![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cytpfn | Structured version Visualization version GIF version |
Description: Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cytpfn | ⊢ CytP Fn ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7471 | . 2 ⊢ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))) ∈ V | |
2 | df-cytp 43201 | . 2 ⊢ CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))))) | |
3 | 1, 2 | fnmpti 6719 | 1 ⊢ CytP Fn ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3963 {csn 4634 ↦ cmpt 5234 ◡ccnv 5692 “ cima 5696 Fn wfn 6564 ‘cfv 6569 (class class class)co 7438 ℂcc 11160 0cc0 11162 ℕcn 12273 ↾s cress 17283 Σg cgsu 17496 -gcsg 18975 odcod 19566 mulGrpcmgp 20161 ℂfldccnfld 21391 algSccascl 21899 var1cv1 22202 Poly1cpl1 22203 CytPccytp 43200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fn 6572 df-fv 6577 df-ov 7441 df-cytp 43201 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |