![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscrct | Structured version Visualization version GIF version |
Description: Sufficient and necessary conditions for a pair of functions to be a circuit (in an undirected graph): A pair of function "is" (represents) a circuit iff it is a closed trail. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
iscrct | ⊢ (𝐹(Circuits‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crcts 29821 | . 2 ⊢ (Circuits‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} | |
2 | fveq1 6906 | . . . 4 ⊢ (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0)) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘0) = (𝑃‘0)) |
4 | simpr 484 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
5 | fveq2 6907 | . . . . 5 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (♯‘𝑓) = (♯‘𝐹)) |
7 | 4, 6 | fveq12d 6914 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘(♯‘𝑓)) = (𝑃‘(♯‘𝐹))) |
8 | 3, 7 | eqeq12d 2751 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
9 | reltrls 29727 | . 2 ⊢ Rel (Trails‘𝐺) | |
10 | 1, 8, 9 | brfvopabrbr 7013 | 1 ⊢ (𝐹(Circuits‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 class class class wbr 5148 ‘cfv 6563 0cc0 11153 ♯chash 14366 Trailsctrls 29723 Circuitsccrcts 29817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-trls 29725 df-crcts 29819 |
This theorem is referenced by: crctprop 29825 cycliscrct 29832 crctcsh 29854 0crct 30162 eupth2eucrct 30246 |
Copyright terms: Public domain | W3C validator |