![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnzh | Structured version Visualization version GIF version |
Description: The ℤ-module of ℂ is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018.) |
Ref | Expression |
---|---|
cnzh | ⊢ (ℤMod‘ℂfld) ∈ NrmMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnnrg 24619 | . . . 4 ⊢ ℂfld ∈ NrmRing | |
2 | eqid 2724 | . . . . 5 ⊢ (ℤMod‘ℂfld) = (ℤMod‘ℂfld) | |
3 | 2 | zhmnrg 33436 | . . . 4 ⊢ (ℂfld ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmRing) |
4 | nrgngp 24501 | . . . 4 ⊢ ((ℤMod‘ℂfld) ∈ NrmRing → (ℤMod‘ℂfld) ∈ NrmGrp) | |
5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ NrmGrp |
6 | nrgring 24502 | . . . . 5 ⊢ (ℂfld ∈ NrmRing → ℂfld ∈ Ring) | |
7 | ringabl 20170 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Abel) | |
8 | 1, 6, 7 | mp2b 10 | . . . 4 ⊢ ℂfld ∈ Abel |
9 | 2 | zlmlmod 21381 | . . . 4 ⊢ (ℂfld ∈ Abel ↔ (ℤMod‘ℂfld) ∈ LMod) |
10 | 8, 9 | mpbi 229 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ LMod |
11 | zringnrg 24626 | . . 3 ⊢ ℤring ∈ NrmRing | |
12 | 5, 10, 11 | 3pm3.2i 1336 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) |
13 | simpl 482 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℤ) | |
14 | 13 | zcnd 12664 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑧 ∈ ℂ) |
15 | simpr 484 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
16 | 14, 15 | absmuld 15398 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
17 | cnfldmulg 21261 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) | |
18 | 17 | fveq2d 6885 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (abs‘(𝑧 · 𝑥))) |
19 | fvres 6900 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) | |
20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) |
21 | 20 | oveq1d 7416 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
22 | 16, 18, 21 | 3eqtr4d 2774 | . . 3 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥))) |
23 | 22 | rgen2 3189 | . 2 ⊢ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)) |
24 | cnfldbas 21232 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
25 | 2, 24 | zlmbas 21373 | . . 3 ⊢ ℂ = (Base‘(ℤMod‘ℂfld)) |
26 | cnfldex 21231 | . . . 4 ⊢ ℂfld ∈ V | |
27 | cnfldnm 24617 | . . . . 5 ⊢ abs = (norm‘ℂfld) | |
28 | 2, 27 | zlmnm 33435 | . . . 4 ⊢ (ℂfld ∈ V → abs = (norm‘(ℤMod‘ℂfld))) |
29 | 26, 28 | ax-mp 5 | . . 3 ⊢ abs = (norm‘(ℤMod‘ℂfld)) |
30 | eqid 2724 | . . . 4 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
31 | 2, 30 | zlmvsca 21380 | . . 3 ⊢ (.g‘ℂfld) = ( ·𝑠 ‘(ℤMod‘ℂfld)) |
32 | 2 | zlmsca 21379 | . . . 4 ⊢ (ℂfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℂfld))) |
33 | 26, 32 | ax-mp 5 | . . 3 ⊢ ℤring = (Scalar‘(ℤMod‘ℂfld)) |
34 | zringbas 21308 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
35 | zringnm 33427 | . . . 4 ⊢ (norm‘ℤring) = (abs ↾ ℤ) | |
36 | 35 | eqcomi 2733 | . . 3 ⊢ (abs ↾ ℤ) = (norm‘ℤring) |
37 | 25, 29, 31, 33, 34, 36 | isnlm 24514 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmMod ↔ (((ℤMod‘ℂfld) ∈ NrmGrp ∧ (ℤMod‘ℂfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℂ (abs‘(𝑧(.g‘ℂfld)𝑥)) = (((abs ↾ ℤ)‘𝑧) · (abs‘𝑥)))) |
38 | 12, 23, 37 | mpbir2an 708 | 1 ⊢ (ℤMod‘ℂfld) ∈ NrmMod |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3053 Vcvv 3466 ↾ cres 5668 ‘cfv 6533 (class class class)co 7401 ℂcc 11104 · cmul 11111 ℤcz 12555 abscabs 15178 Scalarcsca 17199 .gcmg 18985 Abelcabl 19691 Ringcrg 20128 LModclmod 20696 ℂfldccnfld 21228 ℤringczring 21301 ℤModczlm 21355 normcnm 24407 NrmGrpcngp 24408 NrmRingcnrg 24410 NrmModcnlm 24411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-ico 13327 df-fz 13482 df-fzo 13625 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-rest 17367 df-topn 17368 df-0g 17386 df-topgen 17388 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-grp 18856 df-minusg 18857 df-sbg 18858 df-mulg 18986 df-subg 19040 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-subrng 20436 df-subrg 20461 df-abv 20650 df-lmod 20698 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-cnfld 21229 df-zring 21302 df-zlm 21359 df-top 22718 df-topon 22735 df-topsp 22757 df-bases 22771 df-xms 24148 df-ms 24149 df-nm 24413 df-ngp 24414 df-nrg 24416 df-nlm 24417 |
This theorem is referenced by: cnrrext 33479 |
Copyright terms: Public domain | W3C validator |