MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcau Structured version   Visualization version   GIF version

Theorem ipcau 25163
Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. Part of Lemma 3.2-1(a) of [Kreyszig] p. 137. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
ipcau.v 𝑉 = (Base‘𝑊)
ipcau.h , = (·𝑖𝑊)
ipcau.n 𝑁 = (norm‘𝑊)
Assertion
Ref Expression
ipcau ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))

Proof of Theorem ipcau
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (toℂPreHil‘𝑊) = (toℂPreHil‘𝑊)
2 ipcau.v . . 3 𝑉 = (Base‘𝑊)
3 eqid 2731 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
4 simp1 1136 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ ℂPreHil)
5 cphphl 25096 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
64, 5syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ PreHil)
7 eqid 2731 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
83, 7cphsca 25104 . . . 4 (𝑊 ∈ ℂPreHil → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
94, 8syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
10 ipcau.h . . 3 , = (·𝑖𝑊)
113, 7cphsqrtcl 25109 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊)))
124, 11sylan 580 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊)))
132, 10ipge0 25123 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
144, 13sylan 580 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
15 eqid 2731 . . 3 (norm‘(toℂPreHil‘𝑊)) = (norm‘(toℂPreHil‘𝑊))
16 eqid 2731 . . 3 ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
17 simp2 1137 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
18 simp3 1138 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑌𝑉)
191, 2, 3, 6, 9, 10, 12, 14, 7, 15, 16, 17, 18ipcau2 25159 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (abs‘(𝑋 , 𝑌)) ≤ (((norm‘(toℂPreHil‘𝑊))‘𝑋) · ((norm‘(toℂPreHil‘𝑊))‘𝑌)))
20 ipcau.n . . . . . 6 𝑁 = (norm‘𝑊)
211, 20cphtcphnm 25155 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑁 = (norm‘(toℂPreHil‘𝑊)))
224, 21syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑁 = (norm‘(toℂPreHil‘𝑊)))
2322fveq1d 6824 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑁𝑋) = ((norm‘(toℂPreHil‘𝑊))‘𝑋))
2422fveq1d 6824 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑁𝑌) = ((norm‘(toℂPreHil‘𝑊))‘𝑌))
2523, 24oveq12d 7364 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → ((𝑁𝑋) · (𝑁𝑌)) = (((norm‘(toℂPreHil‘𝑊))‘𝑋) · ((norm‘(toℂPreHil‘𝑊))‘𝑌)))
2619, 25breqtrrd 5119 1 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003   · cmul 11008  cle 11144   / cdiv 11771  csqrt 15137  abscabs 15138  Basecbs 17117  s cress 17138  Scalarcsca 17161  ·𝑖cip 17163  fldccnfld 21289  PreHilcphl 21559  normcnm 24489  ℂPreHilccph 25091  toℂPreHilctcph 25092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082  ax-mulf 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ico 13248  df-fz 13405  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-0g 17342  df-topgen 17344  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-grp 18846  df-minusg 18847  df-sbg 18848  df-subg 19033  df-ghm 19123  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20459  df-subrg 20483  df-drng 20644  df-staf 20752  df-srng 20753  df-lmod 20793  df-lmhm 20954  df-lvec 21035  df-sra 21105  df-rgmod 21106  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-phl 21561  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-xms 24233  df-ms 24234  df-nm 24495  df-ngp 24496  df-tng 24497  df-nlm 24499  df-clm 24988  df-cph 25093  df-tcph 25094
This theorem is referenced by:  ipcnlem2  25169
  Copyright terms: Public domain W3C validator