Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rge0srg Structured version   Visualization version   GIF version

Theorem rge0srg 20619
 Description: The nonnegative real numbers form a semiring (commutative by subcmn 18960). (Contributed by Thierry Arnoux, 6-Sep-2018.)
Assertion
Ref Expression
rge0srg (ℂflds (0[,)+∞)) ∈ SRing

Proof of Theorem rge0srg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 20570 . . . 4 fld ∈ Ring
2 ringcmn 19334 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
31, 2ax-mp 5 . . 3 fld ∈ CMnd
4 rege0subm 20604 . . 3 (0[,)+∞) ∈ (SubMnd‘ℂfld)
5 eqid 2824 . . . 4 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
65submcmn 18961 . . 3 ((ℂfld ∈ CMnd ∧ (0[,)+∞) ∈ (SubMnd‘ℂfld)) → (ℂflds (0[,)+∞)) ∈ CMnd)
73, 4, 6mp2an 690 . 2 (ℂflds (0[,)+∞)) ∈ CMnd
8 rge0ssre 12847 . . . . 5 (0[,)+∞) ⊆ ℝ
9 ax-resscn 10597 . . . . 5 ℝ ⊆ ℂ
108, 9sstri 3979 . . . 4 (0[,)+∞) ⊆ ℂ
11 1re 10644 . . . . 5 1 ∈ ℝ
12 0le1 11166 . . . . 5 0 ≤ 1
13 ltpnf 12518 . . . . . 6 (1 ∈ ℝ → 1 < +∞)
1411, 13ax-mp 5 . . . . 5 1 < +∞
15 0re 10646 . . . . . 6 0 ∈ ℝ
16 pnfxr 10698 . . . . . 6 +∞ ∈ ℝ*
17 elico2 12803 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
1815, 16, 17mp2an 690 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
1911, 12, 14, 18mpbir3an 1337 . . . 4 1 ∈ (0[,)+∞)
20 ge0mulcl 12852 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
2120rgen2 3206 . . . 4 𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞)
22 eqid 2824 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2322ringmgp 19306 . . . . 5 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
24 cnfldbas 20552 . . . . . . 7 ℂ = (Base‘ℂfld)
2522, 24mgpbas 19248 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
26 cnfld1 20573 . . . . . . 7 1 = (1r‘ℂfld)
2722, 26ringidval 19256 . . . . . 6 1 = (0g‘(mulGrp‘ℂfld))
28 cnfldmul 20554 . . . . . . 7 · = (.r‘ℂfld)
2922, 28mgpplusg 19246 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
3025, 27, 29issubm 17971 . . . . 5 ((mulGrp‘ℂfld) ∈ Mnd → ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ ((0[,)+∞) ⊆ ℂ ∧ 1 ∈ (0[,)+∞) ∧ ∀𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞))))
311, 23, 30mp2b 10 . . . 4 ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ ((0[,)+∞) ⊆ ℂ ∧ 1 ∈ (0[,)+∞) ∧ ∀𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞)))
3210, 19, 21, 31mpbir3an 1337 . . 3 (0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld))
33 eqid 2824 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = ((mulGrp‘ℂfld) ↾s (0[,)+∞))
3433submmnd 17981 . . 3 ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) → ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd)
3532, 34ax-mp 5 . 2 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd
36 simpll 765 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑥 ∈ (0[,)+∞))
3710, 36sseldi 3968 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑥 ∈ ℂ)
38 simplr 767 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑦 ∈ (0[,)+∞))
3910, 38sseldi 3968 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑦 ∈ ℂ)
40 simpr 487 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑧 ∈ (0[,)+∞))
4110, 40sseldi 3968 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑧 ∈ ℂ)
4237, 39, 41adddid 10668 . . . . . . 7 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
4337, 39, 41adddird 10669 . . . . . . 7 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
4442, 43jca 514 . . . . . 6 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4544ralrimiva 3185 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → ∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4645ralrimiva 3185 . . . 4 (𝑥 ∈ (0[,)+∞) → ∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4710sseli 3966 . . . . 5 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
4847mul02d 10841 . . . 4 (𝑥 ∈ (0[,)+∞) → (0 · 𝑥) = 0)
4947mul01d 10842 . . . 4 (𝑥 ∈ (0[,)+∞) → (𝑥 · 0) = 0)
5046, 48, 49jca32 518 . . 3 (𝑥 ∈ (0[,)+∞) → (∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0)))
5150rgen 3151 . 2 𝑥 ∈ (0[,)+∞)(∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))
525, 24ressbas2 16558 . . . 4 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
5310, 52ax-mp 5 . . 3 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
54 cnfldex 20551 . . . 4 fld ∈ V
55 ovex 7192 . . . 4 (0[,)+∞) ∈ V
565, 22mgpress 19253 . . . 4 ((ℂfld ∈ V ∧ (0[,)+∞) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = (mulGrp‘(ℂflds (0[,)+∞))))
5754, 55, 56mp2an 690 . . 3 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = (mulGrp‘(ℂflds (0[,)+∞)))
58 cnfldadd 20553 . . . . 5 + = (+g‘ℂfld)
595, 58ressplusg 16615 . . . 4 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
6055, 59ax-mp 5 . . 3 + = (+g‘(ℂflds (0[,)+∞)))
615, 28ressmulr 16628 . . . 4 ((0[,)+∞) ∈ V → · = (.r‘(ℂflds (0[,)+∞))))
6255, 61ax-mp 5 . . 3 · = (.r‘(ℂflds (0[,)+∞)))
63 ringmnd 19309 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
641, 63ax-mp 5 . . . 4 fld ∈ Mnd
65 0e0icopnf 12849 . . . 4 0 ∈ (0[,)+∞)
66 cnfld0 20572 . . . . 5 0 = (0g‘ℂfld)
675, 24, 66ress0g 17942 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 0 = (0g‘(ℂflds (0[,)+∞))))
6864, 65, 10, 67mp3an 1457 . . 3 0 = (0g‘(ℂflds (0[,)+∞)))
6953, 57, 60, 62, 68issrg 19260 . 2 ((ℂflds (0[,)+∞)) ∈ SRing ↔ ((ℂflds (0[,)+∞)) ∈ CMnd ∧ ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd ∧ ∀𝑥 ∈ (0[,)+∞)(∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))))
707, 35, 51, 69mpbir3an 1337 1 (ℂflds (0[,)+∞)) ∈ SRing
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   ∧ wa 398   ∧ w3a 1083   = wceq 1536   ∈ wcel 2113  ∀wral 3141  Vcvv 3497   ⊆ wss 3939   class class class wbr 5069  ‘cfv 6358  (class class class)co 7159  ℂcc 10538  ℝcr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  +∞cpnf 10675  ℝ*cxr 10677   < clt 10678   ≤ cle 10679  [,)cico 12743  Basecbs 16486   ↾s cress 16487  +gcplusg 16568  .rcmulr 16569  0gc0g 16716  Mndcmnd 17914  SubMndcsubmnd 17958  CMndccmn 18909  mulGrpcmgp 19242  SRingcsrg 19258  Ringcrg 19300  ℂfldccnfld 20548 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-addf 10619  ax-mulf 10620 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-ico 12747  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-srg 19259  df-ring 19302  df-cring 19303  df-cnfld 20549 This theorem is referenced by:  xrge0slmod  30921  sge0tsms  42669
 Copyright terms: Public domain W3C validator