MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfposr Structured version   Visualization version   GIF version

Theorem mbfposr 25560
Description: Converse to mbfpos 25559. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfpos.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
mbfposr.2 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
mbfposr.3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
Assertion
Ref Expression
mbfposr (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mbfposr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mbfpos.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
21fmpttd 7090 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
3 mbfposr.2 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
4 0re 11183 . . . 4 0 ∈ ℝ
5 ifcl 4537 . . . 4 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
61, 4, 5sylancl 586 . . 3 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
73, 6mbfdm2 25545 . 2 (𝜑𝐴 ∈ dom vol)
8 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝑦 < 0)
9 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
109lt0neg1d 11754 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝑦 < 0 ↔ 0 < -𝑦))
118, 10mpbid 232 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 0 < -𝑦)
1211biantrurd 532 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (-𝐵 < -𝑦 ↔ (0 < -𝑦 ∧ -𝐵 < -𝑦)))
131ad4ant14 752 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
149, 13ltnegd 11763 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ -𝐵 < -𝑦))
15 0red 11184 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 0 ∈ ℝ)
1613renegcld 11612 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
179renegcld 11612 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
18 maxlt 13160 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ ∧ -𝑦 ∈ ℝ) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦 ↔ (0 < -𝑦 ∧ -𝐵 < -𝑦)))
1915, 16, 17, 18syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦 ↔ (0 < -𝑦 ∧ -𝐵 < -𝑦)))
2012, 14, 193bitr4rd 312 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦𝑦 < 𝐵))
211renegcld 11612 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
22 ifcl 4537 . . . . . . . . . . . . . 14 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2321, 4, 22sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2423ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2524biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) < -𝑦 ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦)))
2613biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
2720, 25, 263bitr3d 309 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → ((if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
2817rexrd 11231 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
29 elioomnf 13412 . . . . . . . . . . 11 (-𝑦 ∈ ℝ* → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦)))
3028, 29syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) < -𝑦)))
319rexrd 11231 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
32 elioopnf 13411 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (𝐵 ∈ (𝑦(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
3331, 32syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (𝐵 ∈ (𝑦(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
3427, 30, 333bitr4d 311 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦) ↔ 𝐵 ∈ (𝑦(,)+∞)))
35 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥𝐴)
36 eqid 2730 . . . . . . . . . . . . 13 (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
3736fvmpt2 6982 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) = if(0 ≤ -𝐵, -𝐵, 0))
3835, 23, 37syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) = if(0 ≤ -𝐵, -𝐵, 0))
3938eleq1d 2814 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦)))
4039ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-∞(,)-𝑦)))
41 eqid 2730 . . . . . . . . . . . . 13 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4241fvmpt2 6982 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4335, 1, 42syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
4443eleq1d 2814 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
4544ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
4634, 40, 453bitr4d 311 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞)))
4746pm5.32da 579 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
4823fmpttd 7090 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ)
49 ffn 6691 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) Fn 𝐴)
50 elpreima 7033 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦))))
5148, 49, 503syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦))))
5251ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-∞(,)-𝑦))))
53 ffn 6691 . . . . . . . . 9 ((𝑥𝐴𝐵):𝐴⟶ℝ → (𝑥𝐴𝐵) Fn 𝐴)
54 elpreima 7033 . . . . . . . . 9 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
552, 53, 543syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
5655ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
5747, 52, 563bitr4d 311 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
5857alrimiv 1927 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
59 nfmpt1 5209 . . . . . . . 8 𝑥(𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
6059nfcnv 5845 . . . . . . 7 𝑥(𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
61 nfcv 2892 . . . . . . 7 𝑥(-∞(,)-𝑦)
6260, 61nfima 6042 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦))
63 nfmpt1 5209 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
6463nfcnv 5845 . . . . . . 7 𝑥(𝑥𝐴𝐵)
65 nfcv 2892 . . . . . . 7 𝑥(𝑦(,)+∞)
6664, 65nfima 6042 . . . . . 6 𝑥((𝑥𝐴𝐵) “ (𝑦(,)+∞))
6762, 66cleqf 2921 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
6858, 67sylibr 234 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)))
69 mbfposr.3 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
70 mbfima 25538 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ∈ dom vol)
7169, 48, 70syl2anc 584 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ∈ dom vol)
7271ad2antrr 726 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-∞(,)-𝑦)) ∈ dom vol)
7368, 72eqeltrrd 2830 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 < 0) → ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ∈ dom vol)
74 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 0 ≤ 𝑦)
75 0red 11184 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 0 ∈ ℝ)
