| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphsca | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a vector space over a subfield of ℂfld. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cphsca | ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2729 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2729 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 4 | cphsca.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | cphsca.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | 1, 2, 3, 4, 5 | iscph 25068 | . . 3 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
| 7 | 6 | simp1bi 1145 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾))) |
| 8 | 7 | simp3d 1144 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ⊆ wss 3903 ↦ cmpt 5173 “ cima 5622 ‘cfv 6482 (class class class)co 7349 0cc0 11009 +∞cpnf 11146 [,)cico 13250 √csqrt 15140 Basecbs 17120 ↾s cress 17141 Scalarcsca 17164 ·𝑖cip 17166 ℂfldccnfld 21261 PreHilcphl 21531 normcnm 24462 NrmModcnlm 24466 ℂPreHilccph 25064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fv 6490 df-ov 7352 df-cph 25066 |
| This theorem is referenced by: cphsubrg 25078 cphreccl 25079 cphcjcl 25081 cphqss 25086 cphclm 25087 ipcau 25136 cphsscph 25149 hlprlem 25265 ishl2 25268 |
| Copyright terms: Public domain | W3C validator |