MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmidpmat Structured version   Visualization version   GIF version

Theorem cpmidpmat 22900
Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as polynomial over the ring of matrices. (Contributed by AV, 14-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
cpmidgsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmidgsum.b 𝐵 = (Base‘𝐴)
cpmidgsum.p 𝑃 = (Poly1𝑅)
cpmidgsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmidgsum.x 𝑋 = (var1𝑅)
cpmidgsum.e = (.g‘(mulGrp‘𝑃))
cpmidgsum.m · = ( ·𝑠𝑌)
cpmidgsum.1 1 = (1r𝑌)
cpmidgsum.u 𝑈 = (algSc‘𝑃)
cpmidgsum.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cpmidgsum.k 𝐾 = (𝐶𝑀)
cpmidgsum.h 𝐻 = (𝐾 · 1 )
cpmidgsumm2pm.o 𝑂 = (1r𝐴)
cpmidgsumm2pm.m = ( ·𝑠𝐴)
cpmidgsumm2pm.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmidgsum.w 𝑊 = (Base‘𝑌)
cpmidpmat.p 𝑄 = (Poly1𝐴)
cpmidpmat.z 𝑍 = (var1𝐴)
cpmidpmat.m = ( ·𝑠𝑄)
cpmidpmat.e 𝐸 = (.g‘(mulGrp‘𝑄))
cpmidpmat.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
cpmidpmat ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐼𝐻) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 𝑂) (𝑛𝐸𝑍)))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐻   𝑛,𝐾   𝑛,𝑋   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑌   ,𝑛   𝑛,𝑀   𝑛,𝐼   𝑛,𝑂   𝑇,𝑛   𝑛,𝑊   ,𝑛   · ,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑄(𝑛)   (𝑛)   𝑈(𝑛)   1 (𝑛)   𝐸(𝑛)   𝑍(𝑛)

Proof of Theorem cpmidpmat
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmidgsum.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 cpmidgsum.b . . . 4 𝐵 = (Base‘𝐴)
3 cpmidgsum.p . . . 4 𝑃 = (Poly1𝑅)
4 cpmidgsum.y . . . 4 𝑌 = (𝑁 Mat 𝑃)
5 cpmidgsum.x . . . 4 𝑋 = (var1𝑅)
6 cpmidgsum.e . . . 4 = (.g‘(mulGrp‘𝑃))
7 cpmidgsum.m . . . 4 · = ( ·𝑠𝑌)
8 cpmidgsum.1 . . . 4 1 = (1r𝑌)
9 cpmidgsum.u . . . 4 𝑈 = (algSc‘𝑃)
10 cpmidgsum.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
11 cpmidgsum.k . . . 4 𝐾 = (𝐶𝑀)
12 cpmidgsum.h . . . 4 𝐻 = (𝐾 · 1 )
13 cpmidgsumm2pm.o . . . 4 𝑂 = (1r𝐴)
14 cpmidgsumm2pm.m . . . 4 = ( ·𝑠𝐴)
15 cpmidgsumm2pm.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15cpmidgsumm2pm 22896 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘(((coe1𝐾)‘𝑛) 𝑂))))))
1716fveq2d 6924 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐼𝐻) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘(((coe1𝐾)‘𝑛) 𝑂)))))))
18 eqid 2740 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂)) = (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18cpmidpmatlem1 22897 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛) = (((coe1𝐾)‘𝑛) 𝑂))
2019eqcomd 2746 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (((coe1𝐾)‘𝑛) 𝑂) = ((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛))
2120adantl 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (((coe1𝐾)‘𝑛) 𝑂) = ((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛))
2221fveq2d 6924 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(((coe1𝐾)‘𝑛) 𝑂)) = (𝑇‘((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛)))
2322oveq2d 7464 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑋) · (𝑇‘(((coe1𝐾)‘𝑛) 𝑂))) = ((𝑛 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛))))
2423mpteq2dva 5266 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘(((coe1𝐾)‘𝑛) 𝑂)))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛)))))
2524oveq2d 7464 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘(((coe1𝐾)‘𝑛) 𝑂))))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛))))))
2625fveq2d 6924 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘(((coe1𝐾)‘𝑛) 𝑂)))))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛)))))))
27 3simpa 1148 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18cpmidpmatlem2 22898 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂)) ∈ (𝐵m0))
291, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18cpmidpmatlem3 22899 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂)) finSupp (0g𝐴))
30 fveq2 6920 . . . . . . . . . 10 (𝑘 = 𝑥 → ((coe1𝐾)‘𝑘) = ((coe1𝐾)‘𝑥))
3130oveq1d 7463 . . . . . . . . 9 (𝑘 = 𝑥 → (((coe1𝐾)‘𝑘) 𝑂) = (((coe1𝐾)‘𝑥) 𝑂))
3231cbvmptv 5279 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂)) = (𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))
3332eleq1i 2835 . . . . . . 7 ((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂)) ∈ (𝐵m0) ↔ (𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂)) ∈ (𝐵m0))
3432breq1i 5173 . . . . . . 7 ((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂)) finSupp (0g𝐴) ↔ (𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂)) finSupp (0g𝐴))
3533, 34anbi12i 627 . . . . . 6 (((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂)) ∈ (𝐵m0) ∧ (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂)) finSupp (0g𝐴)) ↔ ((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂)) ∈ (𝐵m0) ∧ (𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂)) finSupp (0g𝐴)))
36 cpmidgsum.w . . . . . . 7 𝑊 = (Base‘𝑌)
37 cpmidpmat.m . . . . . . 7 = ( ·𝑠𝑄)
38 cpmidpmat.e . . . . . . 7 𝐸 = (.g‘(mulGrp‘𝑄))
39 cpmidpmat.z . . . . . . 7 𝑍 = (var1𝐴)
40 cpmidpmat.p . . . . . . 7 𝑄 = (Poly1𝐴)
41 cpmidpmat.i . . . . . . 7 𝐼 = (𝑁 pMatToMatPoly 𝑅)
423, 4, 36, 37, 38, 39, 1, 2, 40, 41, 6, 5, 7, 15pm2mp 22852 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂)) ∈ (𝐵m0) ∧ (𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂)) finSupp (0g𝐴))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛) (𝑛𝐸𝑍)))))
4335, 42sylan2b 593 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂)) ∈ (𝐵m0) ∧ (𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂)) finSupp (0g𝐴))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛) (𝑛𝐸𝑍)))))
4427, 28, 29, 43syl12anc 836 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛) (𝑛𝐸𝑍)))))
4532fveq1i 6921 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛) = ((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛)
4645fveq2i 6923 . . . . . . . 8 (𝑇‘((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛)) = (𝑇‘((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛))
4746oveq2i 7459 . . . . . . 7 ((𝑛 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛))) = ((𝑛 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛)))
4847mpteq2i 5271 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛))))
4948oveq2i 7459 . . . . 5 (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛))))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛)))))
5049fveq2i 6923 . . . 4 (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛)))))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛))))))
5145oveq1i 7458 . . . . . 6 (((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛) (𝑛𝐸𝑍)) = (((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛) (𝑛𝐸𝑍))
5251mpteq2i 5271 . . . . 5 (𝑛 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛) (𝑛𝐸𝑍))) = (𝑛 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛) (𝑛𝐸𝑍)))
5352oveq2i 7459 . . . 4 (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛) (𝑛𝐸𝑍)))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑥) 𝑂))‘𝑛) (𝑛𝐸𝑍))))
5444, 50, 533eqtr4g 2805 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛) (𝑛𝐸𝑍)))))
5526, 54eqtrd 2780 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) · (𝑇‘(((coe1𝐾)‘𝑛) 𝑂)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛) (𝑛𝐸𝑍)))))
5619adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛) = (((coe1𝐾)‘𝑛) 𝑂))
5756oveq1d 7463 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛) (𝑛𝐸𝑍)) = ((((coe1𝐾)‘𝑛) 𝑂) (𝑛𝐸𝑍)))
5857mpteq2dva 5266 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛) (𝑛𝐸𝑍))) = (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 𝑂) (𝑛𝐸𝑍))))
5958oveq2d 7464 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑘) 𝑂))‘𝑛) (𝑛𝐸𝑍)))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 𝑂) (𝑛𝐸𝑍)))))
6017, 55, 593eqtrd 2784 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐼𝐻) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 𝑂) (𝑛𝐸𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  0cn0 12553  Basecbs 17258   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  .gcmg 19107  mulGrpcmgp 20161  1rcur 20208  CRingccrg 20261  algSccascl 21895  var1cv1 22198  Poly1cpl1 22199  coe1cco1 22200   Mat cmat 22432   matToPolyMat cmat2pmat 22731   pMatToMatPoly cpm2mp 22819   CharPlyMat cchpmat 22853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-dsmm 21775  df-frlm 21790  df-assa 21896  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mamu 22416  df-mat 22433  df-mdet 22612  df-mat2pmat 22734  df-decpmat 22790  df-pm2mp 22820  df-chpmat 22854
This theorem is referenced by:  chcoeffeq  22913
  Copyright terms: Public domain W3C validator