![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnzh | Structured version Visualization version GIF version |
Description: The ℤ-module of ℂ is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018.) |
Ref | Expression |
---|---|
cnzh | ⊢ (ℤMod‘ℂfld) ∈ NrmMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnnrg 24296 | . . . 4 ⊢ ℂfld ∈ NrmRing | |
2 | eqid 2732 | . . . . 5 ⊢ (ℤMod‘ℂfld) = (ℤMod‘ℂfld) | |
3 | 2 | zhmnrg 32942 | . . . 4 ⊢ (ℂfld ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmRing) |
4 | nrgngp 24178 | . . . 4 ⊢ ((ℤMod‘ℂfld) ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmGrp) | |
5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ NrmGrp |
6 | nrgring 24179 | . . . . 5 ⊢ (ℂfld ∈ NrmRing → ℂfld ∈ Ring) | |
7 | ringabl 20097 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Abel) | |
8 | 1, 6, 7 | mp2b 10 | . . . 4 ⊢ ℂfld ∈ Abel |
9 | 2 | zlmlmod 21075 | . . . 4 ⊢ (ℂfld ∈ Abel ↔ (ℤMod‘ℂfld) ∈ LMod) |
10 | 8, 9 | mpbi 229 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ LMod |
11 | zringnrg 24303 | . . 3 ⊢ ℤring ∈ NrmRing | |
12 | 5, 10, 11 | 3pm3.2i 1339 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) |
13 | simpl 483 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℤ) | |
14 | 13 | zcnd 12666 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℂ) |
15 | simpr 485 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
16 | 14, 15 | absmuld 15400 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
17 | cnfldmulg 20976 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) | |
18 | 17 | fveq2d 6895 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (abs‘(𝑧 · 𝑥))) |
19 | fvres 6910 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) | |
20 | 19 | adantr 481 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) |
21 | 20 | oveq1d 7423 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
22 | 16, 18, 21 | 3eqtr4d 2782 | . . 3 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥))) |
23 | 22 | rgen2 3197 | . 2 ⊢ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) |
24 | cnfldbas 20947 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
25 | 2, 24 | zlmbas 21067 | . . 3 ⊢ ℂ = (Base‘(ℤMod‘ℂfld)) |
26 | cnfldex 20946 | . . . 4 ⊢ ℂfld ∈ V | |
27 | cnfldnm 24294 | . . . . 5 ⊢ abs = (norm‘ℂfld) | |
28 | 2, 27 | zlmnm 32941 | . . . 4 ⊢ (ℂfld ∈ V → abs = (norm‘(ℤMod‘ℂfld))) |
29 | 26, 28 | ax-mp 5 | . . 3 ⊢ abs = (norm‘(ℤMod‘ℂfld)) |
30 | eqid 2732 | . . . 4 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
31 | 2, 30 | zlmvsca 21074 | . . 3 ⊢ (.g‘ℂfld) = ( ·𝑠 ‘(ℤMod‘ℂfld)) |
32 | 2 | zlmsca 21073 | . . . 4 ⊢ (ℂfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℂfld))) |
33 | 26, 32 | ax-mp 5 | . . 3 ⊢ ℤring = (Scalar‘(ℤMod‘ℂfld)) |
34 | zringbas 21022 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
35 | zringnm 32933 | . . . 4 ⊢ (norm‘ℤring) = (abs ↾ ℤ) | |
36 | 35 | eqcomi 2741 | . . 3 ⊢ (abs ↾ ℤ) = (norm‘ℤring) |
37 | 25, 29, 31, 33, 34, 36 | isnlm 24191 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmMod ↔ (((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)))) |
38 | 12, 23, 37 | mpbir2an 709 | 1 ⊢ (ℤMod‘ℂfld) ∈ NrmMod |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ↾ cres 5678 ‘cfv 6543 (class class class)co 7408 ℂcc 11107 · cmul 11114 ℤcz 12557 abscabs 15180 Scalarcsca 17199 .gcmg 18949 Abelcabl 19648 Ringcrg 20055 LModclmod 20470 ℂfldccnfld 20943 ℤringczring 21016 ℤModczlm 21049 normcnm 24084 NrmGrpcngp 24085 NrmRingcnrg 24087 NrmModcnlm 24088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ico 13329 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-rest 17367 df-topn 17368 df-0g 17386 df-topgen 17388 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mulg 18950 df-subg 19002 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-subrg 20316 df-abv 20424 df-lmod 20472 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-cnfld 20944 df-zring 21017 df-zlm 21053 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-xms 23825 df-ms 23826 df-nm 24090 df-ngp 24091 df-nrg 24093 df-nlm 24094 |
This theorem is referenced by: cnrrext 32985 |
Copyright terms: Public domain | W3C validator |