Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpmidgsumm2pm | Structured version Visualization version GIF version |
Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum with a matrix to polynomial matrix transformation. (Contributed by AV, 13-Nov-2019.) |
Ref | Expression |
---|---|
cpmidgsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmidgsum.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmidgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmidgsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmidgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
cpmidgsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
cpmidgsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmidgsum.1 | ⊢ 1 = (1r‘𝑌) |
cpmidgsum.u | ⊢ 𝑈 = (algSc‘𝑃) |
cpmidgsum.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cpmidgsum.k | ⊢ 𝐾 = (𝐶‘𝑀) |
cpmidgsum.h | ⊢ 𝐻 = (𝐾 · 1 ) |
cpmidgsumm2pm.o | ⊢ 𝑂 = (1r‘𝐴) |
cpmidgsumm2pm.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
cpmidgsumm2pm.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
Ref | Expression |
---|---|
cpmidgsumm2pm | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmidgsum.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | cpmidgsum.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | cpmidgsum.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | cpmidgsum.y | . . 3 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
5 | cpmidgsum.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
6 | cpmidgsum.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
7 | cpmidgsum.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
8 | cpmidgsum.1 | . . 3 ⊢ 1 = (1r‘𝑌) | |
9 | cpmidgsum.u | . . 3 ⊢ 𝑈 = (algSc‘𝑃) | |
10 | cpmidgsum.c | . . 3 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
11 | cpmidgsum.k | . . 3 ⊢ 𝐾 = (𝐶‘𝑀) | |
12 | cpmidgsum.h | . . 3 ⊢ 𝐻 = (𝐾 · 1 ) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cpmidgsum 21797 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ))))) |
14 | 3simpa 1150 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) | |
15 | 14 | adantr 484 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) |
16 | eqid 2739 | . . . . . . . . . 10 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
17 | 10, 1, 2, 3, 16 | chpmatply1 21761 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ (Base‘𝑃)) |
18 | 11, 17 | eqeltrid 2844 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐾 ∈ (Base‘𝑃)) |
19 | eqid 2739 | . . . . . . . . 9 ⊢ (coe1‘𝐾) = (coe1‘𝐾) | |
20 | eqid 2739 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
21 | 19, 16, 3, 20 | coe1fvalcl 21165 | . . . . . . . 8 ⊢ ((𝐾 ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) → ((coe1‘𝐾)‘𝑛) ∈ (Base‘𝑅)) |
22 | 18, 21 | sylan 583 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘𝐾)‘𝑛) ∈ (Base‘𝑅)) |
23 | crngring 19607 | . . . . . . . . . . 11 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
24 | 23 | anim2i 620 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
25 | 1 | matring 21372 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
26 | cpmidgsumm2pm.o | . . . . . . . . . . 11 ⊢ 𝑂 = (1r‘𝐴) | |
27 | 2, 26 | ringidcl 19619 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Ring → 𝑂 ∈ 𝐵) |
28 | 24, 25, 27 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑂 ∈ 𝐵) |
29 | 28 | 3adant3 1134 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑂 ∈ 𝐵) |
30 | 29 | adantr 484 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑂 ∈ 𝐵) |
31 | cpmidgsumm2pm.t | . . . . . . . 8 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
32 | eqid 2739 | . . . . . . . 8 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
33 | cpmidgsumm2pm.m | . . . . . . . 8 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
34 | 31, 1, 2, 3, 4, 32, 20, 9, 33, 7 | mat2pmatlin 21664 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (((coe1‘𝐾)‘𝑛) ∈ (Base‘𝑅) ∧ 𝑂 ∈ 𝐵)) → (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)) = ((𝑈‘((coe1‘𝐾)‘𝑛)) · (𝑇‘𝑂))) |
