MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcau Structured version   Visualization version   GIF version

Theorem ipcau 25208
Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. Part of Lemma 3.2-1(a) of [Kreyszig] p. 137. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
ipcau.v 𝑉 = (Base‘𝑊)
ipcau.h , = (·𝑖𝑊)
ipcau.n 𝑁 = (norm‘𝑊)
Assertion
Ref Expression
ipcau ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))

Proof of Theorem ipcau
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (toℂPreHil‘𝑊) = (toℂPreHil‘𝑊)
2 ipcau.v . . 3 𝑉 = (Base‘𝑊)
3 eqid 2734 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
4 simp1 1136 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ ℂPreHil)
5 cphphl 25141 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
64, 5syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ PreHil)
7 eqid 2734 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
83, 7cphsca 25149 . . . 4 (𝑊 ∈ ℂPreHil → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
94, 8syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
10 ipcau.h . . 3 , = (·𝑖𝑊)
113, 7cphsqrtcl 25154 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊)))
124, 11sylan 580 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊)))
132, 10ipge0 25168 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
144, 13sylan 580 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
15 eqid 2734 . . 3 (norm‘(toℂPreHil‘𝑊)) = (norm‘(toℂPreHil‘𝑊))
16 eqid 2734 . . 3 ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
17 simp2 1137 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
18 simp3 1138 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑌𝑉)
191, 2, 3, 6, 9, 10, 12, 14, 7, 15, 16, 17, 18ipcau2 25204 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (abs‘(𝑋 , 𝑌)) ≤ (((norm‘(toℂPreHil‘𝑊))‘𝑋) · ((norm‘(toℂPreHil‘𝑊))‘𝑌)))
20 ipcau.n . . . . . 6 𝑁 = (norm‘𝑊)
211, 20cphtcphnm 25200 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑁 = (norm‘(toℂPreHil‘𝑊)))
224, 21syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑁 = (norm‘(toℂPreHil‘𝑊)))
2322fveq1d 6888 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑁𝑋) = ((norm‘(toℂPreHil‘𝑊))‘𝑋))
2422fveq1d 6888 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑁𝑌) = ((norm‘(toℂPreHil‘𝑊))‘𝑌))
2523, 24oveq12d 7431 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → ((𝑁𝑋) · (𝑁𝑌)) = (((norm‘(toℂPreHil‘𝑊))‘𝑋) · ((norm‘(toℂPreHil‘𝑊))‘𝑌)))
2619, 25breqtrrd 5151 1 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5123  cfv 6541  (class class class)co 7413  cr 11136  0cc0 11137   · cmul 11142  cle 11278   / cdiv 11902  csqrt 15254  abscabs 15255  Basecbs 17229  s cress 17252  Scalarcsca 17276  ·𝑖cip 17278  fldccnfld 21326  PreHilcphl 21596  normcnm 24533  ℂPreHilccph 25136  toℂPreHilctcph 25137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ico 13375  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-0g 17457  df-topgen 17459  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-ghm 19200  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-dvr 20369  df-rhm 20440  df-subrng 20514  df-subrg 20538  df-drng 20699  df-staf 20808  df-srng 20809  df-lmod 20828  df-lmhm 20989  df-lvec 21070  df-sra 21140  df-rgmod 21141  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-cnfld 21327  df-phl 21598  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-xms 24275  df-ms 24276  df-nm 24539  df-ngp 24540  df-tng 24541  df-nlm 24543  df-clm 25032  df-cph 25138  df-tcph 25139
This theorem is referenced by:  ipcnlem2  25214
  Copyright terms: Public domain W3C validator