Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnzh Structured version   Visualization version   GIF version

Theorem cnzh 32615
Description: The -module of is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018.)
Assertion
Ref Expression
cnzh (ℤMod‘ℂfld) ∈ NrmMod

Proof of Theorem cnzh
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnnrg 24167 . . . 4 fld ∈ NrmRing
2 eqid 2733 . . . . 5 (ℤMod‘ℂfld) = (ℤMod‘ℂfld)
32zhmnrg 32612 . . . 4 (ℂfld ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmRing)
4 nrgngp 24049 . . . 4 ((ℤMod‘ℂfld) ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmGrp)
51, 3, 4mp2b 10 . . 3 (ℤMod‘ℂfld) ∈ NrmGrp
6 nrgring 24050 . . . . 5 (ℂfld ∈ NrmRing → ℂfld ∈ Ring)
7 ringabl 20010 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Abel)
81, 6, 7mp2b 10 . . . 4 fld ∈ Abel
92zlmlmod 20950 . . . 4 (ℂfld ∈ Abel ↔ (ℤMod‘ℂfld) ∈ LMod)
108, 9mpbi 229 . . 3 (ℤMod‘ℂfld) ∈ LMod
11 zringnrg 24174 . . 3 ring ∈ NrmRing
125, 10, 113pm3.2i 1340 . 2 ((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing)
13 simpl 484 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℤ)
1413zcnd 12616 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℂ)
15 simpr 486 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
1614, 15absmuld 15348 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
17 cnfldmulg 20852 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
1817fveq2d 6850 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (abs‘(𝑧 · 𝑥)))
19 fvres 6865 . . . . . 6 (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧))
2019adantr 482 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧))
2120oveq1d 7376 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
2216, 18, 213eqtr4d 2783 . . 3 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)))
2322rgen2 3191 . 2 𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥))
24 cnfldbas 20823 . . . 4 ℂ = (Base‘ℂfld)
252, 24zlmbas 20942 . . 3 ℂ = (Base‘(ℤMod‘ℂfld))
26 cnfldex 20822 . . . 4 fld ∈ V
27 cnfldnm 24165 . . . . 5 abs = (norm‘ℂfld)
282, 27zlmnm 32611 . . . 4 (ℂfld ∈ V → abs = (norm‘(ℤMod‘ℂfld)))
2926, 28ax-mp 5 . . 3 abs = (norm‘(ℤMod‘ℂfld))
30 eqid 2733 . . . 4 (.g‘ℂfld) = (.g‘ℂfld)
312, 30zlmvsca 20949 . . 3 (.g‘ℂfld) = ( ·𝑠 ‘(ℤMod‘ℂfld))
322zlmsca 20948 . . . 4 (ℂfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℂfld)))
3326, 32ax-mp 5 . . 3 ring = (Scalar‘(ℤMod‘ℂfld))
34 zringbas 20898 . . 3 ℤ = (Base‘ℤring)
35 zringnm 32603 . . . 4 (norm‘ℤring) = (abs ↾ ℤ)
3635eqcomi 2742 . . 3 (abs ↾ ℤ) = (norm‘ℤring)
3725, 29, 31, 33, 34, 36isnlm 24062 . 2 ((ℤMod‘ℂfld) ∈ NrmMod ↔ (((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥))))
3812, 23, 37mpbir2an 710 1 (ℤMod‘ℂfld) ∈ NrmMod
Colors of variables: wff setvar class
Syntax hints:  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3061  Vcvv 3447  cres 5639  cfv 6500  (class class class)co 7361  cc 11057   · cmul 11064  cz 12507  abscabs 15128  Scalarcsca 17144  .gcmg 18880  Abelcabl 19571  Ringcrg 19972  LModclmod 20365  fldccnfld 20819  ringczring 20892  ℤModczlm 20924  normcnm 23955  NrmGrpcngp 23956  NrmRingcnrg 23958  NrmModcnlm 23959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137  ax-addf 11138  ax-mulf 11139
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-sup 9386  df-inf 9387  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-dec 12627  df-uz 12772  df-q 12882  df-rp 12924  df-xneg 13041  df-xadd 13042  df-xmul 13043  df-ico 13279  df-fz 13434  df-fzo 13577  df-seq 13916  df-exp 13977  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-starv 17156  df-sca 17157  df-vsca 17158  df-ip 17159  df-tset 17160  df-ple 17161  df-ds 17163  df-unif 17164  df-rest 17312  df-topn 17313  df-0g 17331  df-topgen 17333  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-grp 18759  df-minusg 18760  df-sbg 18761  df-mulg 18881  df-subg 18933  df-cmn 19572  df-abl 19573  df-mgp 19905  df-ur 19922  df-ring 19974  df-cring 19975  df-subrg 20262  df-abv 20319  df-lmod 20367  df-psmet 20811  df-xmet 20812  df-met 20813  df-bl 20814  df-mopn 20815  df-cnfld 20820  df-zring 20893  df-zlm 20928  df-top 22266  df-topon 22283  df-topsp 22305  df-bases 22319  df-xms 23696  df-ms 23697  df-nm 23961  df-ngp 23962  df-nrg 23964  df-nlm 23965
This theorem is referenced by:  cnrrext  32655
  Copyright terms: Public domain W3C validator