![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphsca | Structured version Visualization version GIF version |
Description: A subcomplex pre-Hilbert space is a vector space over a subfield of ℂfld. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cphsca | ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2726 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
3 | eqid 2726 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
4 | cphsca.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | cphsca.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
6 | 1, 2, 3, 4, 5 | iscph 25189 | . . 3 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
7 | 6 | simp1bi 1142 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾))) |
8 | 7 | simp3d 1141 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 ⊆ wss 3947 ↦ cmpt 5236 “ cima 5685 ‘cfv 6554 (class class class)co 7424 0cc0 11158 +∞cpnf 11295 [,)cico 13380 √csqrt 15238 Basecbs 17213 ↾s cress 17242 Scalarcsca 17269 ·𝑖cip 17271 ℂfldccnfld 21343 PreHilcphl 21620 normcnm 24576 NrmModcnlm 24580 ℂPreHilccph 25185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-nul 5311 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-xp 5688 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fv 6562 df-ov 7427 df-cph 25187 |
This theorem is referenced by: cphsubrg 25199 cphreccl 25200 cphcjcl 25202 cphqss 25207 cphclm 25208 ipcau 25257 cphsscph 25270 hlprlem 25386 ishl2 25389 |
Copyright terms: Public domain | W3C validator |