Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnzh | Structured version Visualization version GIF version |
Description: The ℤ-module of ℂ is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018.) |
Ref | Expression |
---|---|
cnzh | ⊢ (ℤMod‘ℂfld) ∈ NrmMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnnrg 23944 | . . . 4 ⊢ ℂfld ∈ NrmRing | |
2 | eqid 2738 | . . . . 5 ⊢ (ℤMod‘ℂfld) = (ℤMod‘ℂfld) | |
3 | 2 | zhmnrg 31917 | . . . 4 ⊢ (ℂfld ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmRing) |
4 | nrgngp 23826 | . . . 4 ⊢ ((ℤMod‘ℂfld) ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmGrp) | |
5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ NrmGrp |
6 | nrgring 23827 | . . . . 5 ⊢ (ℂfld ∈ NrmRing → ℂfld ∈ Ring) | |
7 | ringabl 19819 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Abel) | |
8 | 1, 6, 7 | mp2b 10 | . . . 4 ⊢ ℂfld ∈ Abel |
9 | 2 | zlmlmod 20728 | . . . 4 ⊢ (ℂfld ∈ Abel ↔ (ℤMod‘ℂfld) ∈ LMod) |
10 | 8, 9 | mpbi 229 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ LMod |
11 | zringnrg 23951 | . . 3 ⊢ ℤring ∈ NrmRing | |
12 | 5, 10, 11 | 3pm3.2i 1338 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) |
13 | simpl 483 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℤ) | |
14 | 13 | zcnd 12427 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℂ) |
15 | simpr 485 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
16 | 14, 15 | absmuld 15166 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
17 | cnfldmulg 20630 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) | |
18 | 17 | fveq2d 6778 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (abs‘(𝑧 · 𝑥))) |
19 | fvres 6793 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) | |
20 | 19 | adantr 481 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) |
21 | 20 | oveq1d 7290 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
22 | 16, 18, 21 | 3eqtr4d 2788 | . . 3 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥))) |
23 | 22 | rgen2 3120 | . 2 ⊢ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) |
24 | cnfldbas 20601 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
25 | 2, 24 | zlmbas 20720 | . . 3 ⊢ ℂ = (Base‘(ℤMod‘ℂfld)) |
26 | cnfldex 20600 | . . . 4 ⊢ ℂfld ∈ V | |
27 | cnfldnm 23942 | . . . . 5 ⊢ abs = (norm‘ℂfld) | |
28 | 2, 27 | zlmnm 31916 | . . . 4 ⊢ (ℂfld ∈ V → abs = (norm‘(ℤMod‘ℂfld))) |
29 | 26, 28 | ax-mp 5 | . . 3 ⊢ abs = (norm‘(ℤMod‘ℂfld)) |
30 | eqid 2738 | . . . 4 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
31 | 2, 30 | zlmvsca 20727 | . . 3 ⊢ (.g‘ℂfld) = ( ·𝑠 ‘(ℤMod‘ℂfld)) |
32 | 2 | zlmsca 20726 | . . . 4 ⊢ (ℂfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℂfld))) |
33 | 26, 32 | ax-mp 5 | . . 3 ⊢ ℤring = (Scalar‘(ℤMod‘ℂfld)) |
34 | zringbas 20676 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
35 | zringnm 31908 | . . . 4 ⊢ (norm‘ℤring) = (abs ↾ ℤ) | |
36 | 35 | eqcomi 2747 | . . 3 ⊢ (abs ↾ ℤ) = (norm‘ℤring) |
37 | 25, 29, 31, 33, 34, 36 | isnlm 23839 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmMod ↔ (((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)))) |
38 | 12, 23, 37 | mpbir2an 708 | 1 ⊢ (ℤMod‘ℂfld) ∈ NrmMod |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 · cmul 10876 ℤcz 12319 abscabs 14945 Scalarcsca 16965 .gcmg 18700 Abelcabl 19387 Ringcrg 19783 LModclmod 20123 ℂfldccnfld 20597 ℤringczring 20670 ℤModczlm 20702 normcnm 23732 NrmGrpcngp 23733 NrmRingcnrg 23735 NrmModcnlm 23736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ico 13085 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-rest 17133 df-topn 17134 df-0g 17152 df-topgen 17154 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-subrg 20022 df-abv 20077 df-lmod 20125 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-zring 20671 df-zlm 20706 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-xms 23473 df-ms 23474 df-nm 23738 df-ngp 23739 df-nrg 23741 df-nlm 23742 |
This theorem is referenced by: cnrrext 31960 |
Copyright terms: Public domain | W3C validator |