MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovrcl Structured version   Visualization version   GIF version

Theorem ovrcl 7449
Description: Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovrcl (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem ovrcl
StepHypRef Expression
1 n0i 4333 . 2 (𝐶 ∈ (𝐴𝐹𝐵) → ¬ (𝐴𝐹𝐵) = ∅)
2 ovprc1.1 . . 3 Rel dom 𝐹
32ovprc 7446 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
41, 3nsyl2 141 1 (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  c0 4322  dom cdm 5676  Rel wrel 5681  (class class class)co 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-dm 5686  df-iota 6495  df-fv 6551  df-ov 7411
This theorem is referenced by:  ghmquskerco  32524  smatrcl  32771
  Copyright terms: Public domain W3C validator