MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmidpmatlem1 Structured version   Visualization version   GIF version

Theorem cpmidpmatlem1 22785
Description: Lemma 1 for cpmidpmat 22788. (Contributed by AV, 13-Nov-2019.)
Hypotheses
Ref Expression
cpmidgsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmidgsum.b 𝐵 = (Base‘𝐴)
cpmidgsum.p 𝑃 = (Poly1𝑅)
cpmidgsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmidgsum.x 𝑋 = (var1𝑅)
cpmidgsum.e = (.g‘(mulGrp‘𝑃))
cpmidgsum.m · = ( ·𝑠𝑌)
cpmidgsum.1 1 = (1r𝑌)
cpmidgsum.u 𝑈 = (algSc‘𝑃)
cpmidgsum.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cpmidgsum.k 𝐾 = (𝐶𝑀)
cpmidgsum.h 𝐻 = (𝐾 · 1 )
cpmidgsumm2pm.o 𝑂 = (1r𝐴)
cpmidgsumm2pm.m = ( ·𝑠𝐴)
cpmidgsumm2pm.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmidpmat.g 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))
Assertion
Ref Expression
cpmidpmatlem1 (𝐿 ∈ ℕ0 → (𝐺𝐿) = (((coe1𝐾)‘𝐿) 𝑂))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐻   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑘,𝑌   𝑘,𝐾   𝑘,𝐿   𝑘,𝑂   ,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑘)   𝑇(𝑘)   · (𝑘)   𝑈(𝑘)   1 (𝑘)   (𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem cpmidpmatlem1
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑘 = 𝐿 → ((coe1𝐾)‘𝑘) = ((coe1𝐾)‘𝐿))
21oveq1d 7361 . 2 (𝑘 = 𝐿 → (((coe1𝐾)‘𝑘) 𝑂) = (((coe1𝐾)‘𝐿) 𝑂))
3 cpmidpmat.g . 2 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))
4 ovex 7379 . 2 (((coe1𝐾)‘𝐿) 𝑂) ∈ V
52, 3, 4fvmpt 6929 1 (𝐿 ∈ ℕ0 → (𝐺𝐿) = (((coe1𝐾)‘𝐿) 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cmpt 5170  cfv 6481  (class class class)co 7346  0cn0 12381  Basecbs 17120   ·𝑠 cvsca 17165  .gcmg 18980  mulGrpcmgp 20058  1rcur 20099  algSccascl 21789  var1cv1 22088  Poly1cpl1 22089  coe1cco1 22090   Mat cmat 22322   matToPolyMat cmat2pmat 22619   CharPlyMat cchpmat 22741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349
This theorem is referenced by:  cpmidpmat  22788
  Copyright terms: Public domain W3C validator