MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovrcl Structured version   Visualization version   GIF version

Theorem ovrcl 7399
Description: Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovrcl (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem ovrcl
StepHypRef Expression
1 n0i 4294 . 2 (𝐶 ∈ (𝐴𝐹𝐵) → ¬ (𝐴𝐹𝐵) = ∅)
2 ovprc1.1 . . 3 Rel dom 𝐹
32ovprc 7396 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
41, 3nsyl2 141 1 (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3446  c0 4283  dom cdm 5634  Rel wrel 5639  (class class class)co 7358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-xp 5640  df-rel 5641  df-dm 5644  df-iota 6449  df-fv 6505  df-ov 7361
This theorem is referenced by:  ghmquskerco  32199  smatrcl  32380
  Copyright terms: Public domain W3C validator