Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > regsumfsum | Structured version Visualization version GIF version |
Description: Relate a group sum on (ℂfld ↾s ℝ) to a finite sum on the reals. Cf. gsumfsum 20675. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
Ref | Expression |
---|---|
regsumfsum.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
regsumfsum.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
regsumfsum | ⊢ (𝜑 → ((ℂfld ↾s ℝ) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 20611 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
2 | cnfldadd 20612 | . . 3 ⊢ + = (+g‘ℂfld) | |
3 | eqid 2738 | . . 3 ⊢ (ℂfld ↾s ℝ) = (ℂfld ↾s ℝ) | |
4 | cnfldex 20610 | . . . 4 ⊢ ℂfld ∈ V | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → ℂfld ∈ V) |
6 | regsumfsum.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | ax-resscn 10938 | . . . 4 ⊢ ℝ ⊆ ℂ | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ⊆ ℂ) |
9 | regsumfsum.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
10 | 9 | fmpttd 6981 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
11 | 0red 10988 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
12 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
13 | 12 | addid2d 11186 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥) |
14 | 12 | addid1d 11185 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥) |
15 | 13, 14 | jca 512 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)) |
16 | 1, 2, 3, 5, 6, 8, 10, 11, 15 | gsumress 18376 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℂfld ↾s ℝ) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
17 | 9 | recnd 11013 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
18 | 6, 17 | gsumfsum 20675 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) |
19 | 16, 18 | eqtr3d 2780 | 1 ⊢ (𝜑 → ((ℂfld ↾s ℝ) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3429 ⊆ wss 3886 ↦ cmpt 5156 (class class class)co 7267 Fincfn 8720 ℂcc 10879 ℝcr 10880 0cc0 10881 + caddc 10884 Σcsu 15407 ↾s cress 16951 Σg cgsu 17161 ℂfldccnfld 20607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 ax-addf 10960 ax-mulf 10961 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-supp 7965 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-sup 9188 df-oi 9256 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-rp 12741 df-fz 13250 df-fzo 13393 df-seq 13732 df-exp 13793 df-hash 14055 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-clim 15207 df-sum 15408 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-starv 16987 df-tset 16991 df-ple 16992 df-ds 16994 df-unif 16995 df-0g 17162 df-gsum 17163 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-grp 18590 df-minusg 18591 df-cntz 18933 df-cmn 19398 df-abl 19399 df-mgp 19731 df-ur 19748 df-ring 19795 df-cring 19796 df-cnfld 20608 |
This theorem is referenced by: rrxdsfi 24585 |
Copyright terms: Public domain | W3C validator |