Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovrcl | Structured version Visualization version GIF version |
Description: Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovrcl | ⊢ (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4234 | . 2 ⊢ (𝐶 ∈ (𝐴𝐹𝐵) → ¬ (𝐴𝐹𝐵) = ∅) | |
2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
3 | 2 | ovprc 7193 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
4 | 1, 3 | nsyl2 143 | 1 ⊢ (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∅c0 4227 dom cdm 5527 Rel wrel 5532 (class class class)co 7155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-ne 2952 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-xp 5533 df-rel 5534 df-dm 5537 df-iota 6298 df-fv 6347 df-ov 7158 |
This theorem is referenced by: smatrcl 31271 |
Copyright terms: Public domain | W3C validator |