761ad4ant14 752 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
77 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
78 maxle 13158 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦 ↔ (0 ≤ 𝑦𝐵𝑦)))
7975, 76, 77, 78syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦 ↔ (0 ≤ 𝑦𝐵𝑦)))
8074, 79mpbirand 707 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦𝐵𝑦))
8180notbid 318 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (¬ if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦 ↔ ¬ 𝐵𝑦))
8276, 4, 5sylancl 586 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
8377, 82ltnled 11328 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < if(0 ≤ 𝐵, 𝐵, 0) ↔ ¬ if(0 ≤ 𝐵, 𝐵, 0) ≤ 𝑦))
8477, 76ltnled 11328 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ ¬ 𝐵𝑦))
8581, 83, 843bitr4d 311 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < if(0 ≤ 𝐵, 𝐵, 0) ↔ 𝑦 < 𝐵))
8682biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < if(0 ≤ 𝐵, 𝐵, 0) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0))))
8776biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝑦 < 𝐵 ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
8885, 86, 873bitr3d 309 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0)) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
8977rexrd 11231 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
90 elioopnf 13411 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0))))
9189, 90syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 𝑦 < if(0 ≤ 𝐵, 𝐵, 0))))
9289, 32syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (𝐵 ∈ (𝑦(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑦 < 𝐵)))
9388, 91, 923bitr4d 311 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
94 eqid 2730 . . . . . . . . . . . . 13 (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
9594fvmpt2 6982 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) = if(0 ≤ 𝐵, 𝐵, 0))
9635, 6, 95syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) = if(0 ≤ 𝐵, 𝐵, 0))
9796eleq1d 2814 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞)))
9897ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (𝑦(,)+∞)))
9944ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝐵 ∈ (𝑦(,)+∞)))
10093, 98, 993bitr4d 311 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞)))
101100pm5.32da 579 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
1026fmpttd 7090 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ)
103 ffn 6691 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) Fn 𝐴)
104 elpreima 7033 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞))))
105102, 103, 1043syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞))))
106105ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (𝑦(,)+∞))))
10755ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑦(,)+∞))))
108101, 106, 1073bitr4d 311 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
109108alrimiv 1927 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
110 nfmpt1 5209 . . . . . . . 8 𝑥(𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
111110nfcnv 5845 . . . . . . 7 𝑥(𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
112111, 65nfima 6042 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞))
113112, 66cleqf 2921 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (𝑦(,)+∞))))
114109, 113sylibr 234 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (𝑦(,)+∞)))
115 mbfima 25538 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ∈ dom vol)
1163, 102, 115syl2anc 584 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ∈ dom vol)
117116ad2antrr 726 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (𝑦(,)+∞)) ∈ dom vol)
118114, 117eqeltrrd 2830 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 0 ≤ 𝑦) → ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ∈ dom vol)
119 simpr 484 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
120 0red 11184 . . 3 ((𝜑𝑦 ∈ ℝ) → 0 ∈ ℝ)
12173, 118, 119, 120ltlecasei 11289 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴𝐵) “ (𝑦(,)+∞)) ∈ dom vol)
122 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 0 < 𝑦)
123 0red 11184 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 0 ∈ ℝ)
1241ad4ant14 752 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
125 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
126 maxlt 13160 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦 ↔ (0 < 𝑦𝐵 < 𝑦)))
127123, 124, 125, 126syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦 ↔ (0 < 𝑦𝐵 < 𝑦)))
128122, 127mpbirand 707 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦𝐵 < 𝑦))
1296ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
130129biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) < 𝑦 ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦)))
131124biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (𝐵 < 𝑦 ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
132128, 130, 1313bitr3d 309 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
133125rexrd 11231 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
134 elioomnf 13412 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦)))
135133, 134syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ if(0 ≤ 𝐵, 𝐵, 0) < 𝑦)))
136 elioomnf 13412 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
137133, 136syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (𝐵 ∈ (-∞(,)𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
138132, 135, 1373bitr4d 311 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
13996eleq1d 2814 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦)))
140139ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦) ↔ if(0 ≤ 𝐵, 𝐵, 0) ∈ (-∞(,)𝑦)))
14143eleq1d 2814 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
142141ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
143138, 140, 1423bitr4d 311 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦)))
144143pm5.32da 579 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
145 elpreima 7033 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦))))
146102, 103, 1453syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦))))
147146ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))‘𝑥) ∈ (-∞(,)𝑦))))
148 elpreima 7033 . . . . . . . . 9 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
1492, 53, 1483syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
