Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphsca | Structured version Visualization version GIF version |
Description: A subcomplex pre-Hilbert space is a vector space over a subfield of ℂfld. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cphsca | ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2738 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
3 | eqid 2738 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
4 | cphsca.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | cphsca.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
6 | 1, 2, 3, 4, 5 | iscph 24239 | . . 3 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
7 | 6 | simp1bi 1143 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾))) |
8 | 7 | simp3d 1142 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 ↦ cmpt 5153 “ cima 5583 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 [,)cico 13010 √csqrt 14872 Basecbs 16840 ↾s cress 16867 Scalarcsca 16891 ·𝑖cip 16893 ℂfldccnfld 20510 PreHilcphl 20741 normcnm 23638 NrmModcnlm 23642 ℂPreHilccph 24235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 df-ov 7258 df-cph 24237 |
This theorem is referenced by: cphsubrg 24249 cphreccl 24250 cphcjcl 24252 cphqss 24257 cphclm 24258 ipcau 24307 cphsscph 24320 hlprlem 24436 ishl2 24439 |
Copyright terms: Public domain | W3C validator |