| Step | Hyp | Ref
| Expression |
| 1 | | cpmidgsum.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 2 | | cpmidgsum.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
| 3 | | cpmidgsum.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
| 4 | | cpmidgsum.y |
. . . 4
⊢ 𝑌 = (𝑁 Mat 𝑃) |
| 5 | | cpmidgsum.x |
. . . 4
⊢ 𝑋 = (var1‘𝑅) |
| 6 | | cpmidgsum.e |
. . . 4
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
| 7 | | cpmidgsum.m |
. . . 4
⊢ · = (
·𝑠 ‘𝑌) |
| 8 | | cpmidgsum.1 |
. . . 4
⊢ 1 =
(1r‘𝑌) |
| 9 | | cpmidgsum.u |
. . . 4
⊢ 𝑈 = (algSc‘𝑃) |
| 10 | | cpmidgsum.c |
. . . 4
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| 11 | | cpmidgsum.k |
. . . 4
⊢ 𝐾 = (𝐶‘𝑀) |
| 12 | | cpmidgsum.h |
. . . 4
⊢ 𝐻 = (𝐾 · 1 ) |
| 13 | | cpmidgsumm2pm.o |
. . . 4
⊢ 𝑂 = (1r‘𝐴) |
| 14 | | cpmidgsumm2pm.m |
. . . 4
⊢ ∗ = (
·𝑠 ‘𝐴) |
| 15 | | cpmidgsumm2pm.t |
. . . 4
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | cpmidgsumm2pm 22875 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) |
| 17 | 16 | fveq2d 6910 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼‘𝐻) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂))))))) |
| 18 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) = (𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂)) |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 18 | cpmidpmatlem1 22876 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛) = (((coe1‘𝐾)‘𝑛) ∗ 𝑂)) |
| 20 | 19 | eqcomd 2743 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ (((coe1‘𝐾)‘𝑛) ∗ 𝑂) = ((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛)) |
| 21 | 20 | adantl 481 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) →
(((coe1‘𝐾)‘𝑛) ∗ 𝑂) = ((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛)) |
| 22 | 21 | fveq2d 6910 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)) = (𝑇‘((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛))) |
| 23 | 22 | oveq2d 7447 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂))) = ((𝑛 ↑ 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛)))) |
| 24 | 23 | mpteq2dva 5242 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛))))) |
| 25 | 24 | oveq2d 7447 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂))))) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛)))))) |
| 26 | 25 | fveq2d 6910 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛))))))) |
| 27 | | 3simpa 1149 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) |
| 28 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 18 | cpmidpmatlem2 22877 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ∈ (𝐵 ↑m
ℕ0)) |
| 29 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 18 | cpmidpmatlem3 22878 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂)) finSupp (0g‘𝐴)) |
| 30 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → ((coe1‘𝐾)‘𝑘) = ((coe1‘𝐾)‘𝑥)) |
| 31 | 30 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (((coe1‘𝐾)‘𝑘) ∗ 𝑂) = (((coe1‘𝐾)‘𝑥) ∗ 𝑂)) |
| 32 | 31 | cbvmptv 5255 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) = (𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂)) |
| 33 | 32 | eleq1i 2832 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ∈ (𝐵 ↑m ℕ0)
↔ (𝑥 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑥) ∗ 𝑂)) ∈ (𝐵 ↑m
ℕ0)) |
| 34 | 32 | breq1i 5150 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) finSupp (0g‘𝐴) ↔ (𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂)) finSupp (0g‘𝐴)) |
| 35 | 33, 34 | anbi12i 628 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ∈ (𝐵 ↑m ℕ0)
∧ (𝑘 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) finSupp (0g‘𝐴)) ↔ ((𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂)) ∈ (𝐵 ↑m ℕ0)
∧ (𝑥 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑥) ∗ 𝑂)) finSupp (0g‘𝐴))) |
| 36 | | cpmidgsum.w |
. . . . . . 7
⊢ 𝑊 = (Base‘𝑌) |
