| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphreccllem | Structured version Visualization version GIF version | ||
| Description: Lemma for cphreccl 25106. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsubrglem.k | ⊢ 𝐾 = (Base‘𝐹) |
| cphsubrglem.1 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) |
| cphsubrglem.2 | ⊢ (𝜑 → 𝐹 ∈ DivRing) |
| Ref | Expression |
|---|---|
| cphreccllem | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsubrglem.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 2 | cphsubrglem.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) | |
| 3 | cphsubrglem.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ DivRing) | |
| 4 | 1, 2, 3 | cphsubrglem 25102 | . . . . . . 7 ⊢ (𝜑 → (𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
| 5 | 4 | simp3d 1144 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘ℂfld)) |
| 6 | 5 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld)) |
| 7 | cnfldbas 21293 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 8 | 7 | subrgss 20485 | . . . . 5 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐾 ⊆ ℂ) |
| 10 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ 𝐾) | |
| 11 | 9, 10 | sseldd 3935 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℂ) |
| 12 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0) | |
| 13 | cnfldinv 21337 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) | |
| 14 | 11, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) |
| 15 | eqid 2731 | . . . . . . . . . 10 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
| 16 | cnfld0 21327 | . . . . . . . . . 10 ⊢ 0 = (0g‘ℂfld) | |
| 17 | 15, 16 | subrg0 20492 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂfld ↾s 𝐾))) |
| 18 | 6, 17 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 0 = (0g‘(ℂfld ↾s 𝐾))) |
| 19 | 4 | simp1d 1142 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
| 20 | 19 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐹 = (ℂfld ↾s 𝐾)) |
| 21 | 20 | fveq2d 6826 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (0g‘𝐹) = (0g‘(ℂfld ↾s 𝐾))) |
| 22 | 18, 21 | eqtr4d 2769 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 0 = (0g‘𝐹)) |
| 23 | 12, 22 | neeqtrd 2997 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ≠ (0g‘𝐹)) |
| 24 | eldifsn 4738 | . . . . . 6 ⊢ (𝑋 ∈ (𝐾 ∖ {(0g‘𝐹)}) ↔ (𝑋 ∈ 𝐾 ∧ 𝑋 ≠ (0g‘𝐹))) | |
| 25 | 10, 23, 24 | sylanbrc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ (𝐾 ∖ {(0g‘𝐹)})) |
| 26 | 3 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝐹 ∈ DivRing) |
| 27 | eqid 2731 | . . . . . . . . 9 ⊢ (Unit‘𝐹) = (Unit‘𝐹) | |
| 28 | eqid 2731 | . . . . . . . . 9 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 29 | 1, 27, 28 | isdrng 20646 | . . . . . . . 8 ⊢ (𝐹 ∈ DivRing ↔ (𝐹 ∈ Ring ∧ (Unit‘𝐹) = (𝐾 ∖ {(0g‘𝐹)}))) |
| 30 | 29 | simprbi 496 | . . . . . . 7 ⊢ (𝐹 ∈ DivRing → (Unit‘𝐹) = (𝐾 ∖ {(0g‘𝐹)})) |
| 31 | 26, 30 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (Unit‘𝐹) = (𝐾 ∖ {(0g‘𝐹)})) |
| 32 | 20 | fveq2d 6826 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (Unit‘𝐹) = (Unit‘(ℂfld ↾s 𝐾))) |
| 33 | 31, 32 | eqtr3d 2768 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (𝐾 ∖ {(0g‘𝐹)}) = (Unit‘(ℂfld ↾s 𝐾))) |
| 34 | 25, 33 | eleqtrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → 𝑋 ∈ (Unit‘(ℂfld ↾s 𝐾))) |
| 35 | eqid 2731 | . . . . . 6 ⊢ (Unit‘ℂfld) = (Unit‘ℂfld) | |
| 36 | eqid 2731 | . . . . . 6 ⊢ (Unit‘(ℂfld ↾s 𝐾)) = (Unit‘(ℂfld ↾s 𝐾)) | |
| 37 | eqid 2731 | . . . . . 6 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
| 38 | 15, 35, 36, 37 | subrgunit 20503 | . . . . 5 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → (𝑋 ∈ (Unit‘(ℂfld ↾s 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋 ∈ 𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))) |
| 39 | 6, 38 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (𝑋 ∈ (Unit‘(ℂfld ↾s 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋 ∈ 𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))) |
| 40 | 34, 39 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋 ∈ 𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)) |
| 41 | 40 | simp3d 1144 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) ∈ 𝐾) |
| 42 | 14, 41 | eqeltrrd 2832 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 ∩ cin 3901 ⊆ wss 3902 {csn 4576 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 / cdiv 11771 Basecbs 17117 ↾s cress 17138 0gc0g 17340 Ringcrg 20149 Unitcui 20271 invrcinvr 20303 SubRingcsubrg 20482 DivRingcdr 20642 ℂfldccnfld 21289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-seq 13906 df-exp 13966 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-subg 19033 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-subrg 20483 df-drng 20644 df-cnfld 21290 |
| This theorem is referenced by: cphreccl 25106 ipcau2 25159 |
| Copyright terms: Public domain | W3C validator |