MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rge0srg Structured version   Visualization version   GIF version

Theorem rge0srg 20868
Description: The nonnegative real numbers form a semiring (commutative by subcmn 19615). (Contributed by Thierry Arnoux, 6-Sep-2018.)
Assertion
Ref Expression
rge0srg (ℂflds (0[,)+∞)) ∈ SRing

Proof of Theorem rge0srg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 20819 . . . 4 fld ∈ Ring
2 ringcmn 20003 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
31, 2ax-mp 5 . . 3 fld ∈ CMnd
4 rege0subm 20853 . . 3 (0[,)+∞) ∈ (SubMnd‘ℂfld)
5 eqid 2736 . . . 4 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
65submcmn 19616 . . 3 ((ℂfld ∈ CMnd ∧ (0[,)+∞) ∈ (SubMnd‘ℂfld)) → (ℂflds (0[,)+∞)) ∈ CMnd)
73, 4, 6mp2an 690 . 2 (ℂflds (0[,)+∞)) ∈ CMnd
8 rge0ssre 13373 . . . . 5 (0[,)+∞) ⊆ ℝ
9 ax-resscn 11108 . . . . 5 ℝ ⊆ ℂ
108, 9sstri 3953 . . . 4 (0[,)+∞) ⊆ ℂ
11 1re 11155 . . . . 5 1 ∈ ℝ
12 0le1 11678 . . . . 5 0 ≤ 1
13 ltpnf 13041 . . . . . 6 (1 ∈ ℝ → 1 < +∞)
1411, 13ax-mp 5 . . . . 5 1 < +∞
15 0re 11157 . . . . . 6 0 ∈ ℝ
16 pnfxr 11209 . . . . . 6 +∞ ∈ ℝ*
17 elico2 13328 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
1815, 16, 17mp2an 690 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
1911, 12, 14, 18mpbir3an 1341 . . . 4 1 ∈ (0[,)+∞)
20 ge0mulcl 13378 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
2120rgen2 3194 . . . 4 𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞)
22 eqid 2736 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2322ringmgp 19970 . . . . 5 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
24 cnfldbas 20800 . . . . . . 7 ℂ = (Base‘ℂfld)
2522, 24mgpbas 19902 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
26 cnfld1 20822 . . . . . . 7 1 = (1r‘ℂfld)
2722, 26ringidval 19915 . . . . . 6 1 = (0g‘(mulGrp‘ℂfld))
28 cnfldmul 20802 . . . . . . 7 · = (.r‘ℂfld)
2922, 28mgpplusg 19900 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
3025, 27, 29issubm 18614 . . . . 5 ((mulGrp‘ℂfld) ∈ Mnd → ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ ((0[,)+∞) ⊆ ℂ ∧ 1 ∈ (0[,)+∞) ∧ ∀𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞))))
311, 23, 30mp2b 10 . . . 4 ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ ((0[,)+∞) ⊆ ℂ ∧ 1 ∈ (0[,)+∞) ∧ ∀𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞)))
3210, 19, 21, 31mpbir3an 1341 . . 3 (0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld))
33 eqid 2736 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = ((mulGrp‘ℂfld) ↾s (0[,)+∞))
3433submmnd 18624 . . 3 ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) → ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd)
3532, 34ax-mp 5 . 2 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd
36 simpll 765 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑥 ∈ (0[,)+∞))
3710, 36sselid 3942 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑥 ∈ ℂ)
38 simplr 767 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑦 ∈ (0[,)+∞))
3910, 38sselid 3942 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑦 ∈ ℂ)
40 simpr 485 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑧 ∈ (0[,)+∞))
4110, 40sselid 3942 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑧 ∈ ℂ)
4237, 39, 41adddid 11179 . . . . . . 7 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
4337, 39, 41adddird 11180 . . . . . . 7 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
4442, 43jca 512 . . . . . 6 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4544ralrimiva 3143 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → ∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4645ralrimiva 3143 . . . 4 (𝑥 ∈ (0[,)+∞) → ∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4710sseli 3940 . . . . 5 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
4847mul02d 11353 . . . 4 (𝑥 ∈ (0[,)+∞) → (0 · 𝑥) = 0)
4947mul01d 11354 . . . 4 (𝑥 ∈ (0[,)+∞) → (𝑥 · 0) = 0)
5046, 48, 49jca32 516 . . 3 (𝑥 ∈ (0[,)+∞) → (∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0)))
5150rgen 3066 . 2 𝑥 ∈ (0[,)+∞)(∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))
525, 24ressbas2 17120 . . . 4 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
5310, 52ax-mp 5 . . 3 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
54 cnfldex 20799 . . . 4 fld ∈ V
55 ovex 7390 . . . 4 (0[,)+∞) ∈ V
565, 22mgpress 19911 . . . 4 ((ℂfld ∈ V ∧ (0[,)+∞) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = (mulGrp‘(ℂflds (0[,)+∞))))
5754, 55, 56mp2an 690 . . 3 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = (mulGrp‘(ℂflds (0[,)+∞)))
58 cnfldadd 20801 . . . . 5 + = (+g‘ℂfld)
595, 58ressplusg 17171 . . . 4 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
6055, 59ax-mp 5 . . 3 + = (+g‘(ℂflds (0[,)+∞)))
615, 28ressmulr 17188 . . . 4 ((0[,)+∞) ∈ V → · = (.r‘(ℂflds (0[,)+∞))))
6255, 61ax-mp 5 . . 3 · = (.r‘(ℂflds (0[,)+∞)))
63 ringmnd 19974 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
641, 63ax-mp 5 . . . 4 fld ∈ Mnd
65 0e0icopnf 13375 . . . 4 0 ∈ (0[,)+∞)
66 cnfld0 20821 . . . . 5 0 = (0g‘ℂfld)
675, 24, 66ress0g 18584 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 0 = (0g‘(ℂflds (0[,)+∞))))
6864, 65, 10, 67mp3an 1461 . . 3 0 = (0g‘(ℂflds (0[,)+∞)))
6953, 57, 60, 62, 68issrg 19919 . 2 ((ℂflds (0[,)+∞)) ∈ SRing ↔ ((ℂflds (0[,)+∞)) ∈ CMnd ∧ ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd ∧ ∀𝑥 ∈ (0[,)+∞)(∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))))
707, 35, 51, 69mpbir3an 1341 1 (ℂflds (0[,)+∞)) ∈ SRing
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  wss 3910   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  [,)cico 13266  Basecbs 17083  s cress 17112  +gcplusg 17133  .rcmulr 17134  0gc0g 17321  Mndcmnd 18556  SubMndcsubmnd 18600  CMndccmn 19562  mulGrpcmgp 19896  SRingcsrg 19917  Ringcrg 19964  fldccnfld 20796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-ico 13270  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-cring 19967  df-cnfld 20797
This theorem is referenced by:  xrge0slmod  32140  sge0tsms  44611
  Copyright terms: Public domain W3C validator