| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpmidpmatlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for cpmidpmat 22777. (Contributed by AV, 13-Nov-2019.) |
| Ref | Expression |
|---|---|
| cpmidgsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cpmidgsum.b | ⊢ 𝐵 = (Base‘𝐴) |
| cpmidgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cpmidgsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| cpmidgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
| cpmidgsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
| cpmidgsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| cpmidgsum.1 | ⊢ 1 = (1r‘𝑌) |
| cpmidgsum.u | ⊢ 𝑈 = (algSc‘𝑃) |
| cpmidgsum.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| cpmidgsum.k | ⊢ 𝐾 = (𝐶‘𝑀) |
| cpmidgsum.h | ⊢ 𝐻 = (𝐾 · 1 ) |
| cpmidgsumm2pm.o | ⊢ 𝑂 = (1r‘𝐴) |
| cpmidgsumm2pm.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
| cpmidgsumm2pm.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| cpmidpmat.g | ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) |
| Ref | Expression |
|---|---|
| cpmidpmatlem1 | ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . 3 ⊢ (𝑘 = 𝐿 → ((coe1‘𝐾)‘𝑘) = ((coe1‘𝐾)‘𝐿)) | |
| 2 | 1 | oveq1d 7368 | . 2 ⊢ (𝑘 = 𝐿 → (((coe1‘𝐾)‘𝑘) ∗ 𝑂) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
| 3 | cpmidpmat.g | . 2 ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) | |
| 4 | ovex 7386 | . 2 ⊢ (((coe1‘𝐾)‘𝐿) ∗ 𝑂) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6934 | 1 ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ℕ0cn0 12403 Basecbs 17139 ·𝑠 cvsca 17184 .gcmg 18965 mulGrpcmgp 20044 1rcur 20085 algSccascl 21778 var1cv1 22077 Poly1cpl1 22078 coe1cco1 22079 Mat cmat 22311 matToPolyMat cmat2pmat 22608 CharPlyMat cchpmat 22730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: cpmidpmat 22777 |
| Copyright terms: Public domain | W3C validator |