Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfid | Structured version Visualization version GIF version |
Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
mbfid | ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvresima 6122 | . . . . 5 ⊢ (◡( I ↾ 𝐴) “ 𝑥) = ((◡ I “ 𝑥) ∩ 𝐴) | |
2 | cnvi 6034 | . . . . . . . 8 ⊢ ◡ I = I | |
3 | 2 | imaeq1i 5955 | . . . . . . 7 ⊢ (◡ I “ 𝑥) = ( I “ 𝑥) |
4 | imai 5971 | . . . . . . 7 ⊢ ( I “ 𝑥) = 𝑥 | |
5 | 3, 4 | eqtri 2766 | . . . . . 6 ⊢ (◡ I “ 𝑥) = 𝑥 |
6 | 5 | ineq1i 4139 | . . . . 5 ⊢ ((◡ I “ 𝑥) ∩ 𝐴) = (𝑥 ∩ 𝐴) |
7 | 1, 6 | eqtri 2766 | . . . 4 ⊢ (◡( I ↾ 𝐴) “ 𝑥) = (𝑥 ∩ 𝐴) |
8 | ioof 13108 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
9 | ffn 6584 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
10 | ovelrn 7426 | . . . . . . 7 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧))) | |
11 | 8, 9, 10 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧)) |
12 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦(,)𝑧) → 𝑥 = (𝑦(,)𝑧)) | |
13 | ioombl 24634 | . . . . . . . . 9 ⊢ (𝑦(,)𝑧) ∈ dom vol | |
14 | 12, 13 | eqeltrdi 2847 | . . . . . . . 8 ⊢ (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol) |
15 | 14 | a1i 11 | . . . . . . 7 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol)) |
16 | 15 | rexlimivv 3220 | . . . . . 6 ⊢ (∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol) |
17 | 11, 16 | sylbi 216 | . . . . 5 ⊢ (𝑥 ∈ ran (,) → 𝑥 ∈ dom vol) |
18 | id 22 | . . . . 5 ⊢ (𝐴 ∈ dom vol → 𝐴 ∈ dom vol) | |
19 | inmbl 24611 | . . . . 5 ⊢ ((𝑥 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝑥 ∩ 𝐴) ∈ dom vol) | |
20 | 17, 18, 19 | syl2anr 596 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (𝑥 ∩ 𝐴) ∈ dom vol) |
21 | 7, 20 | eqeltrid 2843 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol) |
22 | 21 | ralrimiva 3107 | . 2 ⊢ (𝐴 ∈ dom vol → ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol) |
23 | f1oi 6737 | . . . . 5 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
24 | f1of 6700 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
26 | mblss 24600 | . . . 4 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
27 | fss 6601 | . . . 4 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ ℝ) → ( I ↾ 𝐴):𝐴⟶ℝ) | |
28 | 25, 26, 27 | sylancr 586 | . . 3 ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴):𝐴⟶ℝ) |
29 | ismbf 24697 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶ℝ → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol)) | |
30 | 28, 29 | syl 17 | . 2 ⊢ (𝐴 ∈ dom vol → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol)) |
31 | 22, 30 | mpbird 256 | 1 ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 I cid 5479 × cxp 5578 ◡ccnv 5579 dom cdm 5580 ran crn 5581 ↾ cres 5582 “ cima 5583 Fn wfn 6413 ⟶wf 6414 –1-1-onto→wf1o 6417 (class class class)co 7255 ℝcr 10801 ℝ*cxr 10939 (,)cioo 13008 volcvol 24532 MblFncmbf 24683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-xmet 20503 df-met 20504 df-ovol 24533 df-vol 24534 df-mbf 24688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |