MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmidpmatlem1 Structured version   Visualization version   GIF version

Theorem cpmidpmatlem1 22765
Description: Lemma 1 for cpmidpmat 22768. (Contributed by AV, 13-Nov-2019.)
Hypotheses
Ref Expression
cpmidgsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmidgsum.b 𝐵 = (Base‘𝐴)
cpmidgsum.p 𝑃 = (Poly1𝑅)
cpmidgsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmidgsum.x 𝑋 = (var1𝑅)
cpmidgsum.e = (.g‘(mulGrp‘𝑃))
cpmidgsum.m · = ( ·𝑠𝑌)
cpmidgsum.1 1 = (1r𝑌)
cpmidgsum.u 𝑈 = (algSc‘𝑃)
cpmidgsum.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cpmidgsum.k 𝐾 = (𝐶𝑀)
cpmidgsum.h 𝐻 = (𝐾 · 1 )
cpmidgsumm2pm.o 𝑂 = (1r𝐴)
cpmidgsumm2pm.m = ( ·𝑠𝐴)
cpmidgsumm2pm.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmidpmat.g 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))
Assertion
Ref Expression
cpmidpmatlem1 (𝐿 ∈ ℕ0 → (𝐺𝐿) = (((coe1𝐾)‘𝐿) 𝑂))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐻   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑘,𝑌   𝑘,𝐾   𝑘,𝐿   𝑘,𝑂   ,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑘)   𝑇(𝑘)   · (𝑘)   𝑈(𝑘)   1 (𝑘)   (𝑘)   𝐺(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem cpmidpmatlem1
StepHypRef Expression
1 fveq2 6891 . . 3 (𝑘 = 𝐿 → ((coe1𝐾)‘𝑘) = ((coe1𝐾)‘𝐿))
21oveq1d 7429 . 2 (𝑘 = 𝐿 → (((coe1𝐾)‘𝑘) 𝑂) = (((coe1𝐾)‘𝐿) 𝑂))
3 cpmidpmat.g . 2 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))
4 ovex 7447 . 2 (((coe1𝐾)‘𝐿) 𝑂) ∈ V
52, 3, 4fvmpt 6999 1 (𝐿 ∈ ℕ0 → (𝐺𝐿) = (((coe1𝐾)‘𝐿) 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cmpt 5225  cfv 6542  (class class class)co 7414  0cn0 12496  Basecbs 17173   ·𝑠 cvsca 17230  .gcmg 19016  mulGrpcmgp 20067  1rcur 20114  algSccascl 21779  var1cv1 22088  Poly1cpl1 22089  coe1cco1 22090   Mat cmat 22300   matToPolyMat cmat2pmat 22599   CharPlyMat cchpmat 22721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417
This theorem is referenced by:  cpmidpmat  22768
  Copyright terms: Public domain W3C validator