| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfid | Structured version Visualization version GIF version | ||
| Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfid | ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvresima 6185 | . . . . 5 ⊢ (◡( I ↾ 𝐴) “ 𝑥) = ((◡ I “ 𝑥) ∩ 𝐴) | |
| 2 | cnvi 6096 | . . . . . . . 8 ⊢ ◡ I = I | |
| 3 | 2 | imaeq1i 6013 | . . . . . . 7 ⊢ (◡ I “ 𝑥) = ( I “ 𝑥) |
| 4 | imai 6030 | . . . . . . 7 ⊢ ( I “ 𝑥) = 𝑥 | |
| 5 | 3, 4 | eqtri 2756 | . . . . . 6 ⊢ (◡ I “ 𝑥) = 𝑥 |
| 6 | 5 | ineq1i 4167 | . . . . 5 ⊢ ((◡ I “ 𝑥) ∩ 𝐴) = (𝑥 ∩ 𝐴) |
| 7 | 1, 6 | eqtri 2756 | . . . 4 ⊢ (◡( I ↾ 𝐴) “ 𝑥) = (𝑥 ∩ 𝐴) |
| 8 | ioof 13357 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 9 | ffn 6659 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 10 | ovelrn 7531 | . . . . . . 7 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧))) | |
| 11 | 8, 9, 10 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧)) |
| 12 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦(,)𝑧) → 𝑥 = (𝑦(,)𝑧)) | |
| 13 | ioombl 25503 | . . . . . . . . 9 ⊢ (𝑦(,)𝑧) ∈ dom vol | |
| 14 | 12, 13 | eqeltrdi 2841 | . . . . . . . 8 ⊢ (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol) |
| 15 | 14 | a1i 11 | . . . . . . 7 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol)) |
| 16 | 15 | rexlimivv 3176 | . . . . . 6 ⊢ (∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol) |
| 17 | 11, 16 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ ran (,) → 𝑥 ∈ dom vol) |
| 18 | id 22 | . . . . 5 ⊢ (𝐴 ∈ dom vol → 𝐴 ∈ dom vol) | |
| 19 | inmbl 25480 | . . . . 5 ⊢ ((𝑥 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝑥 ∩ 𝐴) ∈ dom vol) | |
| 20 | 17, 18, 19 | syl2anr 597 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (𝑥 ∩ 𝐴) ∈ dom vol) |
| 21 | 7, 20 | eqeltrid 2837 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol) |
| 22 | 21 | ralrimiva 3126 | . 2 ⊢ (𝐴 ∈ dom vol → ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol) |
| 23 | f1oi 6809 | . . . . 5 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 24 | f1of 6771 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
| 26 | mblss 25469 | . . . 4 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
| 27 | fss 6675 | . . . 4 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ ℝ) → ( I ↾ 𝐴):𝐴⟶ℝ) | |
| 28 | 25, 26, 27 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴):𝐴⟶ℝ) |
| 29 | ismbf 25566 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶ℝ → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol)) | |
| 30 | 28, 29 | syl 17 | . 2 ⊢ (𝐴 ∈ dom vol → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol)) |
| 31 | 22, 30 | mpbird 257 | 1 ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∃wrex 3058 ∩ cin 3898 ⊆ wss 3899 𝒫 cpw 4551 I cid 5515 × cxp 5619 ◡ccnv 5620 dom cdm 5621 ran crn 5622 ↾ cres 5623 “ cima 5624 Fn wfn 6484 ⟶wf 6485 –1-1-onto→wf1o 6488 (class class class)co 7355 ℝcr 11015 ℝ*cxr 11155 (,)cioo 13255 volcvol 25401 MblFncmbf 25552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-inf 9337 df-oi 9406 df-dju 9804 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-n0 12392 df-z 12479 df-uz 12743 df-q 12857 df-rp 12901 df-xadd 13022 df-ioo 13259 df-ico 13261 df-icc 13262 df-fz 13418 df-fzo 13565 df-fl 13706 df-seq 13919 df-exp 13979 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-clim 15405 df-rlim 15406 df-sum 15604 df-xmet 21294 df-met 21295 df-ovol 25402 df-vol 25403 df-mbf 25557 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |