MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphreccllem Structured version   Visualization version   GIF version

Theorem cphreccllem 25085
Description: Lemma for cphreccl 25088. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsubrglem.k 𝐾 = (Base‘𝐹)
cphsubrglem.1 (𝜑𝐹 = (ℂflds 𝐴))
cphsubrglem.2 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
cphreccllem ((𝜑𝑋𝐾𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾)

Proof of Theorem cphreccllem
StepHypRef Expression
1 cphsubrglem.k . . . . . . . 8 𝐾 = (Base‘𝐹)
2 cphsubrglem.1 . . . . . . . 8 (𝜑𝐹 = (ℂflds 𝐴))
3 cphsubrglem.2 . . . . . . . 8 (𝜑𝐹 ∈ DivRing)
41, 2, 3cphsubrglem 25084 . . . . . . 7 (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
54simp3d 1144 . . . . . 6 (𝜑𝐾 ∈ (SubRing‘ℂfld))
653ad2ant1 1133 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld))
7 cnfldbas 21275 . . . . . 6 ℂ = (Base‘ℂfld)
87subrgss 20488 . . . . 5 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
96, 8syl 17 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐾 ⊆ ℂ)
10 simp2 1137 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋𝐾)
119, 10sseldd 3950 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ ℂ)
12 simp3 1138 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ≠ 0)
13 cnfldinv 21321 . . 3 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋))
1411, 12, 13syl2anc 584 . 2 ((𝜑𝑋𝐾𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋))
15 eqid 2730 . . . . . . . . . 10 (ℂflds 𝐾) = (ℂflds 𝐾)
16 cnfld0 21311 . . . . . . . . . 10 0 = (0g‘ℂfld)
1715, 16subrg0 20495 . . . . . . . . 9 (𝐾 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂflds 𝐾)))
186, 17syl 17 . . . . . . . 8 ((𝜑𝑋𝐾𝑋 ≠ 0) → 0 = (0g‘(ℂflds 𝐾)))
194simp1d 1142 . . . . . . . . . 10 (𝜑𝐹 = (ℂflds 𝐾))
20193ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐹 = (ℂflds 𝐾))
2120fveq2d 6865 . . . . . . . 8 ((𝜑𝑋𝐾𝑋 ≠ 0) → (0g𝐹) = (0g‘(ℂflds 𝐾)))
2218, 21eqtr4d 2768 . . . . . . 7 ((𝜑𝑋𝐾𝑋 ≠ 0) → 0 = (0g𝐹))
2312, 22neeqtrd 2995 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ≠ (0g𝐹))
24 eldifsn 4753 . . . . . 6 (𝑋 ∈ (𝐾 ∖ {(0g𝐹)}) ↔ (𝑋𝐾𝑋 ≠ (0g𝐹)))
2510, 23, 24sylanbrc 583 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ (𝐾 ∖ {(0g𝐹)}))
2633ad2ant1 1133 . . . . . . 7 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐹 ∈ DivRing)
27 eqid 2730 . . . . . . . . 9 (Unit‘𝐹) = (Unit‘𝐹)
28 eqid 2730 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
291, 27, 28isdrng 20649 . . . . . . . 8 (𝐹 ∈ DivRing ↔ (𝐹 ∈ Ring ∧ (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)})))
3029simprbi 496 . . . . . . 7 (𝐹 ∈ DivRing → (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)}))
3126, 30syl 17 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)}))
3220fveq2d 6865 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → (Unit‘𝐹) = (Unit‘(ℂflds 𝐾)))
3331, 32eqtr3d 2767 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝐾 ∖ {(0g𝐹)}) = (Unit‘(ℂflds 𝐾)))
3425, 33eleqtrd 2831 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ (Unit‘(ℂflds 𝐾)))
35 eqid 2730 . . . . . 6 (Unit‘ℂfld) = (Unit‘ℂfld)
36 eqid 2730 . . . . . 6 (Unit‘(ℂflds 𝐾)) = (Unit‘(ℂflds 𝐾))
37 eqid 2730 . . . . . 6 (invr‘ℂfld) = (invr‘ℂfld)
3815, 35, 36, 37subrgunit 20506 . . . . 5 (𝐾 ∈ (SubRing‘ℂfld) → (𝑋 ∈ (Unit‘(ℂflds 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)))
396, 38syl 17 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝑋 ∈ (Unit‘(ℂflds 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)))
4034, 39mpbid 232 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))
4140simp3d 1144 . 2 ((𝜑𝑋𝐾𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) ∈ 𝐾)
4214, 41eqeltrrd 2830 1 ((𝜑𝑋𝐾𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3914  cin 3916  wss 3917  {csn 4592  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   / cdiv 11842  Basecbs 17186  s cress 17207  0gc0g 17409  Ringcrg 20149  Unitcui 20271  invrcinvr 20303  SubRingcsubrg 20485  DivRingcdr 20645  fldccnfld 21271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-seq 13974  df-exp 14034  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-subrg 20486  df-drng 20647  df-cnfld 21272
This theorem is referenced by:  cphreccl  25088  ipcau2  25141
  Copyright terms: Public domain W3C validator