| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cytpfn | Structured version Visualization version GIF version | ||
| Description: Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| cytpfn | ⊢ CytP Fn ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7379 | . 2 ⊢ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))) ∈ V | |
| 2 | df-cytp 43239 | . 2 ⊢ CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))))) | |
| 3 | 1, 2 | fnmpti 6624 | 1 ⊢ CytP Fn ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3894 {csn 4573 ↦ cmpt 5170 ◡ccnv 5613 “ cima 5617 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 ℕcn 12125 ↾s cress 17141 Σg cgsu 17344 -gcsg 18848 odcod 19436 mulGrpcmgp 20058 ℂfldccnfld 21291 algSccascl 21789 var1cv1 22088 Poly1cpl1 22089 CytPccytp 43238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-ov 7349 df-cytp 43239 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |