Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnzh Structured version   Visualization version   GIF version

Theorem cnzh 31920
Description: The -module of is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018.)
Assertion
Ref Expression
cnzh (ℤMod‘ℂfld) ∈ NrmMod

Proof of Theorem cnzh
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnnrg 23944 . . . 4 fld ∈ NrmRing
2 eqid 2738 . . . . 5 (ℤMod‘ℂfld) = (ℤMod‘ℂfld)
32zhmnrg 31917 . . . 4 (ℂfld ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmRing)
4 nrgngp 23826 . . . 4 ((ℤMod‘ℂfld) ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmGrp)
51, 3, 4mp2b 10 . . 3 (ℤMod‘ℂfld) ∈ NrmGrp
6 nrgring 23827 . . . . 5 (ℂfld ∈ NrmRing → ℂfld ∈ Ring)
7 ringabl 19819 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Abel)
81, 6, 7mp2b 10 . . . 4 fld ∈ Abel
92zlmlmod 20728 . . . 4 (ℂfld ∈ Abel ↔ (ℤMod‘ℂfld) ∈ LMod)
108, 9mpbi 229 . . 3 (ℤMod‘ℂfld) ∈ LMod
11 zringnrg 23951 . . 3 ring ∈ NrmRing
125, 10, 113pm3.2i 1338 . 2 ((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing)
13 simpl 483 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℤ)
1413zcnd 12427 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℂ)
15 simpr 485 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
1614, 15absmuld 15166 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
17 cnfldmulg 20630 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
1817fveq2d 6778 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (abs‘(𝑧 · 𝑥)))
19 fvres 6793 . . . . . 6 (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧))
2019adantr 481 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧))
2120oveq1d 7290 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
2216, 18, 213eqtr4d 2788 . . 3 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)))
2322rgen2 3120 . 2 𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥))
24 cnfldbas 20601 . . . 4 ℂ = (Base‘ℂfld)
252, 24zlmbas 20720 . . 3 ℂ = (Base‘(ℤMod‘ℂfld))
26 cnfldex 20600 . . . 4 fld ∈ V
27 cnfldnm 23942 . . . . 5 abs = (norm‘ℂfld)
282, 27zlmnm 31916 . . . 4 (ℂfld ∈ V → abs = (norm‘(ℤMod‘ℂfld)))
2926, 28ax-mp 5 . . 3 abs = (norm‘(ℤMod‘ℂfld))
30 eqid 2738 . . . 4 (.g‘ℂfld) = (.g‘ℂfld)
312, 30zlmvsca 20727 . . 3 (.g‘ℂfld) = ( ·𝑠 ‘(ℤMod‘ℂfld))
322zlmsca 20726 . . . 4 (ℂfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℂfld)))
3326, 32ax-mp 5 . . 3 ring = (Scalar‘(ℤMod‘ℂfld))
34 zringbas 20676 . . 3 ℤ = (Base‘ℤring)
35 zringnm 31908 . . . 4 (norm‘ℤring) = (abs ↾ ℤ)
3635eqcomi 2747 . . 3 (abs ↾ ℤ) = (norm‘ℤring)
3725, 29, 31, 33, 34, 36isnlm 23839 . 2 ((ℤMod‘ℂfld) ∈ NrmMod ↔ (((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥))))
3812, 23, 37mpbir2an 708 1 (ℤMod‘ℂfld) ∈ NrmMod
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cres 5591  cfv 6433  (class class class)co 7275  cc 10869   · cmul 10876  cz 12319  abscabs 14945  Scalarcsca 16965  .gcmg 18700  Abelcabl 19387  Ringcrg 19783  LModclmod 20123  fldccnfld 20597  ringczring 20670  ℤModczlm 20702  normcnm 23732  NrmGrpcngp 23733  NrmRingcnrg 23735  NrmModcnlm 23736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-abv 20077  df-lmod 20125  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-zring 20671  df-zlm 20706  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-xms 23473  df-ms 23474  df-nm 23738  df-ngp 23739  df-nrg 23741  df-nlm 23742
This theorem is referenced by:  cnrrext  31960
  Copyright terms: Public domain W3C validator