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝑦 < if(0 ≤ -𝐵, -𝐵, 0) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0))))
181167biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝐵 < 𝑦 ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
182179, 180, 1813bitr3d 308 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → ((if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0)) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
183171rexrd 10956 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
184 elioopnf 13104 . . . . . . . . . . 11 (-𝑦 ∈ ℝ* → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0))))
185183, 184syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0))))
186163rexrd 10956 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
187186, 136syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝐵 ∈ (-∞(,)𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
188182, 185, 1873bitr4d 310 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞) ↔ 𝐵 ∈ (-∞(,)𝑦)))
18938eleq1d 2823 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞)))
190189ad4ant14 748 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞)))
191141ad4ant14 748 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
192188, 190, 1913bitr4d 310 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦)))
193192pm5.32da 578 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
194 elpreima 6917 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞))))
19548, 49, 1943syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞))))
196195ad2antrr 722 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞))))
197149ad2antrr 722 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
198193, 196, 1973bitr4d 310 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
199198alrimiv 1931 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
200 nfcv 2906 . . . . . . 7 𝑥(-𝑦(,)+∞)
20160, 200nfima 5966 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞))
202201, 155cleqf 2937 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
203199, 202sylibr 233 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)))
204 mbfima 24699 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ∈ dom vol)
20569, 48, 204syl2anc 583 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ∈ dom vol)
206205ad2antrr 722 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ∈ dom vol)
207203, 206eqeltrrd 2840 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ∈ dom vol)
208161, 207, 120, 119ltlecasei 11013 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ∈ dom vol)
2092, 7, 121, 208ismbf2d 24709 1 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  ifcif 4456   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  -cneg 11136  (,)cioo 13008  volcvol 24532  MblFncmbf 24683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534  df-mbf 24688
This theorem is referenced by:  mbfposb  24722
  Copyright terms: Public domain W3C validator