MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsca Structured version   Visualization version   GIF version

Theorem cphsca 25131
Description: A subcomplex pre-Hilbert space is a vector space over a subfield of fld. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphsca (𝑊 ∈ ℂPreHil → 𝐹 = (ℂflds 𝐾))

Proof of Theorem cphsca
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2735 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2735 . . . 4 (norm‘𝑊) = (norm‘𝑊)
4 cphsca.f . . . 4 𝐹 = (Scalar‘𝑊)
5 cphsca.k . . . 4 𝐾 = (Base‘𝐹)
61, 2, 3, 4, 5iscph 25122 . . 3 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥)))))
76simp1bi 1145 . 2 (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)))
87simp3d 1144 1 (𝑊 ∈ ℂPreHil → 𝐹 = (ℂflds 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cin 3925  wss 3926  cmpt 5201  cima 5657  cfv 6531  (class class class)co 7405  0cc0 11129  +∞cpnf 11266  [,)cico 13364  csqrt 15252  Basecbs 17228  s cress 17251  Scalarcsca 17274  ·𝑖cip 17276  fldccnfld 21315  PreHilcphl 21584  normcnm 24515  NrmModcnlm 24519  ℂPreHilccph 25118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fv 6539  df-ov 7408  df-cph 25120
This theorem is referenced by:  cphsubrg  25132  cphreccl  25133  cphcjcl  25135  cphqss  25140  cphclm  25141  ipcau  25190  cphsscph  25203  hlprlem  25319  ishl2  25322
  Copyright terms: Public domain W3C validator