150149ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
151144, 147, 1503bitr4d 311 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
152151alrimiv 1927 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
153 nfcv 2892 . . . . . . 7 𝑥(-∞(,)𝑦)
154111, 153nfima 6042 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦))
15564, 153nfima 6042 . . . . . 6 𝑥((𝑥𝐴𝐵) “ (-∞(,)𝑦))
156154, 155cleqf 2921 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
157152, 156sylibr 234 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)))
158 mbfima 25538 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ∈ dom vol)
1593, 102, 158syl2anc 584 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ∈ dom vol)
160159ad2antrr 726 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) “ (-∞(,)𝑦)) ∈ dom vol)
161157, 160eqeltrrd 2830 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 0 < 𝑦) → ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ∈ dom vol)
162 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝑦 ≤ 0)
163 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
164163le0neg1d 11756 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝑦 ≤ 0 ↔ 0 ≤ -𝑦))
165162, 164mpbid 232 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 0 ≤ -𝑦)
166165biantrurd 532 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝐵 ≤ -𝑦 ↔ (0 ≤ -𝑦 ∧ -𝐵 ≤ -𝑦)))
1671ad4ant14 752 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
168163, 167lenegd 11764 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝑦𝐵 ↔ -𝐵 ≤ -𝑦))
169 0red 11184 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 0 ∈ ℝ)
170167renegcld 11612 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
171163renegcld 11612 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
172 maxle 13158 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ ∧ -𝑦 ∈ ℝ) → (if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦 ↔ (0 ≤ -𝑦 ∧ -𝐵 ≤ -𝑦)))
173169, 170, 171, 172syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦 ↔ (0 ≤ -𝑦 ∧ -𝐵 ≤ -𝑦)))
174166, 168, 1733bitr4rd 312 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦𝑦𝐵))
175174notbid 318 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (¬ if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦 ↔ ¬ 𝑦𝐵))
17623ad4ant14 752 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
177171, 176ltnled 11328 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝑦 < if(0 ≤ -𝐵, -𝐵, 0) ↔ ¬ if(0 ≤ -𝐵, -𝐵, 0) ≤ -𝑦))
178167, 163ltnled 11328 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝐵 < 𝑦 ↔ ¬ 𝑦𝐵))
179175, 177, 1783bitr4d 311 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝑦 < if(0 ≤ -𝐵, -𝐵, 0) ↔ 𝐵 < 𝑦))
180176biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (-𝑦 < if(0 ≤ -𝐵, -𝐵, 0) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0))))
181167biantrurd 532 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝐵 < 𝑦 ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
182179, 180, 1813bitr3d 309 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → ((if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0)) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
183171rexrd 11231 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
184 elioopnf 13411 . . . . . . . . . . 11 (-𝑦 ∈ ℝ* → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0))))
185183, 184syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞) ↔ (if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ ∧ -𝑦 < if(0 ≤ -𝐵, -𝐵, 0))))
186163rexrd 11231 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
187186, 136syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (𝐵 ∈ (-∞(,)𝑦) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝑦)))
188182, 185, 1873bitr4d 311 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞) ↔ 𝐵 ∈ (-∞(,)𝑦)))
18938eleq1d 2814 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞)))
190189ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞) ↔ if(0 ≤ -𝐵, -𝐵, 0) ∈ (-𝑦(,)+∞)))
191141ad4ant14 752 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦) ↔ 𝐵 ∈ (-∞(,)𝑦)))
192188, 190, 1913bitr4d 311 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) ∧ 𝑥𝐴) → (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦)))
193192pm5.32da 579 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
194 elpreima 7033 . . . . . . . . 9 ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) Fn 𝐴 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞))))
19548, 49, 1943syl 18 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞))))
196195ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))‘𝑥) ∈ (-𝑦(,)+∞))))
197149ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → (𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ (𝑥𝐴 ∧ ((𝑥𝐴𝐵)‘𝑥) ∈ (-∞(,)𝑦))))
198193, 196, 1973bitr4d 311 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → (𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
199198alrimiv 1927 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
200 nfcv 2892 . . . . . . 7 𝑥(-𝑦(,)+∞)
20160, 200nfima 6042 . . . . . 6 𝑥((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞))
202201, 155cleqf 2921 . . . . 5 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ↔ ∀𝑥(𝑥 ∈ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ↔ 𝑥 ∈ ((𝑥𝐴𝐵) “ (-∞(,)𝑦))))
203199, 202sylibr 234 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) = ((𝑥𝐴𝐵) “ (-∞(,)𝑦)))
204 mbfima 25538 . . . . . 6 (((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ∈ dom vol)
20569, 48, 204syl2anc 584 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ∈ dom vol)
206205ad2antrr 726 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) “ (-𝑦(,)+∞)) ∈ dom vol)
207203, 206eqeltrrd 2830 . . 3 (((𝜑𝑦 ∈ ℝ) ∧ 𝑦 ≤ 0) → ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ∈ dom vol)
208161, 207, 120, 119ltlecasei 11289 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴𝐵) “ (-∞(,)𝑦)) ∈ dom vol)
2092, 7, 121, 208ismbf2d 25548 1 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  ifcif 4491   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  -cneg 11413  (,)cioo 13313  volcvol 25371  MblFncmbf 25522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xadd 13080  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-xmet 21264  df-met 21265  df-ovol 25372  df-vol 25373  df-mbf 25527
This theorem is referenced by:  mbfposb  25561
  Copyright terms: Public domain W3C validator