MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphreccllem Structured version   Visualization version   GIF version

Theorem cphreccllem 23305
Description: Lemma for cphreccl 23308. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsubrglem.k 𝐾 = (Base‘𝐹)
cphsubrglem.1 (𝜑𝐹 = (ℂflds 𝐴))
cphsubrglem.2 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
cphreccllem ((𝜑𝑋𝐾𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾)

Proof of Theorem cphreccllem
StepHypRef Expression
1 cphsubrglem.k . . . . . . . 8 𝐾 = (Base‘𝐹)
2 cphsubrglem.1 . . . . . . . 8 (𝜑𝐹 = (ℂflds 𝐴))
3 cphsubrglem.2 . . . . . . . 8 (𝜑𝐹 ∈ DivRing)
41, 2, 3cphsubrglem 23304 . . . . . . 7 (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
54simp3d 1175 . . . . . 6 (𝜑𝐾 ∈ (SubRing‘ℂfld))
653ad2ant1 1164 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld))
7 cnfldbas 20072 . . . . . 6 ℂ = (Base‘ℂfld)
87subrgss 19099 . . . . 5 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
96, 8syl 17 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐾 ⊆ ℂ)
10 simp2 1168 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋𝐾)
119, 10sseldd 3799 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ ℂ)
12 simp3 1169 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ≠ 0)
13 cnfldinv 20099 . . 3 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋))
1411, 12, 13syl2anc 580 . 2 ((𝜑𝑋𝐾𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋))
15 eqid 2799 . . . . . . . . . 10 (ℂflds 𝐾) = (ℂflds 𝐾)
16 cnfld0 20092 . . . . . . . . . 10 0 = (0g‘ℂfld)
1715, 16subrg0 19105 . . . . . . . . 9 (𝐾 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂflds 𝐾)))
186, 17syl 17 . . . . . . . 8 ((𝜑𝑋𝐾𝑋 ≠ 0) → 0 = (0g‘(ℂflds 𝐾)))
194simp1d 1173 . . . . . . . . . 10 (𝜑𝐹 = (ℂflds 𝐾))
20193ad2ant1 1164 . . . . . . . . 9 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐹 = (ℂflds 𝐾))
2120fveq2d 6415 . . . . . . . 8 ((𝜑𝑋𝐾𝑋 ≠ 0) → (0g𝐹) = (0g‘(ℂflds 𝐾)))
2218, 21eqtr4d 2836 . . . . . . 7 ((𝜑𝑋𝐾𝑋 ≠ 0) → 0 = (0g𝐹))
2312, 22neeqtrd 3040 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ≠ (0g𝐹))
24 eldifsn 4506 . . . . . 6 (𝑋 ∈ (𝐾 ∖ {(0g𝐹)}) ↔ (𝑋𝐾𝑋 ≠ (0g𝐹)))
2510, 23, 24sylanbrc 579 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ (𝐾 ∖ {(0g𝐹)}))
2633ad2ant1 1164 . . . . . . 7 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐹 ∈ DivRing)
27 eqid 2799 . . . . . . . . 9 (Unit‘𝐹) = (Unit‘𝐹)
28 eqid 2799 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
291, 27, 28isdrng 19069 . . . . . . . 8 (𝐹 ∈ DivRing ↔ (𝐹 ∈ Ring ∧ (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)})))
3029simprbi 491 . . . . . . 7 (𝐹 ∈ DivRing → (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)}))
3126, 30syl 17 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)}))
3220fveq2d 6415 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → (Unit‘𝐹) = (Unit‘(ℂflds 𝐾)))
3331, 32eqtr3d 2835 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝐾 ∖ {(0g𝐹)}) = (Unit‘(ℂflds 𝐾)))
3425, 33eleqtrd 2880 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ (Unit‘(ℂflds 𝐾)))
35 eqid 2799 . . . . . 6 (Unit‘ℂfld) = (Unit‘ℂfld)
36 eqid 2799 . . . . . 6 (Unit‘(ℂflds 𝐾)) = (Unit‘(ℂflds 𝐾))
37 eqid 2799 . . . . . 6 (invr‘ℂfld) = (invr‘ℂfld)
3815, 35, 36, 37subrgunit 19116 . . . . 5 (𝐾 ∈ (SubRing‘ℂfld) → (𝑋 ∈ (Unit‘(ℂflds 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)))
396, 38syl 17 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝑋 ∈ (Unit‘(ℂflds 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)))
4034, 39mpbid 224 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))
4140simp3d 1175 . 2 ((𝜑𝑋𝐾𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) ∈ 𝐾)
4214, 41eqeltrrd 2879 1 ((𝜑𝑋𝐾𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1108   = wceq 1653  wcel 2157  wne 2971  cdif 3766  cin 3768  wss 3769  {csn 4368  cfv 6101  (class class class)co 6878  cc 10222  0cc0 10224  1c1 10225   / cdiv 10976  Basecbs 16184  s cress 16185  0gc0g 16415  Ringcrg 18863  Unitcui 18955  invrcinvr 18987  DivRingcdr 19065  SubRingcsubrg 19094  fldccnfld 20068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-tpos 7590  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-seq 13056  df-exp 13115  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-minusg 17742  df-subg 17904  df-cmn 18510  df-mgp 18806  df-ur 18818  df-ring 18865  df-cring 18866  df-oppr 18939  df-dvdsr 18957  df-unit 18958  df-invr 18988  df-dvr 18999  df-drng 19067  df-subrg 19096  df-cnfld 20069
This theorem is referenced by:  cphreccl  23308  ipcau2  23360
  Copyright terms: Public domain W3C validator