Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpmidpmatlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cpmidpmat 22022. (Contributed by AV, 13-Nov-2019.) |
Ref | Expression |
---|---|
cpmidgsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmidgsum.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmidgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmidgsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmidgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
cpmidgsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
cpmidgsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmidgsum.1 | ⊢ 1 = (1r‘𝑌) |
cpmidgsum.u | ⊢ 𝑈 = (algSc‘𝑃) |
cpmidgsum.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cpmidgsum.k | ⊢ 𝐾 = (𝐶‘𝑀) |
cpmidgsum.h | ⊢ 𝐻 = (𝐾 · 1 ) |
cpmidgsumm2pm.o | ⊢ 𝑂 = (1r‘𝐴) |
cpmidgsumm2pm.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
cpmidgsumm2pm.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cpmidpmat.g | ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) |
Ref | Expression |
---|---|
cpmidpmatlem1 | ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . 3 ⊢ (𝑘 = 𝐿 → ((coe1‘𝐾)‘𝑘) = ((coe1‘𝐾)‘𝐿)) | |
2 | 1 | oveq1d 7290 | . 2 ⊢ (𝑘 = 𝐿 → (((coe1‘𝐾)‘𝑘) ∗ 𝑂) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
3 | cpmidpmat.g | . 2 ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) | |
4 | ovex 7308 | . 2 ⊢ (((coe1‘𝐾)‘𝐿) ∗ 𝑂) ∈ V | |
5 | 2, 3, 4 | fvmpt 6875 | 1 ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℕ0cn0 12233 Basecbs 16912 ·𝑠 cvsca 16966 .gcmg 18700 mulGrpcmgp 19720 1rcur 19737 algSccascl 21059 var1cv1 21347 Poly1cpl1 21348 coe1cco1 21349 Mat cmat 21554 matToPolyMat cmat2pmat 21853 CharPlyMat cchpmat 21975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 |
This theorem is referenced by: cpmidpmat 22022 |
Copyright terms: Public domain | W3C validator |