| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfid | Structured version Visualization version GIF version | ||
| Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfid | ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvresima 6183 | . . . . 5 ⊢ (◡( I ↾ 𝐴) “ 𝑥) = ((◡ I “ 𝑥) ∩ 𝐴) | |
| 2 | cnvi 6094 | . . . . . . . 8 ⊢ ◡ I = I | |
| 3 | 2 | imaeq1i 6012 | . . . . . . 7 ⊢ (◡ I “ 𝑥) = ( I “ 𝑥) |
| 4 | imai 6029 | . . . . . . 7 ⊢ ( I “ 𝑥) = 𝑥 | |
| 5 | 3, 4 | eqtri 2752 | . . . . . 6 ⊢ (◡ I “ 𝑥) = 𝑥 |
| 6 | 5 | ineq1i 4169 | . . . . 5 ⊢ ((◡ I “ 𝑥) ∩ 𝐴) = (𝑥 ∩ 𝐴) |
| 7 | 1, 6 | eqtri 2752 | . . . 4 ⊢ (◡( I ↾ 𝐴) “ 𝑥) = (𝑥 ∩ 𝐴) |
| 8 | ioof 13368 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 9 | ffn 6656 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 10 | ovelrn 7529 | . . . . . . 7 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧))) | |
| 11 | 8, 9, 10 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧)) |
| 12 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦(,)𝑧) → 𝑥 = (𝑦(,)𝑧)) | |
| 13 | ioombl 25482 | . . . . . . . . 9 ⊢ (𝑦(,)𝑧) ∈ dom vol | |
| 14 | 12, 13 | eqeltrdi 2836 | . . . . . . . 8 ⊢ (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol) |
| 15 | 14 | a1i 11 | . . . . . . 7 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol)) |
| 16 | 15 | rexlimivv 3171 | . . . . . 6 ⊢ (∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol) |
| 17 | 11, 16 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ ran (,) → 𝑥 ∈ dom vol) |
| 18 | id 22 | . . . . 5 ⊢ (𝐴 ∈ dom vol → 𝐴 ∈ dom vol) | |
| 19 | inmbl 25459 | . . . . 5 ⊢ ((𝑥 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝑥 ∩ 𝐴) ∈ dom vol) | |
| 20 | 17, 18, 19 | syl2anr 597 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (𝑥 ∩ 𝐴) ∈ dom vol) |
| 21 | 7, 20 | eqeltrid 2832 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol) |
| 22 | 21 | ralrimiva 3121 | . 2 ⊢ (𝐴 ∈ dom vol → ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol) |
| 23 | f1oi 6806 | . . . . 5 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 24 | f1of 6768 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
| 26 | mblss 25448 | . . . 4 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
| 27 | fss 6672 | . . . 4 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ ℝ) → ( I ↾ 𝐴):𝐴⟶ℝ) | |
| 28 | 25, 26, 27 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴):𝐴⟶ℝ) |
| 29 | ismbf 25545 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶ℝ → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol)) | |
| 30 | 28, 29 | syl 17 | . 2 ⊢ (𝐴 ∈ dom vol → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol)) |
| 31 | 22, 30 | mpbird 257 | 1 ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3904 ⊆ wss 3905 𝒫 cpw 4553 I cid 5517 × cxp 5621 ◡ccnv 5622 dom cdm 5623 ran crn 5624 ↾ cres 5625 “ cima 5626 Fn wfn 6481 ⟶wf 6482 –1-1-onto→wf1o 6485 (class class class)co 7353 ℝcr 11027 ℝ*cxr 11167 (,)cioo 13266 volcvol 25380 MblFncmbf 25531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xadd 13033 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-rlim 15414 df-sum 15612 df-xmet 21272 df-met 21273 df-ovol 25381 df-vol 25382 df-mbf 25536 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |