MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsumfsum Structured version   Visualization version   GIF version

Theorem regsumfsum 20676
Description: Relate a group sum on (ℂflds ℝ) to a finite sum on the reals. Cf. gsumfsum 20675. (Contributed by Thierry Arnoux, 7-Sep-2018.)
Hypotheses
Ref Expression
regsumfsum.1 (𝜑𝐴 ∈ Fin)
regsumfsum.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
regsumfsum (𝜑 → ((ℂflds ℝ) Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem regsumfsum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnfldbas 20611 . . 3 ℂ = (Base‘ℂfld)
2 cnfldadd 20612 . . 3 + = (+g‘ℂfld)
3 eqid 2738 . . 3 (ℂflds ℝ) = (ℂflds ℝ)
4 cnfldex 20610 . . . 4 fld ∈ V
54a1i 11 . . 3 (𝜑 → ℂfld ∈ V)
6 regsumfsum.1 . . 3 (𝜑𝐴 ∈ Fin)
7 ax-resscn 10938 . . . 4 ℝ ⊆ ℂ
87a1i 11 . . 3 (𝜑 → ℝ ⊆ ℂ)
9 regsumfsum.2 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
109fmpttd 6981 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℝ)
11 0red 10988 . . 3 (𝜑 → 0 ∈ ℝ)
12 simpr 485 . . . . 5 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
1312addid2d 11186 . . . 4 ((𝜑𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
1412addid1d 11185 . . . 4 ((𝜑𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥)
1513, 14jca 512 . . 3 ((𝜑𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
161, 2, 3, 5, 6, 8, 10, 11, 15gsumress 18376 . 2 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = ((ℂflds ℝ) Σg (𝑘𝐴𝐵)))
179recnd 11013 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
186, 17gsumfsum 20675 . 2 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
1916, 18eqtr3d 2780 1 (𝜑 → ((ℂflds ℝ) Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3429  wss 3886  cmpt 5156  (class class class)co 7267  Fincfn 8720  cc 10879  cr 10880  0cc0 10881   + caddc 10884  Σcsu 15407  s cress 16951   Σg cgsu 17161  fldccnfld 20607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-inf2 9386  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959  ax-addf 10960  ax-mulf 10961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-sup 9188  df-oi 9256  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-rp 12741  df-fz 13250  df-fzo 13393  df-seq 13732  df-exp 13793  df-hash 14055  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-clim 15207  df-sum 15408  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-starv 16987  df-tset 16991  df-ple 16992  df-ds 16994  df-unif 16995  df-0g 17162  df-gsum 17163  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-grp 18590  df-minusg 18591  df-cntz 18933  df-cmn 19398  df-abl 19399  df-mgp 19731  df-ur 19748  df-ring 19795  df-cring 19796  df-cnfld 20608
This theorem is referenced by:  rrxdsfi  24585
  Copyright terms: Public domain W3C validator