Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpmidpmatlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cpmidpmat 22010. (Contributed by AV, 13-Nov-2019.) |
Ref | Expression |
---|---|
cpmidgsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmidgsum.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmidgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmidgsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmidgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
cpmidgsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
cpmidgsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmidgsum.1 | ⊢ 1 = (1r‘𝑌) |
cpmidgsum.u | ⊢ 𝑈 = (algSc‘𝑃) |
cpmidgsum.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cpmidgsum.k | ⊢ 𝐾 = (𝐶‘𝑀) |
cpmidgsum.h | ⊢ 𝐻 = (𝐾 · 1 ) |
cpmidgsumm2pm.o | ⊢ 𝑂 = (1r‘𝐴) |
cpmidgsumm2pm.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
cpmidgsumm2pm.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cpmidpmat.g | ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) |
Ref | Expression |
---|---|
cpmidpmatlem1 | ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6767 | . . 3 ⊢ (𝑘 = 𝐿 → ((coe1‘𝐾)‘𝑘) = ((coe1‘𝐾)‘𝐿)) | |
2 | 1 | oveq1d 7283 | . 2 ⊢ (𝑘 = 𝐿 → (((coe1‘𝐾)‘𝑘) ∗ 𝑂) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
3 | cpmidpmat.g | . 2 ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) | |
4 | ovex 7301 | . 2 ⊢ (((coe1‘𝐾)‘𝐿) ∗ 𝑂) ∈ V | |
5 | 2, 3, 4 | fvmpt 6868 | 1 ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ‘cfv 6427 (class class class)co 7268 ℕ0cn0 12221 Basecbs 16900 ·𝑠 cvsca 16954 .gcmg 18688 mulGrpcmgp 19708 1rcur 19725 algSccascl 21047 var1cv1 21335 Poly1cpl1 21336 coe1cco1 21337 Mat cmat 21542 matToPolyMat cmat2pmat 21841 CharPlyMat cchpmat 21963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-iota 6385 df-fun 6429 df-fv 6435 df-ov 7271 |
This theorem is referenced by: cpmidpmat 22010 |
Copyright terms: Public domain | W3C validator |