MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsca Structured version   Visualization version   GIF version

Theorem cphsca 25077
Description: A subcomplex pre-Hilbert space is a vector space over a subfield of fld. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphsca (𝑊 ∈ ℂPreHil → 𝐹 = (ℂflds 𝐾))

Proof of Theorem cphsca
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2729 . . . 4 (norm‘𝑊) = (norm‘𝑊)
4 cphsca.f . . . 4 𝐹 = (Scalar‘𝑊)
5 cphsca.k . . . 4 𝐾 = (Base‘𝐹)
61, 2, 3, 4, 5iscph 25068 . . 3 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥)))))
76simp1bi 1145 . 2 (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)))
87simp3d 1144 1 (𝑊 ∈ ℂPreHil → 𝐹 = (ℂflds 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cin 3902  wss 3903  cmpt 5173  cima 5622  cfv 6482  (class class class)co 7349  0cc0 11009  +∞cpnf 11146  [,)cico 13250  csqrt 15140  Basecbs 17120  s cress 17141  Scalarcsca 17164  ·𝑖cip 17166  fldccnfld 21261  PreHilcphl 21531  normcnm 24462  NrmModcnlm 24466  ℂPreHilccph 25064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5245
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fv 6490  df-ov 7352  df-cph 25066
This theorem is referenced by:  cphsubrg  25078  cphreccl  25079  cphcjcl  25081  cphqss  25086  cphclm  25087  ipcau  25136  cphsscph  25149  hlprlem  25265  ishl2  25268
  Copyright terms: Public domain W3C validator