| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphreccllem | Structured version Visualization version GIF version | ||
| Description: Lemma for cphreccl 25109. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsubrglem.k | ⊢ 𝐾 = (Base‘𝐹) |
| cphsubrglem.1 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) |
| cphsubrglem.2 | ⊢ (𝜑 → 𝐹 ∈ DivRing) |
| Ref | Expression |
|---|---|
| cphreccllem | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsubrglem.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 2 | cphsubrglem.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) | |
| 3 | cphsubrglem.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ DivRing) | |
| 4 | 1, 2, 3 | cphsubrglem 25105 | . . . . . . 7 ⊢ (𝜑 → (𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
| 5 | 4 | simp3d 1144 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘ℂfld)) |
| 6 | 5 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld)) |
| 7 | cnfldbas 21297 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 8 | 7 | subrgss 20489 | . . . . 5 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐾 ⊆ ℂ) |
| 10 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ 𝐾) | |
| 11 | 9, 10 | sseldd 3931 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℂ) |
| 12 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0) | |
| 13 | cnfldinv 21341 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) | |
| 14 | 11, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) |
| 15 | eqid 2733 | . . . . . . . . . 10 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
| 16 | cnfld0 21331 | . . . . . . . . . 10 ⊢ 0 = (0g‘ℂfld) | |
| 17 | 15, 16 | subrg0 20496 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂfld ↾s 𝐾))) |
| 18 | 6, 17 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 0 = (0g‘(ℂfld ↾s 𝐾))) |
| 19 | 4 | simp1d 1142 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
| 20 | 19 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐹 = (ℂfld ↾s 𝐾)) |
| 21 | 20 | fveq2d 6832 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (0g‘𝐹) = (0g‘(ℂfld ↾s 𝐾))) |
| 22 | 18, 21 | eqtr4d 2771 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 0 = (0g‘𝐹)) |
| 23 | 12, 22 | neeqtrd 2998 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ≠ (0g‘𝐹)) |
| 24 | eldifsn 4737 | . . . . . 6 ⊢ (𝑋 ∈ (𝐾 ∖ {(0g‘𝐹)}) ↔ (𝑋 ∈ 𝐾 ∧ 𝑋 ≠ (0g‘𝐹))) | |
| 25 | 10, 23, 24 | sylanbrc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ (𝐾 ∖ {(0g‘𝐹)})) |
| 26 | 3 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐹 ∈ DivRing) |
| 27 | eqid 2733 | . . . . . . . . 9 ⊢ (Unit‘𝐹) = (Unit‘𝐹) | |
| 28 | eqid 2733 | . . . . . . . . 9 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 29 | 1, 27, 28 | isdrng 20650 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing ↔ (𝐹 ∈ Ring ∧ (Unit‘𝐹) = (𝐾 ∖ {(0g‘𝐹)}))) |
| 30 | 29 | simprbi 496 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → (Unit‘𝐹) = (𝐾 ∖ {(0g‘𝐹)})) |
| 31 | 26, 30 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (Unit‘𝐹) = (𝐾 ∖ {(0g‘𝐹)})) |
| 32 | 20 | fveq2d 6832 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (Unit‘𝐹) = (Unit‘(ℂfld ↾s 𝐾))) |
| 33 | 31, 32 | eqtr3d 2770 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (𝐾 ∖ {(0g‘𝐹)}) = (Unit‘(ℂfld ↾s 𝐾))) |
| 34 | 25, 33 | eleqtrd 2835 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ (Unit‘(ℂfld ↾s 𝐾))) |
| 35 | eqid 2733 | . . . . . 6 ⊢ (Unit‘ℂfld) = (Unit‘ℂfld) | |
| 36 | eqid 2733 | . . . . . 6 ⊢ (Unit‘(ℂfld ↾s 𝐾)) = (Unit‘(ℂfld ↾s 𝐾)) | |
| 37 | eqid 2733 | . . . . . 6 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
| 38 | 15, 35, 36, 37 | subrgunit 20507 | . . . . 5 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → (𝑋 ∈ (Unit‘(ℂfld ↾s 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋 ∈ 𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))) |
| 39 | 6, 38 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (𝑋 ∈ (Unit‘(ℂfld ↾s 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋 ∈ 𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))) |
| 40 | 34, 39 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋 ∈ 𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)) |
| 41 | 40 | simp3d 1144 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) ∈ 𝐾) |
| 42 | 14, 41 | eqeltrrd 2834 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 {csn 4575 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 0cc0 11013 1c1 11014 / cdiv 11781 Basecbs 17122 ↾s cress 17143 0gc0g 17345 Ringcrg 20153 Unitcui 20275 invrcinvr 20307 SubRingcsubrg 20486 DivRingcdr 20646 ℂfldccnfld 21293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-seq 13911 df-exp 13971 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-subg 19038 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-subrg 20487 df-drng 20648 df-cnfld 21294 |
| This theorem is referenced by: cphreccl 25109 ipcau2 25162 |
| Copyright terms: Public domain | W3C validator |