35 | 15, 22, 30, 34 | syl12anc 837 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)) = ((𝑈‘((coe1‘𝐾)‘𝑛)) · (𝑇‘𝑂))) |
36 | 31, 1, 2, 3, 4, 32 | mat2pmatrhm 21663 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingHom 𝑌)) |
37 | 26, 8 | rhm1 19783 | . . . . . . . . 9 ⊢ (𝑇 ∈ (𝐴 RingHom 𝑌) → (𝑇‘𝑂) = 1 ) |
38 | 14, 36, 37 | 3syl 18 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑂) = 1 ) |
39 | 38 | adantr 484 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘𝑂) = 1 ) |
40 | 39 | oveq2d 7251 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑈‘((coe1‘𝐾)‘𝑛)) · (𝑇‘𝑂)) = ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 )) |
41 | 35, 40 | eqtr2d 2780 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ) = (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂))) |
42 | 41 | oveq2d 7251 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 )) = ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))) |
43 | 42 | mpteq2dva 5167 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂))))) |
44 | 43 | oveq2d 7251 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 )))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) |
45 | 13, 44 | eqtrd 2779 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ↦ cmpt 5152 ‘cfv 6401 (class class class)co 7235 Fincfn 8650 ℕ0cn0 12120 Basecbs 16793 ·𝑠 cvsca 16839 Σg cgsu 16978 .gcmg 18521 mulGrpcmgp 19537 1rcur 19549 Ringcrg 19595 CRingccrg 19596 RingHom crh 19765 algSccascl 20847 var1cv1 21129 Poly1cpl1 21130 coe1cco1 21131 Mat cmat 21336 matToPolyMat cmat2pmat 21633 CharPlyMat cchpmat 21755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 ax-addf 10838 ax-mulf 10839 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-xor 1508 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-se 5528 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-isom 6410 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-of 7491 df-ofr 7492 df-om 7667 df-1st 7783 df-2nd 7784 df-supp 7928 df-tpos 7992 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-1o 8226 df-2o 8227 df-er 8415 df-map 8534 df-pm 8535 df-ixp 8603 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-fsupp 9016 df-sup 9088 df-oi 9156 df-card 9585 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-div 11520 df-nn 11861 df-2 11923 df-3 11924 df-4 11925 df-5 11926 df-6 11927 df-7 11928 df-8 11929 df-9 11930 df-n0 12121 df-xnn0 12193 df-z 12207 df-dec 12324 df-uz 12469 df-rp 12617 df-fz 13126 df-fzo 13269 df-seq 13607 df-exp 13668 df-hash 13930 df-word 14103 df-lsw 14151 df-concat 14159 df-s1 14186 df-substr 14239 df-pfx 14269 df-splice 14348 df-reverse 14357 df-s2 14446 df-struct 16733 df-sets 16750 df-slot 16768 df-ndx 16778 df-base 16794 df-ress 16818 df-plusg 16848 df-mulr 16849 df-starv 16850 df-sca 16851 df-vsca 16852 df-ip 16853 df-tset 16854 df-ple 16855 df-ds 16857 df-unif 16858 df-hom 16859 df-cco 16860 df-0g 16979 df-gsum 16980 df-prds 16985 df-pws 16987 df-mre 17122 df-mrc 17123 df-acs 17125 df-mgm 18147 df-sgrp 18196 df-mnd 18207 df-mhm 18251 df-submnd 18252 df-efmnd 18329 df-grp 18401 df-minusg 18402 df-sbg 18403 df-mulg 18522 df-subg 18573 df-ghm 18653 df-gim 18696 df-cntz 18744 df-oppg 18771 df-symg 18793 df-pmtr 18867 df-psgn 18916 df-cmn 19205 df-abl 19206 df-mgp 19538 df-ur 19550 df-srg 19554 df-ring 19597 df-cring 19598 df-oppr 19674 df-dvdsr 19692 df-unit 19693 df-invr 19723 df-dvr 19734 df-rnghom 19768 df-drng 19802 df-subrg 19831 df-lmod 19934 df-lss 20002 df-sra 20242 df-rgmod 20243 df-cnfld 20397 df-zring 20469 df-zrh 20503 df-dsmm 20727 df-frlm 20742 df-assa 20848 df-ascl 20850 df-psr 20900 df-mvr 20901 df-mpl 20902 df-opsr 20904 df-psr1 21133 df-vr1 21134 df-ply1 21135 df-coe1 21136 df-mamu 21315 df-mat 21337 df-mdet 21514 df-mat2pmat 21636 df-decpmat 21692 df-chpmat 21756 |
This theorem is referenced by: cpmidpmat 21802 |
Copyright terms: Public domain | W3C validator |