| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipcau | Structured version Visualization version GIF version | ||
| Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. Part of Lemma 3.2-1(a) of [Kreyszig] p. 137. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 11-Oct-2015.) |
| Ref | Expression |
|---|---|
| ipcau.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipcau.h | ⊢ , = (·𝑖‘𝑊) |
| ipcau.n | ⊢ 𝑁 = (norm‘𝑊) |
| Ref | Expression |
|---|---|
| ipcau | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (toℂPreHil‘𝑊) = (toℂPreHil‘𝑊) | |
| 2 | ipcau.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | eqid 2734 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | simp1 1136 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑊 ∈ ℂPreHil) | |
| 5 | cphphl 25141 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑊 ∈ PreHil) |
| 7 | eqid 2734 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 8 | 3, 7 | cphsca 25149 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) |
| 9 | 4, 8 | syl 17 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) |
| 10 | ipcau.h | . . 3 ⊢ , = (·𝑖‘𝑊) | |
| 11 | 3, 7 | cphsqrtcl 25154 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊))) |
| 12 | 4, 11 | sylan 580 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊))) |
| 13 | 2, 10 | ipge0 25168 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
| 14 | 4, 13 | sylan 580 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
| 15 | eqid 2734 | . . 3 ⊢ (norm‘(toℂPreHil‘𝑊)) = (norm‘(toℂPreHil‘𝑊)) | |
| 16 | eqid 2734 | . . 3 ⊢ ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) / (𝑌 , 𝑌)) | |
| 17 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 18 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
| 19 | 1, 2, 3, 6, 9, 10, 12, 14, 7, 15, 16, 17, 18 | ipcau2 25204 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘(𝑋 , 𝑌)) ≤ (((norm‘(toℂPreHil‘𝑊))‘𝑋) · ((norm‘(toℂPreHil‘𝑊))‘𝑌))) |
| 20 | ipcau.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝑊) | |
| 21 | 1, 20 | cphtcphnm 25200 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (norm‘(toℂPreHil‘𝑊))) |
| 22 | 4, 21 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑁 = (norm‘(toℂPreHil‘𝑊))) |
| 23 | 22 | fveq1d 6888 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘𝑋) = ((norm‘(toℂPreHil‘𝑊))‘𝑋)) |
| 24 | 22 | fveq1d 6888 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘𝑌) = ((norm‘(toℂPreHil‘𝑊))‘𝑌)) |
| 25 | 23, 24 | oveq12d 7431 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (((norm‘(toℂPreHil‘𝑊))‘𝑋) · ((norm‘(toℂPreHil‘𝑊))‘𝑌))) |
| 26 | 19, 25 | breqtrrd 5151 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 0cc0 11137 · cmul 11142 ≤ cle 11278 / cdiv 11902 √csqrt 15254 abscabs 15255 Basecbs 17229 ↾s cress 17252 Scalarcsca 17276 ·𝑖cip 17278 ℂfldccnfld 21326 PreHilcphl 21596 normcnm 24533 ℂPreHilccph 25136 toℂPreHilctcph 25137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 ax-mulf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ico 13375 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-0g 17457 df-topgen 17459 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-grp 18923 df-minusg 18924 df-sbg 18925 df-subg 19110 df-ghm 19200 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-dvr 20369 df-rhm 20440 df-subrng 20514 df-subrg 20538 df-drng 20699 df-staf 20808 df-srng 20809 df-lmod 20828 df-lmhm 20989 df-lvec 21070 df-sra 21140 df-rgmod 21141 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-cnfld 21327 df-phl 21598 df-top 22848 df-topon 22865 df-topsp 22887 df-bases 22900 df-xms 24275 df-ms 24276 df-nm 24539 df-ngp 24540 df-tng 24541 df-nlm 24543 df-clm 25032 df-cph 25138 df-tcph 25139 |
| This theorem is referenced by: ipcnlem2 25214 |
| Copyright terms: Public domain | W3C validator |