MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfid Structured version   Visualization version   GIF version

Theorem mbfid 25671
Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfid (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn)

Proof of Theorem mbfid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvresima 6249 . . . . 5 (( I ↾ 𝐴) “ 𝑥) = (( I “ 𝑥) ∩ 𝐴)
2 cnvi 6160 . . . . . . . 8 I = I
32imaeq1i 6074 . . . . . . 7 ( I “ 𝑥) = ( I “ 𝑥)
4 imai 6091 . . . . . . 7 ( I “ 𝑥) = 𝑥
53, 4eqtri 2764 . . . . . 6 ( I “ 𝑥) = 𝑥
65ineq1i 4215 . . . . 5 (( I “ 𝑥) ∩ 𝐴) = (𝑥𝐴)
71, 6eqtri 2764 . . . 4 (( I ↾ 𝐴) “ 𝑥) = (𝑥𝐴)
8 ioof 13488 . . . . . . 7 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
9 ffn 6735 . . . . . . 7 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
10 ovelrn 7610 . . . . . . 7 ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ*𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧)))
118, 9, 10mp2b 10 . . . . . 6 (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ*𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧))
12 id 22 . . . . . . . . 9 (𝑥 = (𝑦(,)𝑧) → 𝑥 = (𝑦(,)𝑧))
13 ioombl 25601 . . . . . . . . 9 (𝑦(,)𝑧) ∈ dom vol
1412, 13eqeltrdi 2848 . . . . . . . 8 (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol)
1514a1i 11 . . . . . . 7 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol))
1615rexlimivv 3200 . . . . . 6 (∃𝑦 ∈ ℝ*𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol)
1711, 16sylbi 217 . . . . 5 (𝑥 ∈ ran (,) → 𝑥 ∈ dom vol)
18 id 22 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ∈ dom vol)
19 inmbl 25578 . . . . 5 ((𝑥 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝑥𝐴) ∈ dom vol)
2017, 18, 19syl2anr 597 . . . 4 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (𝑥𝐴) ∈ dom vol)
217, 20eqeltrid 2844 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (( I ↾ 𝐴) “ 𝑥) ∈ dom vol)
2221ralrimiva 3145 . 2 (𝐴 ∈ dom vol → ∀𝑥 ∈ ran (,)(( I ↾ 𝐴) “ 𝑥) ∈ dom vol)
23 f1oi 6885 . . . . 5 ( I ↾ 𝐴):𝐴1-1-onto𝐴
24 f1of 6847 . . . . 5 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
2523, 24ax-mp 5 . . . 4 ( I ↾ 𝐴):𝐴𝐴
26 mblss 25567 . . . 4 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
27 fss 6751 . . . 4 ((( I ↾ 𝐴):𝐴𝐴𝐴 ⊆ ℝ) → ( I ↾ 𝐴):𝐴⟶ℝ)
2825, 26, 27sylancr 587 . . 3 (𝐴 ∈ dom vol → ( I ↾ 𝐴):𝐴⟶ℝ)
29 ismbf 25664 . . 3 (( I ↾ 𝐴):𝐴⟶ℝ → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(( I ↾ 𝐴) “ 𝑥) ∈ dom vol))
3028, 29syl 17 . 2 (𝐴 ∈ dom vol → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(( I ↾ 𝐴) “ 𝑥) ∈ dom vol))
3122, 30mpbird 257 1 (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  cin 3949  wss 3950  𝒫 cpw 4599   I cid 5576   × cxp 5682  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  cima 5687   Fn wfn 6555  wf 6556  1-1-ontowf1o 6559  (class class class)co 7432  cr 11155  *cxr 11295  (,)cioo 13388  volcvol 25499  MblFncmbf 25650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xadd 13156  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724  df-xmet 21358  df-met 21359  df-ovol 25500  df-vol 25501  df-mbf 25655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator