| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphreccllem | Structured version Visualization version GIF version | ||
| Description: Lemma for cphreccl 25088. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsubrglem.k | ⊢ 𝐾 = (Base‘𝐹) |
| cphsubrglem.1 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) |
| cphsubrglem.2 | ⊢ (𝜑 → 𝐹 ∈ DivRing) |
| Ref | Expression |
|---|---|
| cphreccllem | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsubrglem.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 2 | cphsubrglem.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) | |
| 3 | cphsubrglem.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ DivRing) | |
| 4 | 1, 2, 3 | cphsubrglem 25084 | . . . . . . 7 ⊢ (𝜑 → (𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
| 5 | 4 | simp3d 1144 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘ℂfld)) |
| 6 | 5 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld)) |
| 7 | cnfldbas 21275 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 8 | 7 | subrgss 20488 | . . . . 5 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐾 ⊆ ℂ) |
| 10 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ 𝐾) | |
| 11 | 9, 10 | sseldd 3950 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℂ) |
| 12 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0) | |
| 13 | cnfldinv 21321 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) | |
| 14 | 11, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) |
| 15 | eqid 2730 | . . . . . . . . . 10 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
| 16 | cnfld0 21311 | . . . . . . . . . 10 ⊢ 0 = (0g‘ℂfld) | |
| 17 | 15, 16 | subrg0 20495 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂfld ↾s 𝐾))) |
| 18 | 6, 17 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 0 = (0g‘(ℂfld ↾s 𝐾))) |
| 19 | 4 | simp1d 1142 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
| 20 | 19 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐹 = (ℂfld ↾s 𝐾)) |
| 21 | 20 | fveq2d 6865 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (0g‘𝐹) = (0g‘(ℂfld ↾s 𝐾))) |
| 22 | 18, 21 | eqtr4d 2768 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 0 = (0g‘𝐹)) |
| 23 | 12, 22 | neeqtrd 2995 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ≠ (0g‘𝐹)) |
| 24 | eldifsn 4753 | . . . . . 6 ⊢ (𝑋 ∈ (𝐾 ∖ {(0g‘𝐹)}) ↔ (𝑋 ∈ 𝐾 ∧ 𝑋 ≠ (0g‘𝐹))) | |
| 25 | 10, 23, 24 | sylanbrc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ (𝐾 ∖ {(0g‘𝐹)})) |
| 26 | 3 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐹 ∈ DivRing) |
| 27 | eqid 2730 | . . . . . . . . 9 ⊢ (Unit‘𝐹) = (Unit‘𝐹) | |
| 28 | eqid 2730 | . . . . . . . . 9 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 29 | 1, 27, 28 | isdrng 20649 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing ↔ (𝐹 ∈ Ring ∧ (Unit‘𝐹) = (𝐾 ∖ {(0g‘𝐹)}))) |
| 30 | 29 | simprbi 496 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → (Unit‘𝐹) = (𝐾 ∖ {(0g‘𝐹)})) |
| 31 | 26, 30 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (Unit‘𝐹) = (𝐾 ∖ {(0g‘𝐹)})) |
| 32 | 20 | fveq2d 6865 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (Unit‘𝐹) = (Unit‘(ℂfld ↾s 𝐾))) |
| 33 | 31, 32 | eqtr3d 2767 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (𝐾 ∖ {(0g‘𝐹)}) = (Unit‘(ℂfld ↾s 𝐾))) |
| 34 | 25, 33 | eleqtrd 2831 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ (Unit‘(ℂfld ↾s 𝐾))) |
| 35 | eqid 2730 | . . . . . 6 ⊢ (Unit‘ℂfld) = (Unit‘ℂfld) | |
| 36 | eqid 2730 | . . . . . 6 ⊢ (Unit‘(ℂfld ↾s 𝐾)) = (Unit‘(ℂfld ↾s 𝐾)) | |
| 37 | eqid 2730 | . . . . . 6 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
| 38 | 15, 35, 36, 37 | subrgunit 20506 | . . . . 5 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → (𝑋 ∈ (Unit‘(ℂfld ↾s 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋 ∈ 𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))) |
| 39 | 6, 38 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (𝑋 ∈ (Unit‘(ℂfld ↾s 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋 ∈ 𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))) |
| 40 | 34, 39 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋 ∈ 𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)) |
| 41 | 40 | simp3d 1144 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) ∈ 𝐾) |
| 42 | 14, 41 | eqeltrrd 2830 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 {csn 4592 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 / cdiv 11842 Basecbs 17186 ↾s cress 17207 0gc0g 17409 Ringcrg 20149 Unitcui 20271 invrcinvr 20303 SubRingcsubrg 20485 DivRingcdr 20645 ℂfldccnfld 21271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-seq 13974 df-exp 14034 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-subrg 20486 df-drng 20647 df-cnfld 21272 |
| This theorem is referenced by: cphreccl 25088 ipcau2 25141 |
| Copyright terms: Public domain | W3C validator |