| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphsca | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a vector space over a subfield of ℂfld. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cphsca | ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2735 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2735 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 4 | cphsca.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | cphsca.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | 1, 2, 3, 4, 5 | iscph 25122 | . . 3 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
| 7 | 6 | simp1bi 1145 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾))) |
| 8 | 7 | simp3d 1144 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 ↦ cmpt 5201 “ cima 5657 ‘cfv 6531 (class class class)co 7405 0cc0 11129 +∞cpnf 11266 [,)cico 13364 √csqrt 15252 Basecbs 17228 ↾s cress 17251 Scalarcsca 17274 ·𝑖cip 17276 ℂfldccnfld 21315 PreHilcphl 21584 normcnm 24515 NrmModcnlm 24519 ℂPreHilccph 25118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fv 6539 df-ov 7408 df-cph 25120 |
| This theorem is referenced by: cphsubrg 25132 cphreccl 25133 cphcjcl 25135 cphqss 25140 cphclm 25141 ipcau 25190 cphsscph 25203 hlprlem 25319 ishl2 25322 |
| Copyright terms: Public domain | W3C validator |