MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsca Structured version   Visualization version   GIF version

Theorem cphsca 23785
Description: A subcomplex pre-Hilbert space is a vector space over a subfield of fld. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphsca (𝑊 ∈ ℂPreHil → 𝐹 = (ℂflds 𝐾))

Proof of Theorem cphsca
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2823 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2823 . . . 4 (norm‘𝑊) = (norm‘𝑊)
4 cphsca.f . . . 4 𝐹 = (Scalar‘𝑊)
5 cphsca.k . . . 4 𝐾 = (Base‘𝐹)
61, 2, 3, 4, 5iscph 23776 . . 3 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥)))))
76simp1bi 1141 . 2 (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)))
87simp3d 1140 1 (𝑊 ∈ ℂPreHil → 𝐹 = (ℂflds 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  cin 3937  wss 3938  cmpt 5148  cima 5560  cfv 6357  (class class class)co 7158  0cc0 10539  +∞cpnf 10674  [,)cico 12743  csqrt 14594  Basecbs 16485  s cress 16486  Scalarcsca 16570  ·𝑖cip 16572  fldccnfld 20547  PreHilcphl 20770  normcnm 23188  NrmModcnlm 23192  ℂPreHilccph 23772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-nul 5212
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-xp 5563  df-cnv 5565  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fv 6365  df-ov 7161  df-cph 23774
This theorem is referenced by:  cphsubrg  23786  cphreccl  23787  cphcjcl  23789  cphqss  23794  cphclm  23795  ipcau  23843  cphsscph  23856  hlprlem  23972  ishl2  23975
  Copyright terms: Public domain W3C validator