![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfid | Structured version Visualization version GIF version |
Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
mbfid | ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvresima 5926 | . . . . 5 ⊢ (◡( I ↾ 𝐴) “ 𝑥) = ((◡ I “ 𝑥) ∩ 𝐴) | |
2 | cnvi 5840 | . . . . . . . 8 ⊢ ◡ I = I | |
3 | 2 | imaeq1i 5767 | . . . . . . 7 ⊢ (◡ I “ 𝑥) = ( I “ 𝑥) |
4 | imai 5782 | . . . . . . 7 ⊢ ( I “ 𝑥) = 𝑥 | |
5 | 3, 4 | eqtri 2803 | . . . . . 6 ⊢ (◡ I “ 𝑥) = 𝑥 |
6 | 5 | ineq1i 4073 | . . . . 5 ⊢ ((◡ I “ 𝑥) ∩ 𝐴) = (𝑥 ∩ 𝐴) |
7 | 1, 6 | eqtri 2803 | . . . 4 ⊢ (◡( I ↾ 𝐴) “ 𝑥) = (𝑥 ∩ 𝐴) |
8 | ioof 12651 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
9 | ffn 6344 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
10 | ovelrn 7140 | . . . . . . 7 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧))) | |
11 | 8, 9, 10 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧)) |
12 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦(,)𝑧) → 𝑥 = (𝑦(,)𝑧)) | |
13 | ioombl 23869 | . . . . . . . . 9 ⊢ (𝑦(,)𝑧) ∈ dom vol | |
14 | 12, 13 | syl6eqel 2875 | . . . . . . . 8 ⊢ (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol) |
15 | 14 | a1i 11 | . . . . . . 7 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol)) |
16 | 15 | rexlimivv 3238 | . . . . . 6 ⊢ (∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol) |
17 | 11, 16 | sylbi 209 | . . . . 5 ⊢ (𝑥 ∈ ran (,) → 𝑥 ∈ dom vol) |
18 | id 22 | . . . . 5 ⊢ (𝐴 ∈ dom vol → 𝐴 ∈ dom vol) | |
19 | inmbl 23846 | . . . . 5 ⊢ ((𝑥 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝑥 ∩ 𝐴) ∈ dom vol) | |
20 | 17, 18, 19 | syl2anr 587 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (𝑥 ∩ 𝐴) ∈ dom vol) |
21 | 7, 20 | syl5eqel 2871 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol) |
22 | 21 | ralrimiva 3133 | . 2 ⊢ (𝐴 ∈ dom vol → ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol) |
23 | f1oi 6481 | . . . . 5 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
24 | f1of 6444 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
26 | mblss 23835 | . . . 4 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
27 | fss 6357 | . . . 4 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ ℝ) → ( I ↾ 𝐴):𝐴⟶ℝ) | |
28 | 25, 26, 27 | sylancr 578 | . . 3 ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴):𝐴⟶ℝ) |
29 | ismbf 23932 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶ℝ → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol)) | |
30 | 28, 29 | syl 17 | . 2 ⊢ (𝐴 ∈ dom vol → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol)) |
31 | 22, 30 | mpbird 249 | 1 ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∀wral 3089 ∃wrex 3090 ∩ cin 3829 ⊆ wss 3830 𝒫 cpw 4422 I cid 5311 × cxp 5405 ◡ccnv 5406 dom cdm 5407 ran crn 5408 ↾ cres 5409 “ cima 5410 Fn wfn 6183 ⟶wf 6184 –1-1-onto→wf1o 6187 (class class class)co 6976 ℝcr 10334 ℝ*cxr 10473 (,)cioo 12554 volcvol 23767 MblFncmbf 23918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-map 8208 df-pm 8209 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-sup 8701 df-inf 8702 df-oi 8769 df-dju 9124 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-n0 11708 df-z 11794 df-uz 12059 df-q 12163 df-rp 12205 df-xadd 12325 df-ioo 12558 df-ico 12560 df-icc 12561 df-fz 12709 df-fzo 12850 df-fl 12977 df-seq 13185 df-exp 13245 df-hash 13506 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-clim 14706 df-rlim 14707 df-sum 14904 df-xmet 20240 df-met 20241 df-ovol 23768 df-vol 23769 df-mbf 23923 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |