| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpmidpmatlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for cpmidpmat 22767. (Contributed by AV, 13-Nov-2019.) |
| Ref | Expression |
|---|---|
| cpmidgsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cpmidgsum.b | ⊢ 𝐵 = (Base‘𝐴) |
| cpmidgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cpmidgsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| cpmidgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
| cpmidgsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
| cpmidgsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| cpmidgsum.1 | ⊢ 1 = (1r‘𝑌) |
| cpmidgsum.u | ⊢ 𝑈 = (algSc‘𝑃) |
| cpmidgsum.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| cpmidgsum.k | ⊢ 𝐾 = (𝐶‘𝑀) |
| cpmidgsum.h | ⊢ 𝐻 = (𝐾 · 1 ) |
| cpmidgsumm2pm.o | ⊢ 𝑂 = (1r‘𝐴) |
| cpmidgsumm2pm.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
| cpmidgsumm2pm.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| cpmidpmat.g | ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) |
| Ref | Expression |
|---|---|
| cpmidpmatlem1 | ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . 3 ⊢ (𝑘 = 𝐿 → ((coe1‘𝐾)‘𝑘) = ((coe1‘𝐾)‘𝐿)) | |
| 2 | 1 | oveq1d 7405 | . 2 ⊢ (𝑘 = 𝐿 → (((coe1‘𝐾)‘𝑘) ∗ 𝑂) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
| 3 | cpmidpmat.g | . 2 ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) | |
| 4 | ovex 7423 | . 2 ⊢ (((coe1‘𝐾)‘𝐿) ∗ 𝑂) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6971 | 1 ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ℕ0cn0 12449 Basecbs 17186 ·𝑠 cvsca 17231 .gcmg 19006 mulGrpcmgp 20056 1rcur 20097 algSccascl 21768 var1cv1 22067 Poly1cpl1 22068 coe1cco1 22069 Mat cmat 22301 matToPolyMat cmat2pmat 22598 CharPlyMat cchpmat 22720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: cpmidpmat 22767 |
| Copyright terms: Public domain | W3C validator |