| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnzh | Structured version Visualization version GIF version | ||
| Description: The ℤ-module of ℂ is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018.) |
| Ref | Expression |
|---|---|
| cnzh | ⊢ (ℤMod‘ℂfld) ∈ NrmMod |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnrg 24695 | . . . 4 ⊢ ℂfld ∈ NrmRing | |
| 2 | eqid 2731 | . . . . 5 ⊢ (ℤMod‘ℂfld) = (ℤMod‘ℂfld) | |
| 3 | 2 | zhmnrg 33978 | . . . 4 ⊢ (ℂfld ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmRing) |
| 4 | nrgngp 24577 | . . . 4 ⊢ ((ℤMod‘ℂfld) ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmGrp) | |
| 5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ NrmGrp |
| 6 | nrgring 24578 | . . . . 5 ⊢ (ℂfld ∈ NrmRing → ℂfld ∈ Ring) | |
| 7 | ringabl 20199 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Abel) | |
| 8 | 1, 6, 7 | mp2b 10 | . . . 4 ⊢ ℂfld ∈ Abel |
| 9 | 2 | zlmlmod 21459 | . . . 4 ⊢ (ℂfld ∈ Abel ↔ (ℤMod‘ℂfld) ∈ LMod) |
| 10 | 8, 9 | mpbi 230 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ LMod |
| 11 | zringnrg 24703 | . . 3 ⊢ ℤring ∈ NrmRing | |
| 12 | 5, 10, 11 | 3pm3.2i 1340 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) |
| 13 | simpl 482 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℤ) | |
| 14 | 13 | zcnd 12578 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℂ) |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 16 | 14, 15 | absmuld 15364 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
| 17 | cnfldmulg 21340 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) | |
| 18 | 17 | fveq2d 6826 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 19 | fvres 6841 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) | |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) |
| 21 | 20 | oveq1d 7361 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
| 22 | 16, 18, 21 | 3eqtr4d 2776 | . . 3 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥))) |
| 23 | 22 | rgen2 3172 | . 2 ⊢ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) |
| 24 | cnfldbas 21295 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 25 | 2, 24 | zlmbas 21454 | . . 3 ⊢ ℂ = (Base‘(ℤMod‘ℂfld)) |
| 26 | cnfldex 21294 | . . . 4 ⊢ ℂfld ∈ V | |
| 27 | cnfldnm 24693 | . . . . 5 ⊢ abs = (norm‘ℂfld) | |
| 28 | 2, 27 | zlmnm 33977 | . . . 4 ⊢ (ℂfld ∈ V → abs = (norm‘(ℤMod‘ℂfld))) |
| 29 | 26, 28 | ax-mp 5 | . . 3 ⊢ abs = (norm‘(ℤMod‘ℂfld)) |
| 30 | eqid 2731 | . . . 4 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
| 31 | 2, 30 | zlmvsca 21458 | . . 3 ⊢ (.g‘ℂfld) = ( ·𝑠 ‘(ℤMod‘ℂfld)) |
| 32 | 2 | zlmsca 21457 | . . . 4 ⊢ (ℂfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℂfld))) |
| 33 | 26, 32 | ax-mp 5 | . . 3 ⊢ ℤring = (Scalar‘(ℤMod‘ℂfld)) |
| 34 | zringbas 21390 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
| 35 | zringnm 33971 | . . . 4 ⊢ (norm‘ℤring) = (abs ↾ ℤ) | |
| 36 | 35 | eqcomi 2740 | . . 3 ⊢ (abs ↾ ℤ) = (norm‘ℤring) |
| 37 | 25, 29, 31, 33, 34, 36 | isnlm 24590 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmMod ↔ (((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)))) |
| 38 | 12, 23, 37 | mpbir2an 711 | 1 ⊢ (ℤMod‘ℂfld) ∈ NrmMod |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 · cmul 11011 ℤcz 12468 abscabs 15141 Scalarcsca 17164 .gcmg 18980 Abelcabl 19693 Ringcrg 20151 LModclmod 20793 ℂfldccnfld 21291 ℤringczring 21383 ℤModczlm 21437 normcnm 24491 NrmGrpcngp 24492 NrmRingcnrg 24494 NrmModcnlm 24495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ico 13251 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-0g 17345 df-topgen 17347 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-subrng 20461 df-subrg 20485 df-abv 20724 df-lmod 20795 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-zring 21384 df-zlm 21441 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-xms 24235 df-ms 24236 df-nm 24497 df-ngp 24498 df-nrg 24500 df-nlm 24501 |
| This theorem is referenced by: cnrrext 34023 |
| Copyright terms: Public domain | W3C validator |