MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcau Structured version   Visualization version   GIF version

Theorem ipcau 24554
Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. Part of Lemma 3.2-1(a) of [Kreyszig] p. 137. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
ipcau.v 𝑉 = (Base‘𝑊)
ipcau.h , = (·𝑖𝑊)
ipcau.n 𝑁 = (norm‘𝑊)
Assertion
Ref Expression
ipcau ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))

Proof of Theorem ipcau
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (toℂPreHil‘𝑊) = (toℂPreHil‘𝑊)
2 ipcau.v . . 3 𝑉 = (Base‘𝑊)
3 eqid 2738 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
4 simp1 1137 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ ℂPreHil)
5 cphphl 24487 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
64, 5syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ PreHil)
7 eqid 2738 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
83, 7cphsca 24495 . . . 4 (𝑊 ∈ ℂPreHil → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
94, 8syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
10 ipcau.h . . 3 , = (·𝑖𝑊)
113, 7cphsqrtcl 24500 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊)))
124, 11sylan 581 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊)))
132, 10ipge0 24514 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
144, 13sylan 581 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
15 eqid 2738 . . 3 (norm‘(toℂPreHil‘𝑊)) = (norm‘(toℂPreHil‘𝑊))
16 eqid 2738 . . 3 ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
17 simp2 1138 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
18 simp3 1139 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑌𝑉)
191, 2, 3, 6, 9, 10, 12, 14, 7, 15, 16, 17, 18ipcau2 24550 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (abs‘(𝑋 , 𝑌)) ≤ (((norm‘(toℂPreHil‘𝑊))‘𝑋) · ((norm‘(toℂPreHil‘𝑊))‘𝑌)))
20 ipcau.n . . . . . 6 𝑁 = (norm‘𝑊)
211, 20cphtcphnm 24546 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑁 = (norm‘(toℂPreHil‘𝑊)))
224, 21syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑁 = (norm‘(toℂPreHil‘𝑊)))
2322fveq1d 6842 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑁𝑋) = ((norm‘(toℂPreHil‘𝑊))‘𝑋))
2422fveq1d 6842 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑁𝑌) = ((norm‘(toℂPreHil‘𝑊))‘𝑌))
2523, 24oveq12d 7370 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → ((𝑁𝑋) · (𝑁𝑌)) = (((norm‘(toℂPreHil‘𝑊))‘𝑋) · ((norm‘(toℂPreHil‘𝑊))‘𝑌)))
2619, 25breqtrrd 5132 1 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5104  cfv 6494  (class class class)co 7352  cr 11009  0cc0 11010   · cmul 11015  cle 11149   / cdiv 11771  csqrt 15078  abscabs 15079  Basecbs 17043  s cress 17072  Scalarcsca 17096  ·𝑖cip 17098  fldccnfld 20749  PreHilcphl 20981  normcnm 23884  ℂPreHilccph 24482  toℂPreHilctcph 24483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087  ax-pre-sup 11088  ax-addf 11089  ax-mulf 11090
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7796  df-1st 7914  df-2nd 7915  df-tpos 8150  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-1o 8405  df-er 8607  df-map 8726  df-en 8843  df-dom 8844  df-sdom 8845  df-fin 8846  df-sup 9337  df-inf 9338  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-div 11772  df-nn 12113  df-2 12175  df-3 12176  df-4 12177  df-5 12178  df-6 12179  df-7 12180  df-8 12181  df-9 12182  df-n0 12373  df-z 12459  df-dec 12578  df-uz 12723  df-q 12829  df-rp 12871  df-xneg 12988  df-xadd 12989  df-xmul 12990  df-ico 13225  df-fz 13380  df-seq 13862  df-exp 13923  df-cj 14944  df-re 14945  df-im 14946  df-sqrt 15080  df-abs 15081  df-struct 16979  df-sets 16996  df-slot 17014  df-ndx 17026  df-base 17044  df-ress 17073  df-plusg 17106  df-mulr 17107  df-starv 17108  df-sca 17109  df-vsca 17110  df-ip 17111  df-tset 17112  df-ple 17113  df-ds 17115  df-unif 17116  df-0g 17283  df-topgen 17285  df-mgm 18457  df-sgrp 18506  df-mnd 18517  df-mhm 18561  df-grp 18711  df-minusg 18712  df-sbg 18713  df-subg 18884  df-ghm 18965  df-cmn 19523  df-abl 19524  df-mgp 19856  df-ur 19873  df-ring 19920  df-cring 19921  df-oppr 20002  df-dvdsr 20023  df-unit 20024  df-invr 20054  df-dvr 20065  df-rnghom 20099  df-drng 20140  df-subrg 20173  df-staf 20257  df-srng 20258  df-lmod 20277  df-lmhm 20436  df-lvec 20517  df-sra 20586  df-rgmod 20587  df-psmet 20741  df-xmet 20742  df-met 20743  df-bl 20744  df-mopn 20745  df-cnfld 20750  df-phl 20983  df-top 22195  df-topon 22212  df-topsp 22234  df-bases 22248  df-xms 23625  df-ms 23626  df-nm 23890  df-ngp 23891  df-tng 23892  df-nlm 23894  df-clm 24378  df-cph 24484  df-tcph 24485
This theorem is referenced by:  ipcnlem2  24560
  Copyright terms: Public domain W3C validator