MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovrcl Structured version   Visualization version   GIF version

Theorem ovrcl 7410
Description: Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovrcl (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem ovrcl
StepHypRef Expression
1 n0i 4299 . 2 (𝐶 ∈ (𝐴𝐹𝐵) → ¬ (𝐴𝐹𝐵) = ∅)
2 ovprc1.1 . . 3 Rel dom 𝐹
32ovprc 7407 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
41, 3nsyl2 141 1 (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  dom cdm 5631  Rel wrel 5636  (class class class)co 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-dm 5641  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by:  ghmquskerco  19198  smatrcl  33779  grimprop  47876  grimuhgr  47880  grimcnv  47881  grimco  47882  uhgrimisgrgric  47924  grlimprop  47976  grlimprop2  47978
  Copyright terms: Public domain W3C validator