Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnzh Structured version   Visualization version   GIF version

Theorem cnzh 33951
Description: The -module of is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018.)
Assertion
Ref Expression
cnzh (ℤMod‘ℂfld) ∈ NrmMod

Proof of Theorem cnzh
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnnrg 24701 . . . 4 fld ∈ NrmRing
2 eqid 2729 . . . . 5 (ℤMod‘ℂfld) = (ℤMod‘ℂfld)
32zhmnrg 33948 . . . 4 (ℂfld ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmRing)
4 nrgngp 24583 . . . 4 ((ℤMod‘ℂfld) ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmGrp)
51, 3, 4mp2b 10 . . 3 (ℤMod‘ℂfld) ∈ NrmGrp
6 nrgring 24584 . . . . 5 (ℂfld ∈ NrmRing → ℂfld ∈ Ring)
7 ringabl 20201 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Abel)
81, 6, 7mp2b 10 . . . 4 fld ∈ Abel
92zlmlmod 21464 . . . 4 (ℂfld ∈ Abel ↔ (ℤMod‘ℂfld) ∈ LMod)
108, 9mpbi 230 . . 3 (ℤMod‘ℂfld) ∈ LMod
11 zringnrg 24709 . . 3 ring ∈ NrmRing
125, 10, 113pm3.2i 1340 . 2 ((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing)
13 simpl 482 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℤ)
1413zcnd 12615 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℂ)
15 simpr 484 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
1614, 15absmuld 15399 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
17 cnfldmulg 21345 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
1817fveq2d 6844 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (abs‘(𝑧 · 𝑥)))
19 fvres 6859 . . . . . 6 (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧))
2019adantr 480 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧))
2120oveq1d 7384 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
2216, 18, 213eqtr4d 2774 . . 3 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)))
2322rgen2 3175 . 2 𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥))
24 cnfldbas 21300 . . . 4 ℂ = (Base‘ℂfld)
252, 24zlmbas 21459 . . 3 ℂ = (Base‘(ℤMod‘ℂfld))
26 cnfldex 21299 . . . 4 fld ∈ V
27 cnfldnm 24699 . . . . 5 abs = (norm‘ℂfld)
282, 27zlmnm 33947 . . . 4 (ℂfld ∈ V → abs = (norm‘(ℤMod‘ℂfld)))
2926, 28ax-mp 5 . . 3 abs = (norm‘(ℤMod‘ℂfld))
30 eqid 2729 . . . 4 (.g‘ℂfld) = (.g‘ℂfld)
312, 30zlmvsca 21463 . . 3 (.g‘ℂfld) = ( ·𝑠 ‘(ℤMod‘ℂfld))
322zlmsca 21462 . . . 4 (ℂfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℂfld)))
3326, 32ax-mp 5 . . 3 ring = (Scalar‘(ℤMod‘ℂfld))
34 zringbas 21395 . . 3 ℤ = (Base‘ℤring)
35 zringnm 33941 . . . 4 (norm‘ℤring) = (abs ↾ ℤ)
3635eqcomi 2738 . . 3 (abs ↾ ℤ) = (norm‘ℤring)
3725, 29, 31, 33, 34, 36isnlm 24596 . 2 ((ℤMod‘ℂfld) ∈ NrmMod ↔ (((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥))))
3812, 23, 37mpbir2an 711 1 (ℤMod‘ℂfld) ∈ NrmMod
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cres 5633  cfv 6499  (class class class)co 7369  cc 11042   · cmul 11049  cz 12505  abscabs 15176  Scalarcsca 17199  .gcmg 18981  Abelcabl 19695  Ringcrg 20153  LModclmod 20798  fldccnfld 21296  ringczring 21388  ℤModczlm 21442  normcnm 24497  NrmGrpcngp 24498  NrmRingcnrg 24500  NrmModcnlm 24501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-0g 17380  df-topgen 17382  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20466  df-subrg 20490  df-abv 20729  df-lmod 20800  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-zring 21389  df-zlm 21446  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-xms 24241  df-ms 24242  df-nm 24503  df-ngp 24504  df-nrg 24506  df-nlm 24507
This theorem is referenced by:  cnrrext  33993
  Copyright terms: Public domain W3C validator