MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycls Structured version   Visualization version   GIF version

Theorem cycls 29692
Description: The set of cycles (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.)
Assertion
Ref Expression
cycls (Cycles‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem cycls
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 biidd 262 . 2 (𝑔 = 𝐺 → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑝‘0) = (𝑝‘(♯‘𝑓))))
2 df-cycls 29690 . 2 Cycles = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Paths‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))})
31, 2fvmptopab 7424 1 (Cycles‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540   class class class wbr 5102  {copab 5164  cfv 6499  0cc0 11044  chash 14271  Pathscpths 29613  Cyclesccycls 29688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-cycls 29690
This theorem is referenced by:  iscycl  29694
  Copyright terms: Public domain W3C validator