MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crcts Structured version   Visualization version   GIF version

Theorem crcts 29808
Description: The set of circuits (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.)
Assertion
Ref Expression
crcts (Circuits‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem crcts
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 biidd 262 . 2 (𝑔 = 𝐺 → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑝‘0) = (𝑝‘(♯‘𝑓))))
2 df-crcts 29806 . 2 Circuits = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))})
31, 2fvmptopab 7487 1 (Circuits‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540   class class class wbr 5143  {copab 5205  cfv 6561  0cc0 11155  chash 14369  Trailsctrls 29708  Circuitsccrcts 29804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-crcts 29806
This theorem is referenced by:  iscrct  29810
  Copyright terms: Public domain W3C validator