MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rge0srg Structured version   Visualization version   GIF version

Theorem rge0srg 20669
Description: The nonnegative real numbers form a semiring (commutative by subcmn 19438). (Contributed by Thierry Arnoux, 6-Sep-2018.)
Assertion
Ref Expression
rge0srg (ℂflds (0[,)+∞)) ∈ SRing

Proof of Theorem rge0srg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 20620 . . . 4 fld ∈ Ring
2 ringcmn 19820 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
31, 2ax-mp 5 . . 3 fld ∈ CMnd
4 rege0subm 20654 . . 3 (0[,)+∞) ∈ (SubMnd‘ℂfld)
5 eqid 2738 . . . 4 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
65submcmn 19439 . . 3 ((ℂfld ∈ CMnd ∧ (0[,)+∞) ∈ (SubMnd‘ℂfld)) → (ℂflds (0[,)+∞)) ∈ CMnd)
73, 4, 6mp2an 689 . 2 (ℂflds (0[,)+∞)) ∈ CMnd
8 rge0ssre 13188 . . . . 5 (0[,)+∞) ⊆ ℝ
9 ax-resscn 10928 . . . . 5 ℝ ⊆ ℂ
108, 9sstri 3930 . . . 4 (0[,)+∞) ⊆ ℂ
11 1re 10975 . . . . 5 1 ∈ ℝ
12 0le1 11498 . . . . 5 0 ≤ 1
13 ltpnf 12856 . . . . . 6 (1 ∈ ℝ → 1 < +∞)
1411, 13ax-mp 5 . . . . 5 1 < +∞
15 0re 10977 . . . . . 6 0 ∈ ℝ
16 pnfxr 11029 . . . . . 6 +∞ ∈ ℝ*
17 elico2 13143 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
1815, 16, 17mp2an 689 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
1911, 12, 14, 18mpbir3an 1340 . . . 4 1 ∈ (0[,)+∞)
20 ge0mulcl 13193 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
2120rgen2 3120 . . . 4 𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞)
22 eqid 2738 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2322ringmgp 19789 . . . . 5 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
24 cnfldbas 20601 . . . . . . 7 ℂ = (Base‘ℂfld)
2522, 24mgpbas 19726 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
26 cnfld1 20623 . . . . . . 7 1 = (1r‘ℂfld)
2722, 26ringidval 19739 . . . . . 6 1 = (0g‘(mulGrp‘ℂfld))
28 cnfldmul 20603 . . . . . . 7 · = (.r‘ℂfld)
2922, 28mgpplusg 19724 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
3025, 27, 29issubm 18442 . . . . 5 ((mulGrp‘ℂfld) ∈ Mnd → ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ ((0[,)+∞) ⊆ ℂ ∧ 1 ∈ (0[,)+∞) ∧ ∀𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞))))
311, 23, 30mp2b 10 . . . 4 ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ ((0[,)+∞) ⊆ ℂ ∧ 1 ∈ (0[,)+∞) ∧ ∀𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞)))
3210, 19, 21, 31mpbir3an 1340 . . 3 (0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld))
33 eqid 2738 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = ((mulGrp‘ℂfld) ↾s (0[,)+∞))
3433submmnd 18452 . . 3 ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) → ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd)
3532, 34ax-mp 5 . 2 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd
36 simpll 764 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑥 ∈ (0[,)+∞))
3710, 36sselid 3919 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑥 ∈ ℂ)
38 simplr 766 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑦 ∈ (0[,)+∞))
3910, 38sselid 3919 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑦 ∈ ℂ)
40 simpr 485 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑧 ∈ (0[,)+∞))
4110, 40sselid 3919 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑧 ∈ ℂ)
4237, 39, 41adddid 10999 . . . . . . 7 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
4337, 39, 41adddird 11000 . . . . . . 7 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
4442, 43jca 512 . . . . . 6 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4544ralrimiva 3103 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → ∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4645ralrimiva 3103 . . . 4 (𝑥 ∈ (0[,)+∞) → ∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4710sseli 3917 . . . . 5 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
4847mul02d 11173 . . . 4 (𝑥 ∈ (0[,)+∞) → (0 · 𝑥) = 0)
4947mul01d 11174 . . . 4 (𝑥 ∈ (0[,)+∞) → (𝑥 · 0) = 0)
5046, 48, 49jca32 516 . . 3 (𝑥 ∈ (0[,)+∞) → (∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0)))
5150rgen 3074 . 2 𝑥 ∈ (0[,)+∞)(∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))
525, 24ressbas2 16949 . . . 4 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
5310, 52ax-mp 5 . . 3 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
54 cnfldex 20600 . . . 4 fld ∈ V
55 ovex 7308 . . . 4 (0[,)+∞) ∈ V
565, 22mgpress 19735 . . . 4 ((ℂfld ∈ V ∧ (0[,)+∞) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = (mulGrp‘(ℂflds (0[,)+∞))))
5754, 55, 56mp2an 689 . . 3 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = (mulGrp‘(ℂflds (0[,)+∞)))
58 cnfldadd 20602 . . . . 5 + = (+g‘ℂfld)
595, 58ressplusg 17000 . . . 4 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
6055, 59ax-mp 5 . . 3 + = (+g‘(ℂflds (0[,)+∞)))
615, 28ressmulr 17017 . . . 4 ((0[,)+∞) ∈ V → · = (.r‘(ℂflds (0[,)+∞))))
6255, 61ax-mp 5 . . 3 · = (.r‘(ℂflds (0[,)+∞)))
63 ringmnd 19793 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
641, 63ax-mp 5 . . . 4 fld ∈ Mnd
65 0e0icopnf 13190 . . . 4 0 ∈ (0[,)+∞)
66 cnfld0 20622 . . . . 5 0 = (0g‘ℂfld)
675, 24, 66ress0g 18413 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 0 = (0g‘(ℂflds (0[,)+∞))))
6864, 65, 10, 67mp3an 1460 . . 3 0 = (0g‘(ℂflds (0[,)+∞)))
6953, 57, 60, 62, 68issrg 19743 . 2 ((ℂflds (0[,)+∞)) ∈ SRing ↔ ((ℂflds (0[,)+∞)) ∈ CMnd ∧ ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd ∧ ∀𝑥 ∈ (0[,)+∞)(∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))))
707, 35, 51, 69mpbir3an 1340 1 (ℂflds (0[,)+∞)) ∈ SRing
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  [,)cico 13081  Basecbs 16912  s cress 16941  +gcplusg 16962  .rcmulr 16963  0gc0g 17150  Mndcmnd 18385  SubMndcsubmnd 18429  CMndccmn 19386  mulGrpcmgp 19720  SRingcsrg 19741  Ringcrg 19783  fldccnfld 20597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-ico 13085  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-srg 19742  df-ring 19785  df-cring 19786  df-cnfld 20598
This theorem is referenced by:  xrge0slmod  31548  sge0tsms  43918
  Copyright terms: Public domain W3C validator