| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relexpsucrd | Structured version Visualization version GIF version | ||
| Description: A reduction for relation exponentiation to the right. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| relexpsucrd.1 | ⊢ (𝜑 → Rel 𝑅) |
| relexpsucrd.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| relexpsucrd | ⊢ (𝜑 → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ∈ V) → 𝑅 ∈ V) | |
| 2 | relexpsucrd.1 | . . . . 5 ⊢ (𝜑 → Rel 𝑅) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ∈ V) → Rel 𝑅) |
| 4 | relexpsucrd.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ∈ V) → 𝑁 ∈ ℕ0) |
| 6 | relexpsucr 15053 | . . . 4 ⊢ ((𝑅 ∈ V ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) | |
| 7 | 1, 3, 5, 6 | syl3anc 1372 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ∈ V) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
| 8 | 7 | ex 412 | . 2 ⊢ (𝜑 → (𝑅 ∈ V → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅))) |
| 9 | reldmrelexp 15042 | . . . 4 ⊢ Rel dom ↑𝑟 | |
| 10 | 9 | ovprc1 7452 | . . 3 ⊢ (¬ 𝑅 ∈ V → (𝑅↑𝑟(𝑁 + 1)) = ∅) |
| 11 | 9 | ovprc1 7452 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝑅↑𝑟𝑁) = ∅) |
| 12 | 11 | coeq1d 5852 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ((𝑅↑𝑟𝑁) ∘ 𝑅) = (∅ ∘ 𝑅)) |
| 13 | co01 6261 | . . . 4 ⊢ (∅ ∘ 𝑅) = ∅ | |
| 14 | 12, 13 | eqtr2di 2786 | . . 3 ⊢ (¬ 𝑅 ∈ V → ∅ = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
| 15 | 10, 14 | eqtrd 2769 | . 2 ⊢ (¬ 𝑅 ∈ V → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
| 16 | 8, 15 | pm2.61d1 180 | 1 ⊢ (𝜑 → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 ∘ ccom 5669 Rel wrel 5670 (class class class)co 7413 1c1 11138 + caddc 11140 ℕ0cn0 12509 ↑𝑟crelexp 15040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-seq 14025 df-relexp 15041 |
| This theorem is referenced by: rtrclreclem4 15082 relexpiidm 43679 |
| Copyright terms: Public domain | W3C validator |