| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfid | Structured version Visualization version GIF version | ||
| Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfid | ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvresima 6174 | . . . . 5 ⊢ (◡( I ↾ 𝐴) “ 𝑥) = ((◡ I “ 𝑥) ∩ 𝐴) | |
| 2 | cnvi 6085 | . . . . . . . 8 ⊢ ◡ I = I | |
| 3 | 2 | imaeq1i 6003 | . . . . . . 7 ⊢ (◡ I “ 𝑥) = ( I “ 𝑥) |
| 4 | imai 6020 | . . . . . . 7 ⊢ ( I “ 𝑥) = 𝑥 | |
| 5 | 3, 4 | eqtri 2753 | . . . . . 6 ⊢ (◡ I “ 𝑥) = 𝑥 |
| 6 | 5 | ineq1i 4164 | . . . . 5 ⊢ ((◡ I “ 𝑥) ∩ 𝐴) = (𝑥 ∩ 𝐴) |
| 7 | 1, 6 | eqtri 2753 | . . . 4 ⊢ (◡( I ↾ 𝐴) “ 𝑥) = (𝑥 ∩ 𝐴) |
| 8 | ioof 13339 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 9 | ffn 6647 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 10 | ovelrn 7517 | . . . . . . 7 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧))) | |
| 11 | 8, 9, 10 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ ran (,) ↔ ∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧)) |
| 12 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦(,)𝑧) → 𝑥 = (𝑦(,)𝑧)) | |
| 13 | ioombl 25486 | . . . . . . . . 9 ⊢ (𝑦(,)𝑧) ∈ dom vol | |
| 14 | 12, 13 | eqeltrdi 2837 | . . . . . . . 8 ⊢ (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol) |
| 15 | 14 | a1i 11 | . . . . . . 7 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol)) |
| 16 | 15 | rexlimivv 3172 | . . . . . 6 ⊢ (∃𝑦 ∈ ℝ* ∃𝑧 ∈ ℝ* 𝑥 = (𝑦(,)𝑧) → 𝑥 ∈ dom vol) |
| 17 | 11, 16 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ ran (,) → 𝑥 ∈ dom vol) |
| 18 | id 22 | . . . . 5 ⊢ (𝐴 ∈ dom vol → 𝐴 ∈ dom vol) | |
| 19 | inmbl 25463 | . . . . 5 ⊢ ((𝑥 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝑥 ∩ 𝐴) ∈ dom vol) | |
| 20 | 17, 18, 19 | syl2anr 597 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (𝑥 ∩ 𝐴) ∈ dom vol) |
| 21 | 7, 20 | eqeltrid 2833 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,)) → (◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol) |
| 22 | 21 | ralrimiva 3122 | . 2 ⊢ (𝐴 ∈ dom vol → ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol) |
| 23 | f1oi 6797 | . . . . 5 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 24 | f1of 6759 | . . . . 5 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) | |
| 25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐴):𝐴⟶𝐴 |
| 26 | mblss 25452 | . . . 4 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
| 27 | fss 6663 | . . . 4 ⊢ ((( I ↾ 𝐴):𝐴⟶𝐴 ∧ 𝐴 ⊆ ℝ) → ( I ↾ 𝐴):𝐴⟶ℝ) | |
| 28 | 25, 26, 27 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴):𝐴⟶ℝ) |
| 29 | ismbf 25549 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶ℝ → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol)) | |
| 30 | 28, 29 | syl 17 | . 2 ⊢ (𝐴 ∈ dom vol → (( I ↾ 𝐴) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡( I ↾ 𝐴) “ 𝑥) ∈ dom vol)) |
| 31 | 22, 30 | mpbird 257 | 1 ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ∃wrex 3054 ∩ cin 3899 ⊆ wss 3900 𝒫 cpw 4548 I cid 5508 × cxp 5612 ◡ccnv 5613 dom cdm 5614 ran crn 5615 ↾ cres 5616 “ cima 5617 Fn wfn 6472 ⟶wf 6473 –1-1-onto→wf1o 6476 (class class class)co 7341 ℝcr 10997 ℝ*cxr 11137 (,)cioo 13237 volcvol 25384 MblFncmbf 25535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-xadd 13004 df-ioo 13241 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-rlim 15388 df-sum 15586 df-xmet 21277 df-met 21278 df-ovol 25385 df-vol 25386 df-mbf 25540 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |