| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipcau | Structured version Visualization version GIF version | ||
| Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. Part of Lemma 3.2-1(a) of [Kreyszig] p. 137. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 11-Oct-2015.) |
| Ref | Expression |
|---|---|
| ipcau.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipcau.h | ⊢ , = (·𝑖‘𝑊) |
| ipcau.n | ⊢ 𝑁 = (norm‘𝑊) |
| Ref | Expression |
|---|---|
| ipcau | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (toℂPreHil‘𝑊) = (toℂPreHil‘𝑊) | |
| 2 | ipcau.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | simp1 1136 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑊 ∈ ℂPreHil) | |
| 5 | cphphl 25087 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑊 ∈ PreHil) |
| 7 | eqid 2729 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 8 | 3, 7 | cphsca 25095 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) |
| 9 | 4, 8 | syl 17 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) |
| 10 | ipcau.h | . . 3 ⊢ , = (·𝑖‘𝑊) | |
| 11 | 3, 7 | cphsqrtcl 25100 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊))) |
| 12 | 4, 11 | sylan 580 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊))) |
| 13 | 2, 10 | ipge0 25114 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
| 14 | 4, 13 | sylan 580 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
| 15 | eqid 2729 | . . 3 ⊢ (norm‘(toℂPreHil‘𝑊)) = (norm‘(toℂPreHil‘𝑊)) | |
| 16 | eqid 2729 | . . 3 ⊢ ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) / (𝑌 , 𝑌)) | |
| 17 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 18 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
| 19 | 1, 2, 3, 6, 9, 10, 12, 14, 7, 15, 16, 17, 18 | ipcau2 25150 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘(𝑋 , 𝑌)) ≤ (((norm‘(toℂPreHil‘𝑊))‘𝑋) · ((norm‘(toℂPreHil‘𝑊))‘𝑌))) |
| 20 | ipcau.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝑊) | |
| 21 | 1, 20 | cphtcphnm 25146 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (norm‘(toℂPreHil‘𝑊))) |
| 22 | 4, 21 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑁 = (norm‘(toℂPreHil‘𝑊))) |
| 23 | 22 | fveq1d 6828 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘𝑋) = ((norm‘(toℂPreHil‘𝑊))‘𝑋)) |
| 24 | 22 | fveq1d 6828 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘𝑌) = ((norm‘(toℂPreHil‘𝑊))‘𝑌)) |
| 25 | 23, 24 | oveq12d 7371 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (((norm‘(toℂPreHil‘𝑊))‘𝑋) · ((norm‘(toℂPreHil‘𝑊))‘𝑌))) |
| 26 | 19, 25 | breqtrrd 5123 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 · cmul 11033 ≤ cle 11169 / cdiv 11795 √csqrt 15158 abscabs 15159 Basecbs 17138 ↾s cress 17159 Scalarcsca 17182 ·𝑖cip 17184 ℂfldccnfld 21279 PreHilcphl 21549 normcnm 24480 ℂPreHilccph 25082 toℂPreHilctcph 25083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ico 13272 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-topgen 17365 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-ghm 19110 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-drng 20634 df-staf 20742 df-srng 20743 df-lmod 20783 df-lmhm 20944 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-phl 21551 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-xms 24224 df-ms 24225 df-nm 24486 df-ngp 24487 df-tng 24488 df-nlm 24490 df-clm 24979 df-cph 25084 df-tcph 25085 |
| This theorem is referenced by: ipcnlem2 25160 |
| Copyright terms: Public domain | W3C validator |