![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnzh | Structured version Visualization version GIF version |
Description: The ℤ-module of ℂ is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018.) |
Ref | Expression |
---|---|
cnzh | ⊢ (ℤMod‘ℂfld) ∈ NrmMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnnrg 22961 | . . . 4 ⊢ ℂfld ∈ NrmRing | |
2 | eqid 2825 | . . . . 5 ⊢ (ℤMod‘ℂfld) = (ℤMod‘ℂfld) | |
3 | 2 | zhmnrg 30552 | . . . 4 ⊢ (ℂfld ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmRing) |
4 | nrgngp 22843 | . . . 4 ⊢ ((ℤMod‘ℂfld) ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmGrp) | |
5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ NrmGrp |
6 | nrgring 22844 | . . . . 5 ⊢ (ℂfld ∈ NrmRing → ℂfld ∈ Ring) | |
7 | ringabl 18941 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Abel) | |
8 | 1, 6, 7 | mp2b 10 | . . . 4 ⊢ ℂfld ∈ Abel |
9 | 2 | zlmlmod 20238 | . . . 4 ⊢ (ℂfld ∈ Abel ↔ (ℤMod‘ℂfld) ∈ LMod) |
10 | 8, 9 | mpbi 222 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ LMod |
11 | zringnrg 22968 | . . 3 ⊢ ℤring ∈ NrmRing | |
12 | 5, 10, 11 | 3pm3.2i 1442 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) |
13 | simpl 476 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℤ) | |
14 | 13 | zcnd 11818 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℂ) |
15 | simpr 479 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
16 | 14, 15 | absmuld 14577 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
17 | cnfldmulg 20145 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) | |
18 | 17 | fveq2d 6441 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (abs‘(𝑧 · 𝑥))) |
19 | fvres 6456 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) | |
20 | 19 | adantr 474 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) |
21 | 20 | oveq1d 6925 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
22 | 16, 18, 21 | 3eqtr4d 2871 | . . 3 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥))) |
23 | 22 | rgen2 3184 | . 2 ⊢ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) |
24 | cnfldbas 20117 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
25 | 2, 24 | zlmbas 20233 | . . 3 ⊢ ℂ = (Base‘(ℤMod‘ℂfld)) |
26 | cnfldex 20116 | . . . 4 ⊢ ℂfld ∈ V | |
27 | cnfldnm 22959 | . . . . 5 ⊢ abs = (norm‘ℂfld) | |
28 | 2, 27 | zlmnm 30551 | . . . 4 ⊢ (ℂfld ∈ V → abs = (norm‘(ℤMod‘ℂfld))) |
29 | 26, 28 | ax-mp 5 | . . 3 ⊢ abs = (norm‘(ℤMod‘ℂfld)) |
30 | eqid 2825 | . . . 4 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
31 | 2, 30 | zlmvsca 20237 | . . 3 ⊢ (.g‘ℂfld) = ( ·𝑠 ‘(ℤMod‘ℂfld)) |
32 | 2 | zlmsca 20236 | . . . 4 ⊢ (ℂfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℂfld))) |
33 | 26, 32 | ax-mp 5 | . . 3 ⊢ ℤring = (Scalar‘(ℤMod‘ℂfld)) |
34 | zringbas 20191 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
35 | zringnm 30545 | . . . 4 ⊢ (norm‘ℤring) = (abs ↾ ℤ) | |
36 | 35 | eqcomi 2834 | . . 3 ⊢ (abs ↾ ℤ) = (norm‘ℤring) |
37 | 25, 29, 31, 33, 34, 36 | isnlm 22856 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmMod ↔ (((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)))) |
38 | 12, 23, 37 | mpbir2an 702 | 1 ⊢ (ℤMod‘ℂfld) ∈ NrmMod |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∀wral 3117 Vcvv 3414 ↾ cres 5348 ‘cfv 6127 (class class class)co 6910 ℂcc 10257 · cmul 10264 ℤcz 11711 abscabs 14358 Scalarcsca 16315 .gcmg 17901 Abelcabl 18554 Ringcrg 18908 LModclmod 19226 ℂfldccnfld 20113 ℤringzring 20185 ℤModczlm 20216 normcnm 22758 NrmGrpcngp 22759 NrmRingcnrg 22761 NrmModcnlm 22762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-addf 10338 ax-mulf 10339 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-sup 8623 df-inf 8624 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ico 12476 df-fz 12627 df-fzo 12768 df-seq 13103 df-exp 13162 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-starv 16327 df-sca 16328 df-vsca 16329 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-rest 16443 df-topn 16444 df-0g 16462 df-topgen 16464 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-minusg 17787 df-sbg 17788 df-mulg 17902 df-subg 17949 df-cmn 18555 df-abl 18556 df-mgp 18851 df-ur 18863 df-ring 18910 df-cring 18911 df-subrg 19141 df-abv 19180 df-lmod 19228 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-cnfld 20114 df-zring 20186 df-zlm 20220 df-top 21076 df-topon 21093 df-topsp 21115 df-bases 21128 df-xms 22502 df-ms 22503 df-nm 22764 df-ngp 22765 df-nrg 22767 df-nlm 22768 |
This theorem is referenced by: cnrrext 30595 |
Copyright terms: Public domain | W3C validator |