![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovrcl | Structured version Visualization version GIF version |
Description: Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovrcl | ⊢ (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4346 | . 2 ⊢ (𝐶 ∈ (𝐴𝐹𝐵) → ¬ (𝐴𝐹𝐵) = ∅) | |
2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
3 | 2 | ovprc 7469 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
4 | 1, 3 | nsyl2 141 | 1 ⊢ (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 dom cdm 5689 Rel wrel 5694 (class class class)co 7431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-dm 5699 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: ghmquskerco 19315 smatrcl 33757 grimprop 47807 grimuhgr 47816 grimcnv 47817 grimco 47818 uhgrimisgrgric 47837 grlimprop 47887 grlimprop2 47889 |
Copyright terms: Public domain | W3C validator |