MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmidpmatlem1 Structured version   Visualization version   GIF version

Theorem cpmidpmatlem1 22824
Description: Lemma 1 for cpmidpmat 22827. (Contributed by AV, 13-Nov-2019.)
Hypotheses
Ref Expression
cpmidgsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmidgsum.b 𝐵 = (Base‘𝐴)
cpmidgsum.p 𝑃 = (Poly1𝑅)
cpmidgsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmidgsum.x 𝑋 = (var1𝑅)
cpmidgsum.e = (.g‘(mulGrp‘𝑃))
cpmidgsum.m · = ( ·𝑠𝑌)
cpmidgsum.1 1 = (1r𝑌)
cpmidgsum.u 𝑈 = (algSc‘𝑃)
cpmidgsum.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cpmidgsum.k 𝐾 = (𝐶𝑀)
cpmidgsum.h 𝐻 = (𝐾 · 1 )
cpmidgsumm2pm.o 𝑂 = (1r𝐴)
cpmidgsumm2pm.m = ( ·𝑠𝐴)
cpmidgsumm2pm.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmidpmat.g 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))
Assertion
Ref Expression
cpmidpmatlem1 (𝐿 ∈ ℕ0 → (𝐺𝐿) = (((coe1𝐾)‘𝐿) 𝑂))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐻   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑘,𝑌   𝑘,𝐾   𝑘,𝐿   𝑘,𝑂   ,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑘)   𝑇(𝑘)   · (𝑘)   𝑈(𝑘)   1 (𝑘)   (𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem cpmidpmatlem1
StepHypRef Expression
1 fveq2 6886 . . 3 (𝑘 = 𝐿 → ((coe1𝐾)‘𝑘) = ((coe1𝐾)‘𝐿))
21oveq1d 7428 . 2 (𝑘 = 𝐿 → (((coe1𝐾)‘𝑘) 𝑂) = (((coe1𝐾)‘𝐿) 𝑂))
3 cpmidpmat.g . 2 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))
4 ovex 7446 . 2 (((coe1𝐾)‘𝐿) 𝑂) ∈ V
52, 3, 4fvmpt 6996 1 (𝐿 ∈ ℕ0 → (𝐺𝐿) = (((coe1𝐾)‘𝐿) 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cmpt 5205  cfv 6541  (class class class)co 7413  0cn0 12509  Basecbs 17229   ·𝑠 cvsca 17277  .gcmg 19054  mulGrpcmgp 20105  1rcur 20146  algSccascl 21826  var1cv1 22125  Poly1cpl1 22126  coe1cco1 22127   Mat cmat 22359   matToPolyMat cmat2pmat 22658   CharPlyMat cchpmat 22780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416
This theorem is referenced by:  cpmidpmat  22827
  Copyright terms: Public domain W3C validator