| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpmidpmatlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for cpmidpmat 22788. (Contributed by AV, 13-Nov-2019.) |
| Ref | Expression |
|---|---|
| cpmidgsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cpmidgsum.b | ⊢ 𝐵 = (Base‘𝐴) |
| cpmidgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cpmidgsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| cpmidgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
| cpmidgsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
| cpmidgsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| cpmidgsum.1 | ⊢ 1 = (1r‘𝑌) |
| cpmidgsum.u | ⊢ 𝑈 = (algSc‘𝑃) |
| cpmidgsum.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| cpmidgsum.k | ⊢ 𝐾 = (𝐶‘𝑀) |
| cpmidgsum.h | ⊢ 𝐻 = (𝐾 · 1 ) |
| cpmidgsumm2pm.o | ⊢ 𝑂 = (1r‘𝐴) |
| cpmidgsumm2pm.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
| cpmidgsumm2pm.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| cpmidpmat.g | ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) |
| Ref | Expression |
|---|---|
| cpmidpmatlem1 | ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . 3 ⊢ (𝑘 = 𝐿 → ((coe1‘𝐾)‘𝑘) = ((coe1‘𝐾)‘𝐿)) | |
| 2 | 1 | oveq1d 7361 | . 2 ⊢ (𝑘 = 𝐿 → (((coe1‘𝐾)‘𝑘) ∗ 𝑂) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
| 3 | cpmidpmat.g | . 2 ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) | |
| 4 | ovex 7379 | . 2 ⊢ (((coe1‘𝐾)‘𝐿) ∗ 𝑂) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6929 | 1 ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℕ0cn0 12381 Basecbs 17120 ·𝑠 cvsca 17165 .gcmg 18980 mulGrpcmgp 20058 1rcur 20099 algSccascl 21789 var1cv1 22088 Poly1cpl1 22089 coe1cco1 22090 Mat cmat 22322 matToPolyMat cmat2pmat 22619 CharPlyMat cchpmat 22741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: cpmidpmat 22788 |
| Copyright terms: Public domain | W3C validator |