| 37 | | cpmidpmat.m |
. . . . . . 7
⊢ ∙ = (
·𝑠 ‘𝑄) |
| 38 | | cpmidpmat.e |
. . . . . . 7
⊢ 𝐸 =
(.g‘(mulGrp‘𝑄)) |
| 39 | | cpmidpmat.z |
. . . . . . 7
⊢ 𝑍 = (var1‘𝐴) |
| 40 | | cpmidpmat.p |
. . . . . . 7
⊢ 𝑄 = (Poly1‘𝐴) |
| 41 | | cpmidpmat.i |
. . . . . . 7
⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) |
| 42 | 3, 4, 36, 37, 38, 39, 1, 2, 40, 41, 6, 5, 7, 15 | pm2mp 22831 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑥 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑥) ∗ 𝑂)) ∈ (𝐵 ↑m ℕ0)
∧ (𝑥 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑥) ∗ 𝑂)) finSupp (0g‘𝐴))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑥 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍))))) |
| 43 | 35, 42 | sylan2b 594 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑘 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ∈ (𝐵 ↑m ℕ0)
∧ (𝑘 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) finSupp (0g‘𝐴))) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑥 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍))))) |
| 44 | 27, 28, 29, 43 | syl12anc 837 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑥 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍))))) |
| 45 | 32 | fveq1i 6907 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛) = ((𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛) |
| 46 | 45 | fveq2i 6909 |
. . . . . . . 8
⊢ (𝑇‘((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛)) = (𝑇‘((𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛)) |
| 47 | 46 | oveq2i 7442 |
. . . . . . 7
⊢ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛))) = ((𝑛 ↑ 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛))) |
| 48 | 47 | mpteq2i 5247 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛)))) |
| 49 | 48 | oveq2i 7442 |
. . . . 5
⊢ (𝑌 Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛))))) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛))))) |
| 50 | 49 | fveq2i 6909 |
. . . 4
⊢ (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛)))))) = (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛)))))) |
| 51 | 45 | oveq1i 7441 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍)) = (((𝑥 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍)) |
| 52 | 51 | mpteq2i 5247 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
↦ (((𝑘 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍))) = (𝑛 ∈ ℕ0 ↦ (((𝑥 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍))) |
| 53 | 52 | oveq2i 7442 |
. . . 4
⊢ (𝑄 Σg
(𝑛 ∈
ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍)))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑥 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑥) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍)))) |
| 54 | 44, 50, 53 | 3eqtr4g 2802 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘((𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑘 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍))))) |
| 55 | 26, 54 | eqtrd 2777 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑘 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍))))) |
| 56 | 19 | adantl 481 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛) = (((coe1‘𝐾)‘𝑛) ∗ 𝑂)) |
| 57 | 56 | oveq1d 7446 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍)) = ((((coe1‘𝐾)‘𝑛) ∗ 𝑂) ∙ (𝑛𝐸𝑍))) |
| 58 | 57 | mpteq2dva 5242 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍))) = (𝑛 ∈ ℕ0 ↦
((((coe1‘𝐾)‘𝑛) ∗ 𝑂) ∙ (𝑛𝐸𝑍)))) |
| 59 | 58 | oveq2d 7447 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑄 Σg (𝑛 ∈ ℕ0
↦ (((𝑘 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂))‘𝑛) ∙ (𝑛𝐸𝑍)))) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((((coe1‘𝐾)‘𝑛) ∗ 𝑂) ∙ (𝑛𝐸𝑍))))) |
| 60 | 17, 55, 59 | 3eqtrd 2781 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼‘𝐻) = (𝑄 Σg (𝑛 ∈ ℕ0
↦ ((((coe1‘𝐾)‘𝑛) ∗ 𝑂) ∙ (𝑛𝐸𝑍))))) |