MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfid Structured version   Visualization version   GIF version

Theorem mbfid 24165
Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfid (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn)

Proof of Theorem mbfid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvresima 6081 . . . . 5 (( I ↾ 𝐴) “ 𝑥) = (( I “ 𝑥) ∩ 𝐴)
2 cnvi 5994 . . . . . . . 8 I = I
32imaeq1i 5920 . . . . . . 7 ( I “ 𝑥) = ( I “ 𝑥)
4 imai 5936 . . . . . . 7 ( I “ 𝑥) = 𝑥
53, 4eqtri 2844 . . . . . 6 ( I “ 𝑥) = 𝑥
65ineq1i 4184 . . . . 5 (( I “ 𝑥) ∩ 𝐴) = (𝑥𝐴)
71, 6eqtri 2844 . . . 4 (( I ↾ 𝐴) “ 𝑥) = (𝑥𝐴)
8 ioof 12825 . . . . . . 7 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
9 ffn 6508 . . . . . . 7 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
10 ovelrn 7313 . . . . . . 7 ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ*𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧)))
118, 9, 10mp2b 10 . . . . . 6 (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ*𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧))
12 id 22 . . . . . . . . 9 (𝑥 = (𝑦(,)𝑧) → 𝑥 = (𝑦(,)𝑧))
13 ioombl 24095 . . . . . . . . 9 (𝑦(,)𝑧) ∈ dom vol
1412, 13syl6eqel 2921 . . . . . . . 8 (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol)
1514a1i 11 . . . . . . 7 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol))
1615rexlimivv 3292 . . . . . 6 (∃𝑦 ∈ ℝ*𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol)
1711, 16sylbi 218 . . . . 5 (𝑥 ∈ ran (,) → 𝑥 ∈ dom vol)
18 id 22 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ∈ dom vol)
19 inmbl 24072 . . . . 5 ((𝑥 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝑥𝐴) ∈ dom vol)
2017, 18, 19syl2anr 596 . . . 4 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (𝑥𝐴) ∈ dom vol)
217, 20eqeltrid 2917 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (( I ↾ 𝐴) “ 𝑥) ∈ dom vol)
2221ralrimiva 3182 . 2 (𝐴 ∈ dom vol → ∀𝑥 ∈ ran (,)(( I ↾ 𝐴) “ 𝑥) ∈ dom vol)
23 f1oi 6646 . . . . 5 ( I ↾ 𝐴):𝐴1-1-onto𝐴
24 f1of 6609 . . . . 5 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
2523, 24ax-mp 5 . . . 4 ( I ↾ 𝐴):𝐴𝐴
26 mblss 24061 . . . 4 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
27 fss 6521 . . . 4 ((( I ↾ 𝐴):𝐴𝐴𝐴 ⊆ ℝ) → ( I ↾ 𝐴):𝐴⟶ℝ)
2825, 26, 27sylancr 587 . . 3 (𝐴 ∈ dom vol → ( I ↾ 𝐴):𝐴⟶ℝ)
29 ismbf 24158 . . 3 (( I ↾ 𝐴):𝐴⟶ℝ → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(( I ↾ 𝐴) “ 𝑥) ∈ dom vol))
3028, 29syl 17 . 2 (𝐴 ∈ dom vol → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(( I ↾ 𝐴) “ 𝑥) ∈ dom vol))
3122, 30mpbird 258 1 (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3138  wrex 3139  cin 3934  wss 3935  𝒫 cpw 4537   I cid 5453   × cxp 5547  ccnv 5548  dom cdm 5549  ran crn 5550  cres 5551  cima 5552   Fn wfn 6344  wf 6345  1-1-ontowf1o 6348  (class class class)co 7145  cr 10525  *cxr 10663  (,)cioo 12728  volcvol 23993  MblFncmbf 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-q 12338  df-rp 12380  df-xadd 12498  df-ioo 12732  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-rlim 14836  df-sum 15033  df-xmet 20468  df-met 20469  df-ovol 23994  df-vol 23995  df-mbf 24149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator