| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphreccllem | Structured version Visualization version GIF version | ||
| Description: Lemma for cphreccl 25081. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsubrglem.k | ⊢ 𝐾 = (Base‘𝐹) |
| cphsubrglem.1 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) |
| cphsubrglem.2 | ⊢ (𝜑 → 𝐹 ∈ DivRing) |
| Ref | Expression |
|---|---|
| cphreccllem | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsubrglem.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 2 | cphsubrglem.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) | |
| 3 | cphsubrglem.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ DivRing) | |
| 4 | 1, 2, 3 | cphsubrglem 25077 | . . . . . . 7 ⊢ (𝜑 → (𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
| 5 | 4 | simp3d 1144 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘ℂfld)) |
| 6 | 5 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld)) |
| 7 | cnfldbas 21268 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 8 | 7 | subrgss 20481 | . . . . 5 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐾 ⊆ ℂ) |
| 10 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ 𝐾) | |
| 11 | 9, 10 | sseldd 3947 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℂ) |
| 12 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0) | |
| 13 | cnfldinv 21314 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) | |
| 14 | 11, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) |
| 15 | eqid 2729 | . . . . . . . . . 10 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
| 16 | cnfld0 21304 | . . . . . . . . . 10 ⊢ 0 = (0g‘ℂfld) | |
| 17 | 15, 16 | subrg0 20488 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂfld ↾s 𝐾))) |
| 18 | 6, 17 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 0 = (0g‘(ℂfld ↾s 𝐾))) |
| 19 | 4 | simp1d 1142 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
| 20 | 19 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐹 = (ℂfld ↾s 𝐾)) |
| 21 | 20 | fveq2d 6862 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (0g‘𝐹) = (0g‘(ℂfld ↾s 𝐾))) |
| 22 | 18, 21 | eqtr4d 2767 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 0 = (0g‘𝐹)) |
| 23 | 12, 22 | neeqtrd 2994 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ≠ (0g‘𝐹)) |
| 24 | eldifsn 4750 | . . . . . 6 ⊢ (𝑋 ∈ (𝐾 ∖ {(0g‘𝐹)}) ↔ (𝑋 ∈ 𝐾 ∧ 𝑋 ≠ (0g‘𝐹))) | |
| 25 | 10, 23, 24 | sylanbrc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ (𝐾 ∖ {(0g‘𝐹)})) |
| 26 | 3 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐹 ∈ DivRing) |
| 27 | eqid 2729 | . . . . . . . . 9 ⊢ (Unit‘𝐹) = (Unit‘𝐹) | |
| 28 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 29 | 1, 27, 28 | isdrng 20642 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing ↔ (𝐹 ∈ Ring ∧ (Unit‘𝐹) = (𝐾 ∖ {(0g‘𝐹)}))) |
| 30 | 29 | simprbi 496 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → (Unit‘𝐹) = (𝐾 ∖ {(0g‘𝐹)})) |
| 31 | 26, 30 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (Unit‘𝐹) = (𝐾 ∖ {(0g‘𝐹)})) |
| 32 | 20 | fveq2d 6862 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (Unit‘𝐹) = (Unit‘(ℂfld ↾s 𝐾))) |
| 33 | 31, 32 | eqtr3d 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (𝐾 ∖ {(0g‘𝐹)}) = (Unit‘(ℂfld ↾s 𝐾))) |
| 34 | 25, 33 | eleqtrd 2830 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ (Unit‘(ℂfld ↾s 𝐾))) |
| 35 | eqid 2729 | . . . . . 6 ⊢ (Unit‘ℂfld) = (Unit‘ℂfld) | |
| 36 | eqid 2729 | . . . . . 6 ⊢ (Unit‘(ℂfld ↾s 𝐾)) = (Unit‘(ℂfld ↾s 𝐾)) | |
| 37 | eqid 2729 | . . . . . 6 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
| 38 | 15, 35, 36, 37 | subrgunit 20499 | . . . . 5 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → (𝑋 ∈ (Unit‘(ℂfld ↾s 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋 ∈ 𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))) |
| 39 | 6, 38 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (𝑋 ∈ (Unit‘(ℂfld ↾s 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋 ∈ 𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))) |
| 40 | 34, 39 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋 ∈ 𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)) |
| 41 | 40 | simp3d 1144 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) ∈ 𝐾) |
| 42 | 14, 41 | eqeltrrd 2829 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 {csn 4589 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 / cdiv 11835 Basecbs 17179 ↾s cress 17200 0gc0g 17402 Ringcrg 20142 Unitcui 20264 invrcinvr 20296 SubRingcsubrg 20478 DivRingcdr 20638 ℂfldccnfld 21264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-seq 13967 df-exp 14027 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-subrg 20479 df-drng 20640 df-cnfld 21265 |
| This theorem is referenced by: cphreccl 25081 ipcau2 25134 |
| Copyright terms: Public domain | W3C validator |