![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscrct | Structured version Visualization version GIF version |
Description: Sufficient and necessary conditions for a pair of functions to be a circuit (in an undirected graph): A pair of function "is" (represents) a circuit iff it is a closed trail. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
iscrct | ⊢ (𝐹(Circuits‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crcts 28974 | . 2 ⊢ (Circuits‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} | |
2 | fveq1 6878 | . . . 4 ⊢ (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0)) | |
3 | 2 | adantl 482 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘0) = (𝑃‘0)) |
4 | simpr 485 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
5 | fveq2 6879 | . . . . 5 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
6 | 5 | adantr 481 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (♯‘𝑓) = (♯‘𝐹)) |
7 | 4, 6 | fveq12d 6886 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘(♯‘𝑓)) = (𝑃‘(♯‘𝐹))) |
8 | 3, 7 | eqeq12d 2748 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
9 | reltrls 28880 | . 2 ⊢ Rel (Trails‘𝐺) | |
10 | 1, 8, 9 | brfvopabrbr 6982 | 1 ⊢ (𝐹(Circuits‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 class class class wbr 5142 ‘cfv 6533 0cc0 11094 ♯chash 14274 Trailsctrls 28876 Circuitsccrcts 28970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5293 ax-nul 5300 ax-pr 5421 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6485 df-fun 6535 df-fv 6541 df-trls 28878 df-crcts 28972 |
This theorem is referenced by: crctprop 28978 cycliscrct 28985 crctcsh 29007 0crct 29315 eupth2eucrct 29399 |
Copyright terms: Public domain | W3C validator |