MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfid Structured version   Visualization version   GIF version

Theorem mbfid 25543
Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfid (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn)

Proof of Theorem mbfid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvresima 6206 . . . . 5 (( I ↾ 𝐴) “ 𝑥) = (( I “ 𝑥) ∩ 𝐴)
2 cnvi 6117 . . . . . . . 8 I = I
32imaeq1i 6031 . . . . . . 7 ( I “ 𝑥) = ( I “ 𝑥)
4 imai 6048 . . . . . . 7 ( I “ 𝑥) = 𝑥
53, 4eqtri 2753 . . . . . 6 ( I “ 𝑥) = 𝑥
65ineq1i 4182 . . . . 5 (( I “ 𝑥) ∩ 𝐴) = (𝑥𝐴)
71, 6eqtri 2753 . . . 4 (( I ↾ 𝐴) “ 𝑥) = (𝑥𝐴)
8 ioof 13415 . . . . . . 7 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
9 ffn 6691 . . . . . . 7 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
10 ovelrn 7568 . . . . . . 7 ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ*𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧)))
118, 9, 10mp2b 10 . . . . . 6 (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ*𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧))
12 id 22 . . . . . . . . 9 (𝑥 = (𝑦(,)𝑧) → 𝑥 = (𝑦(,)𝑧))
13 ioombl 25473 . . . . . . . . 9 (𝑦(,)𝑧) ∈ dom vol
1412, 13eqeltrdi 2837 . . . . . . . 8 (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol)
1514a1i 11 . . . . . . 7 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol))
1615rexlimivv 3180 . . . . . 6 (∃𝑦 ∈ ℝ*𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol)
1711, 16sylbi 217 . . . . 5 (𝑥 ∈ ran (,) → 𝑥 ∈ dom vol)
18 id 22 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ∈ dom vol)
19 inmbl 25450 . . . . 5 ((𝑥 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝑥𝐴) ∈ dom vol)
2017, 18, 19syl2anr 597 . . . 4 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (𝑥𝐴) ∈ dom vol)
217, 20eqeltrid 2833 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (( I ↾ 𝐴) “ 𝑥) ∈ dom vol)
2221ralrimiva 3126 . 2 (𝐴 ∈ dom vol → ∀𝑥 ∈ ran (,)(( I ↾ 𝐴) “ 𝑥) ∈ dom vol)
23 f1oi 6841 . . . . 5 ( I ↾ 𝐴):𝐴1-1-onto𝐴
24 f1of 6803 . . . . 5 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
2523, 24ax-mp 5 . . . 4 ( I ↾ 𝐴):𝐴𝐴
26 mblss 25439 . . . 4 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
27 fss 6707 . . . 4 ((( I ↾ 𝐴):𝐴𝐴𝐴 ⊆ ℝ) → ( I ↾ 𝐴):𝐴⟶ℝ)
2825, 26, 27sylancr 587 . . 3 (𝐴 ∈ dom vol → ( I ↾ 𝐴):𝐴⟶ℝ)
29 ismbf 25536 . . 3 (( I ↾ 𝐴):𝐴⟶ℝ → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(( I ↾ 𝐴) “ 𝑥) ∈ dom vol))
3028, 29syl 17 . 2 (𝐴 ∈ dom vol → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(( I ↾ 𝐴) “ 𝑥) ∈ dom vol))
3122, 30mpbird 257 1 (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916  wss 3917  𝒫 cpw 4566   I cid 5535   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644   Fn wfn 6509  wf 6510  1-1-ontowf1o 6513  (class class class)co 7390  cr 11074  *cxr 11214  (,)cioo 13313  volcvol 25371  MblFncmbf 25522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xadd 13080  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-xmet 21264  df-met 21265  df-ovol 25372  df-vol 25373  df-mbf 25527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator