MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphreccllem Structured version   Visualization version   GIF version

Theorem cphreccllem 25078
Description: Lemma for cphreccl 25081. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsubrglem.k 𝐾 = (Base‘𝐹)
cphsubrglem.1 (𝜑𝐹 = (ℂflds 𝐴))
cphsubrglem.2 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
cphreccllem ((𝜑𝑋𝐾𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾)

Proof of Theorem cphreccllem
StepHypRef Expression
1 cphsubrglem.k . . . . . . . 8 𝐾 = (Base‘𝐹)
2 cphsubrglem.1 . . . . . . . 8 (𝜑𝐹 = (ℂflds 𝐴))
3 cphsubrglem.2 . . . . . . . 8 (𝜑𝐹 ∈ DivRing)
41, 2, 3cphsubrglem 25077 . . . . . . 7 (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
54simp3d 1144 . . . . . 6 (𝜑𝐾 ∈ (SubRing‘ℂfld))
653ad2ant1 1133 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld))
7 cnfldbas 21268 . . . . . 6 ℂ = (Base‘ℂfld)
87subrgss 20481 . . . . 5 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
96, 8syl 17 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐾 ⊆ ℂ)
10 simp2 1137 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋𝐾)
119, 10sseldd 3947 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ ℂ)
12 simp3 1138 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ≠ 0)
13 cnfldinv 21314 . . 3 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋))
1411, 12, 13syl2anc 584 . 2 ((𝜑𝑋𝐾𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋))
15 eqid 2729 . . . . . . . . . 10 (ℂflds 𝐾) = (ℂflds 𝐾)
16 cnfld0 21304 . . . . . . . . . 10 0 = (0g‘ℂfld)
1715, 16subrg0 20488 . . . . . . . . 9 (𝐾 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂflds 𝐾)))
186, 17syl 17 . . . . . . . 8 ((𝜑𝑋𝐾𝑋 ≠ 0) → 0 = (0g‘(ℂflds 𝐾)))
194simp1d 1142 . . . . . . . . . 10 (𝜑𝐹 = (ℂflds 𝐾))
20193ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐹 = (ℂflds 𝐾))
2120fveq2d 6862 . . . . . . . 8 ((𝜑𝑋𝐾𝑋 ≠ 0) → (0g𝐹) = (0g‘(ℂflds 𝐾)))
2218, 21eqtr4d 2767 . . . . . . 7 ((𝜑𝑋𝐾𝑋 ≠ 0) → 0 = (0g𝐹))
2312, 22neeqtrd 2994 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ≠ (0g𝐹))
24 eldifsn 4750 . . . . . 6 (𝑋 ∈ (𝐾 ∖ {(0g𝐹)}) ↔ (𝑋𝐾𝑋 ≠ (0g𝐹)))
2510, 23, 24sylanbrc 583 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ (𝐾 ∖ {(0g𝐹)}))
2633ad2ant1 1133 . . . . . . 7 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐹 ∈ DivRing)
27 eqid 2729 . . . . . . . . 9 (Unit‘𝐹) = (Unit‘𝐹)
28 eqid 2729 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
291, 27, 28isdrng 20642 . . . . . . . 8 (𝐹 ∈ DivRing ↔ (𝐹 ∈ Ring ∧ (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)})))
3029simprbi 496 . . . . . . 7 (𝐹 ∈ DivRing → (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)}))
3126, 30syl 17 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)}))
3220fveq2d 6862 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → (Unit‘𝐹) = (Unit‘(ℂflds 𝐾)))
3331, 32eqtr3d 2766 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝐾 ∖ {(0g𝐹)}) = (Unit‘(ℂflds 𝐾)))
3425, 33eleqtrd 2830 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ (Unit‘(ℂflds 𝐾)))
35 eqid 2729 . . . . . 6 (Unit‘ℂfld) = (Unit‘ℂfld)
36 eqid 2729 . . . . . 6 (Unit‘(ℂflds 𝐾)) = (Unit‘(ℂflds 𝐾))
37 eqid 2729 . . . . . 6 (invr‘ℂfld) = (invr‘ℂfld)
3815, 35, 36, 37subrgunit 20499 . . . . 5 (𝐾 ∈ (SubRing‘ℂfld) → (𝑋 ∈ (Unit‘(ℂflds 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)))
396, 38syl 17 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝑋 ∈ (Unit‘(ℂflds 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)))
4034, 39mpbid 232 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))
4140simp3d 1144 . 2 ((𝜑𝑋𝐾𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) ∈ 𝐾)
4214, 41eqeltrrd 2829 1 ((𝜑𝑋𝐾𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3911  cin 3913  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   / cdiv 11835  Basecbs 17179  s cress 17200  0gc0g 17402  Ringcrg 20142  Unitcui 20264  invrcinvr 20296  SubRingcsubrg 20478  DivRingcdr 20638  fldccnfld 21264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-seq 13967  df-exp 14027  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-subrg 20479  df-drng 20640  df-cnfld 21265
This theorem is referenced by:  cphreccl  25081  ipcau2  25134
  Copyright terms: Public domain W3C validator