Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0tmd | Structured version Visualization version GIF version |
Description: The extended nonnegative real numbers monoid is a topological monoid. (Contributed by Thierry Arnoux, 26-Mar-2017.) (Proof Shortened by Thierry Arnoux, 21-Jun-2017.) |
Ref | Expression |
---|---|
xrge0tmd | ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2740 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 = 0 ↔ 𝑦 = 0)) | |
2 | fveq2 6804 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (log‘𝑥) = (log‘𝑦)) | |
3 | 2 | negeqd 11265 | . . . . 5 ⊢ (𝑥 = 𝑦 → -(log‘𝑥) = -(log‘𝑦)) |
4 | 1, 3 | ifbieq2d 4491 | . . . 4 ⊢ (𝑥 = 𝑦 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑦 = 0, +∞, -(log‘𝑦))) |
5 | 4 | cbvmptv 5194 | . . 3 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) = (𝑦 ∈ (0[,]1) ↦ if(𝑦 = 0, +∞, -(log‘𝑦))) |
6 | xrge0topn 31942 | . . 3 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
7 | 5, 6 | xrge0iifmhm 31938 | . 2 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) |
8 | 5, 6 | xrge0iifhmeo 31935 | . . 3 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ∈ (IIHomeo(TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞)))) |
9 | cnfldex 20649 | . . . . . 6 ⊢ ℂfld ∈ V | |
10 | ovex 7340 | . . . . . 6 ⊢ (0[,]1) ∈ V | |
11 | eqid 2736 | . . . . . . 7 ⊢ (ℂfld ↾s (0[,]1)) = (ℂfld ↾s (0[,]1)) | |
12 | eqid 2736 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
13 | 11, 12 | mgpress 19784 | . . . . . 6 ⊢ ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂfld ↾s (0[,]1)))) |
14 | 9, 10, 13 | mp2an 690 | . . . . 5 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂfld ↾s (0[,]1))) |
15 | 11 | dfii4 24096 | . . . . 5 ⊢ II = (TopOpen‘(ℂfld ↾s (0[,]1))) |
16 | 14, 15 | mgptopn 19781 | . . . 4 ⊢ II = (TopOpen‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
17 | 16 | oveq1i 7317 | . . 3 ⊢ (IIHomeo(TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞)))) = ((TopOpen‘((mulGrp‘ℂfld) ↾s (0[,]1)))Homeo(TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞)))) |
18 | 8, 17 | eleqtri 2835 | . 2 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ∈ ((TopOpen‘((mulGrp‘ℂfld) ↾s (0[,]1)))Homeo(TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞)))) |
19 | eqid 2736 | . . 3 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1)) | |
20 | 19 | iistmd 31901 | . 2 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd |
21 | xrge0tps 31941 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
22 | 7, 18, 20, 21 | mhmhmeotmd 31926 | 1 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 Vcvv 3437 ifcif 4465 ↦ cmpt 5164 ‘cfv 6458 (class class class)co 7307 0cc0 10921 1c1 10922 +∞cpnf 11056 -cneg 11256 [,]cicc 13132 ↾s cress 16990 TopOpenctopn 17181 ℝ*𝑠cxrs 17260 mulGrpcmgp 19769 ℂfldccnfld 20646 Homeochmeo 22953 TopMndctmd 23270 IIcii 24087 logclog 25759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 ax-addf 11000 ax-mulf 11001 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9177 df-fi 9218 df-sup 9249 df-inf 9250 df-oi 9317 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-q 12739 df-rp 12781 df-xneg 12898 df-xadd 12899 df-xmul 12900 df-ioo 13133 df-ioc 13134 df-ico 13135 df-icc 13136 df-fz 13290 df-fzo 13433 df-fl 13562 df-mod 13640 df-seq 13772 df-exp 13833 df-fac 14038 df-bc 14067 df-hash 14095 df-shft 14827 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-limsup 15229 df-clim 15246 df-rlim 15247 df-sum 15447 df-ef 15826 df-sin 15828 df-cos 15829 df-pi 15831 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-mulr 17025 df-starv 17026 df-sca 17027 df-vsca 17028 df-ip 17029 df-tset 17030 df-ple 17031 df-ds 17033 df-unif 17034 df-hom 17035 df-cco 17036 df-rest 17182 df-topn 17183 df-0g 17201 df-gsum 17202 df-topgen 17203 df-pt 17204 df-prds 17207 df-ordt 17261 df-xrs 17262 df-qtop 17267 df-imas 17268 df-xps 17270 df-mre 17344 df-mrc 17345 df-acs 17347 df-ps 18333 df-tsr 18334 df-plusf 18374 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-mhm 18479 df-submnd 18480 df-grp 18629 df-minusg 18630 df-sbg 18631 df-mulg 18750 df-subg 18801 df-cntz 18972 df-cmn 19437 df-abl 19438 df-mgp 19770 df-ur 19787 df-ring 19834 df-cring 19835 df-subrg 20071 df-abv 20126 df-lmod 20174 df-scaf 20175 df-sra 20483 df-rgmod 20484 df-psmet 20638 df-xmet 20639 df-met 20640 df-bl 20641 df-mopn 20642 df-fbas 20643 df-fg 20644 df-cnfld 20647 df-top 22092 df-topon 22109 df-topsp 22131 df-bases 22145 df-cld 22219 df-ntr 22220 df-cls 22221 df-nei 22298 df-lp 22336 df-perf 22337 df-cn 22427 df-cnp 22428 df-haus 22515 df-tx 22762 df-hmeo 22955 df-fil 23046 df-fm 23138 df-flim 23139 df-flf 23140 df-tmd 23272 df-tgp 23273 df-trg 23360 df-xms 23522 df-ms 23523 df-tms 23524 df-nm 23787 df-ngp 23788 df-nrg 23790 df-nlm 23791 df-ii 24089 df-cncf 24090 df-limc 25079 df-dv 25080 df-log 25761 |
This theorem is referenced by: esumsplit 32070 esumadd 32074 esumaddf 32078 esumcst 32080 |
Copyright terms: Public domain | W3C validator |