![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpmidpmatlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cpmidpmat 22904. (Contributed by AV, 13-Nov-2019.) |
Ref | Expression |
---|---|
cpmidgsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmidgsum.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmidgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmidgsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmidgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
cpmidgsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
cpmidgsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmidgsum.1 | ⊢ 1 = (1r‘𝑌) |
cpmidgsum.u | ⊢ 𝑈 = (algSc‘𝑃) |
cpmidgsum.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cpmidgsum.k | ⊢ 𝐾 = (𝐶‘𝑀) |
cpmidgsum.h | ⊢ 𝐻 = (𝐾 · 1 ) |
cpmidgsumm2pm.o | ⊢ 𝑂 = (1r‘𝐴) |
cpmidgsumm2pm.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
cpmidgsumm2pm.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cpmidpmat.g | ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) |
Ref | Expression |
---|---|
cpmidpmatlem1 | ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6914 | . . 3 ⊢ (𝑘 = 𝐿 → ((coe1‘𝐾)‘𝑘) = ((coe1‘𝐾)‘𝐿)) | |
2 | 1 | oveq1d 7453 | . 2 ⊢ (𝑘 = 𝐿 → (((coe1‘𝐾)‘𝑘) ∗ 𝑂) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
3 | cpmidpmat.g | . 2 ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) | |
4 | ovex 7471 | . 2 ⊢ (((coe1‘𝐾)‘𝐿) ∗ 𝑂) ∈ V | |
5 | 2, 3, 4 | fvmpt 7023 | 1 ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5234 ‘cfv 6569 (class class class)co 7438 ℕ0cn0 12533 Basecbs 17254 ·𝑠 cvsca 17311 .gcmg 19107 mulGrpcmgp 20161 1rcur 20208 algSccascl 21899 var1cv1 22202 Poly1cpl1 22203 coe1cco1 22204 Mat cmat 22436 matToPolyMat cmat2pmat 22735 CharPlyMat cchpmat 22857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 |
This theorem is referenced by: cpmidpmat 22904 |
Copyright terms: Public domain | W3C validator |