| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipcau | Structured version Visualization version GIF version | ||
| Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. Part of Lemma 3.2-1(a) of [Kreyszig] p. 137. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 11-Oct-2015.) |
| Ref | Expression |
|---|---|
| ipcau.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipcau.h | ⊢ , = (·𝑖‘𝑊) |
| ipcau.n | ⊢ 𝑁 = (norm‘𝑊) |
| Ref | Expression |
|---|---|
| ipcau | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (toℂPreHil‘𝑊) = (toℂPreHil‘𝑊) | |
| 2 | ipcau.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | eqid 2731 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | simp1 1136 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑊 ∈ ℂPreHil) | |
| 5 | cphphl 25096 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑊 ∈ PreHil) |
| 7 | eqid 2731 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 8 | 3, 7 | cphsca 25104 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) |
| 9 | 4, 8 | syl 17 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) |
| 10 | ipcau.h | . . 3 ⊢ , = (·𝑖‘𝑊) | |
| 11 | 3, 7 | cphsqrtcl 25109 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊))) |
| 12 | 4, 11 | sylan 580 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊))) |
| 13 | 2, 10 | ipge0 25123 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
| 14 | 4, 13 | sylan 580 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
| 15 | eqid 2731 | . . 3 ⊢ (norm‘(toℂPreHil‘𝑊)) = (norm‘(toℂPreHil‘𝑊)) | |
| 16 | eqid 2731 | . . 3 ⊢ ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) / (𝑌 , 𝑌)) | |
| 17 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 18 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
| 19 | 1, 2, 3, 6, 9, 10, 12, 14, 7, 15, 16, 17, 18 | ipcau2 25159 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘(𝑋 , 𝑌)) ≤ (((norm‘(toℂPreHil‘𝑊))‘𝑋) · ((norm‘(toℂPreHil‘𝑊))‘𝑌))) |
| 20 | ipcau.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝑊) | |
| 21 | 1, 20 | cphtcphnm 25155 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (norm‘(toℂPreHil‘𝑊))) |
| 22 | 4, 21 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑁 = (norm‘(toℂPreHil‘𝑊))) |
| 23 | 22 | fveq1d 6824 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘𝑋) = ((norm‘(toℂPreHil‘𝑊))‘𝑋)) |
| 24 | 22 | fveq1d 6824 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘𝑌) = ((norm‘(toℂPreHil‘𝑊))‘𝑌)) |
| 25 | 23, 24 | oveq12d 7364 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (((norm‘(toℂPreHil‘𝑊))‘𝑋) · ((norm‘(toℂPreHil‘𝑊))‘𝑌))) |
| 26 | 19, 25 | breqtrrd 5119 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 0cc0 11003 · cmul 11008 ≤ cle 11144 / cdiv 11771 √csqrt 15137 abscabs 15138 Basecbs 17117 ↾s cress 17138 Scalarcsca 17161 ·𝑖cip 17163 ℂfldccnfld 21289 PreHilcphl 21559 normcnm 24489 ℂPreHilccph 25091 toℂPreHilctcph 25092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ico 13248 df-fz 13405 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-0g 17342 df-topgen 17344 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-ghm 19123 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-subrng 20459 df-subrg 20483 df-drng 20644 df-staf 20752 df-srng 20753 df-lmod 20793 df-lmhm 20954 df-lvec 21035 df-sra 21105 df-rgmod 21106 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-cnfld 21290 df-phl 21561 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-xms 24233 df-ms 24234 df-nm 24495 df-ngp 24496 df-tng 24497 df-nlm 24499 df-clm 24988 df-cph 25093 df-tcph 25094 |
| This theorem is referenced by: ipcnlem2 25169 |
| Copyright terms: Public domain | W3C validator |