![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpmidgsumm2pm | Structured version Visualization version GIF version |
Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum with a matrix to polynomial matrix transformation. (Contributed by AV, 13-Nov-2019.) |
Ref | Expression |
---|---|
cpmidgsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmidgsum.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmidgsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmidgsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmidgsum.x | ⊢ 𝑋 = (var1‘𝑅) |
cpmidgsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
cpmidgsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmidgsum.1 | ⊢ 1 = (1r‘𝑌) |
cpmidgsum.u | ⊢ 𝑈 = (algSc‘𝑃) |
cpmidgsum.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cpmidgsum.k | ⊢ 𝐾 = (𝐶‘𝑀) |
cpmidgsum.h | ⊢ 𝐻 = (𝐾 · 1 ) |
cpmidgsumm2pm.o | ⊢ 𝑂 = (1r‘𝐴) |
cpmidgsumm2pm.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
cpmidgsumm2pm.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
Ref | Expression |
---|---|
cpmidgsumm2pm | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmidgsum.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | cpmidgsum.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | cpmidgsum.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | cpmidgsum.y | . . 3 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
5 | cpmidgsum.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
6 | cpmidgsum.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
7 | cpmidgsum.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
8 | cpmidgsum.1 | . . 3 ⊢ 1 = (1r‘𝑌) | |
9 | cpmidgsum.u | . . 3 ⊢ 𝑈 = (algSc‘𝑃) | |
10 | cpmidgsum.c | . . 3 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
11 | cpmidgsum.k | . . 3 ⊢ 𝐾 = (𝐶‘𝑀) | |
12 | cpmidgsum.h | . . 3 ⊢ 𝐻 = (𝐾 · 1 ) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cpmidgsum 21080 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ))))) |
14 | 3simpa 1139 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) | |
15 | 14 | adantr 474 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) |
16 | eqid 2777 | . . . . . . . . . 10 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
17 | 10, 1, 2, 3, 16 | chpmatply1 21044 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ (Base‘𝑃)) |
18 | 11, 17 | syl5eqel 2862 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐾 ∈ (Base‘𝑃)) |
19 | eqid 2777 | . . . . . . . . 9 ⊢ (coe1‘𝐾) = (coe1‘𝐾) | |
20 | eqid 2777 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
21 | 19, 16, 3, 20 | coe1fvalcl 19978 | . . . . . . . 8 ⊢ ((𝐾 ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) → ((coe1‘𝐾)‘𝑛) ∈ (Base‘𝑅)) |
22 | 18, 21 | sylan 575 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((coe1‘𝐾)‘𝑛) ∈ (Base‘𝑅)) |
23 | crngring 18945 | . . . . . . . . . . 11 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
24 | 23 | anim2i 610 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
25 | 1 | matring 20653 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
26 | cpmidgsumm2pm.o | . . . . . . . . . . 11 ⊢ 𝑂 = (1r‘𝐴) | |
27 | 2, 26 | ringidcl 18955 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Ring → 𝑂 ∈ 𝐵) |
28 | 24, 25, 27 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑂 ∈ 𝐵) |
29 | 28 | 3adant3 1123 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑂 ∈ 𝐵) |
30 | 29 | adantr 474 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑂 ∈ 𝐵) |
31 | cpmidgsumm2pm.t | . . . . . . . 8 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
32 | eqid 2777 | . . . . . . . 8 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
33 | cpmidgsumm2pm.m | . . . . . . . 8 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
34 | 31, 1, 2, 3, 4, 32, 20, 9, 33, 7 | mat2pmatlin 20947 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (((coe1‘𝐾)‘𝑛) ∈ (Base‘𝑅) ∧ 𝑂 ∈ 𝐵)) → (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)) = ((𝑈‘((coe1‘𝐾)‘𝑛)) · (𝑇‘𝑂))) |
35 | 15, 22, 30, 34 | syl12anc 827 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)) = ((𝑈‘((coe1‘𝐾)‘𝑛)) · (𝑇‘𝑂))) |
36 | 31, 1, 2, 3, 4, 32 | mat2pmatrhm 20946 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingHom 𝑌)) |
37 | 26, 8 | rhm1 19119 | . . . . . . . . 9 ⊢ (𝑇 ∈ (𝐴 RingHom 𝑌) → (𝑇‘𝑂) = 1 ) |
38 | 14, 36, 37 | 3syl 18 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑂) = 1 ) |
39 | 38 | adantr 474 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘𝑂) = 1 ) |
40 | 39 | oveq2d 6938 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑈‘((coe1‘𝐾)‘𝑛)) · (𝑇‘𝑂)) = ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 )) |
41 | 35, 40 | eqtr2d 2814 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ) = (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂))) |
42 | 41 | oveq2d 6938 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 )) = ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))) |
43 | 42 | mpteq2dva 4979 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂))))) |
44 | 43 | oveq2d 6938 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 )))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) |
45 | 13, 44 | eqtrd 2813 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 ↦ cmpt 4965 ‘cfv 6135 (class class class)co 6922 Fincfn 8241 ℕ0cn0 11642 Basecbs 16255 ·𝑠 cvsca 16342 Σg cgsu 16487 .gcmg 17927 mulGrpcmgp 18876 1rcur 18888 Ringcrg 18934 CRingccrg 18935 RingHom crh 19101 algSccascl 19708 var1cv1 19942 Poly1cpl1 19943 coe1cco1 19944 Mat cmat 20617 matToPolyMat cmat2pmat 20916 CharPlyMat cchpmat 21038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-xor 1583 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-ot 4406 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-ofr 7175 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-tpos 7634 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-sup 8636 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-xnn0 11715 df-z 11729 df-dec 11846 df-uz 11993 df-rp 12138 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-word 13600 df-lsw 13653 df-concat 13661 df-s1 13686 df-substr 13731 df-pfx 13780 df-splice 13887 df-reverse 13905 df-s2 13999 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-0g 16488 df-gsum 16489 df-prds 16494 df-pws 16496 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mhm 17721 df-submnd 17722 df-grp 17812 df-minusg 17813 df-sbg 17814 df-mulg 17928 df-subg 17975 df-ghm 18042 df-gim 18085 df-cntz 18133 df-oppg 18159 df-symg 18181 df-pmtr 18245 df-psgn 18294 df-cmn 18581 df-abl 18582 df-mgp 18877 df-ur 18889 df-srg 18893 df-ring 18936 df-cring 18937 df-oppr 19010 df-dvdsr 19028 df-unit 19029 df-invr 19059 df-dvr 19070 df-rnghom 19104 df-drng 19141 df-subrg 19170 df-lmod 19257 df-lss 19325 df-sra 19569 df-rgmod 19570 df-assa 19709 df-ascl 19711 df-psr 19753 df-mvr 19754 df-mpl 19755 df-opsr 19757 df-psr1 19946 df-vr1 19947 df-ply1 19948 df-coe1 19949 df-cnfld 20143 df-zring 20215 df-zrh 20248 df-dsmm 20475 df-frlm 20490 df-mamu 20594 df-mat 20618 df-mdet 20796 df-mat2pmat 20919 df-decpmat 20975 df-chpmat 21039 |
This theorem is referenced by: cpmidpmat 21085 |
Copyright terms: Public domain | W3C validator |