Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpmidpmatlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cpmidpmat 21905. (Contributed by AV, 13-Nov-2019.) |
Ref | Expression |
---|---|
cpmidgsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmidgsum.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmidgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmidgsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmidgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
cpmidgsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
cpmidgsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmidgsum.1 | ⊢ 1 = (1r‘𝑌) |
cpmidgsum.u | ⊢ 𝑈 = (algSc‘𝑃) |
cpmidgsum.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cpmidgsum.k | ⊢ 𝐾 = (𝐶‘𝑀) |
cpmidgsum.h | ⊢ 𝐻 = (𝐾 · 1 ) |
cpmidgsumm2pm.o | ⊢ 𝑂 = (1r‘𝐴) |
cpmidgsumm2pm.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
cpmidgsumm2pm.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cpmidpmat.g | ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) |
Ref | Expression |
---|---|
cpmidpmatlem1 | ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6753 | . . 3 ⊢ (𝑘 = 𝐿 → ((coe1‘𝐾)‘𝑘) = ((coe1‘𝐾)‘𝐿)) | |
2 | 1 | oveq1d 7267 | . 2 ⊢ (𝑘 = 𝐿 → (((coe1‘𝐾)‘𝑘) ∗ 𝑂) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
3 | cpmidpmat.g | . 2 ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) | |
4 | ovex 7285 | . 2 ⊢ (((coe1‘𝐾)‘𝐿) ∗ 𝑂) ∈ V | |
5 | 2, 3, 4 | fvmpt 6854 | 1 ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ↦ cmpt 5152 ‘cfv 6415 (class class class)co 7252 ℕ0cn0 12138 Basecbs 16815 ·𝑠 cvsca 16867 .gcmg 18590 mulGrpcmgp 19610 1rcur 19627 algSccascl 20944 var1cv1 21232 Poly1cpl1 21233 coe1cco1 21234 Mat cmat 21439 matToPolyMat cmat2pmat 21736 CharPlyMat cchpmat 21858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-iota 6373 df-fun 6417 df-fv 6423 df-ov 7255 |
This theorem is referenced by: cpmidpmat 21905 |
Copyright terms: Public domain | W3C validator |