Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cytpfn Structured version   Visualization version   GIF version

Theorem cytpfn 41950
Description: Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
cytpfn CytP Fn β„•

Proof of Theorem cytpfn
Dummy variables 𝑛 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7442 . 2 ((mulGrpβ€˜(Poly1β€˜β„‚fld)) Ξ£g (π‘Ÿ ∈ (β—‘(odβ€˜((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))) β€œ {𝑛}) ↦ ((var1β€˜β„‚fld)(-gβ€˜(Poly1β€˜β„‚fld))((algScβ€˜(Poly1β€˜β„‚fld))β€˜π‘Ÿ)))) ∈ V
2 df-cytp 41945 . 2 CytP = (𝑛 ∈ β„• ↦ ((mulGrpβ€˜(Poly1β€˜β„‚fld)) Ξ£g (π‘Ÿ ∈ (β—‘(odβ€˜((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))) β€œ {𝑛}) ↦ ((var1β€˜β„‚fld)(-gβ€˜(Poly1β€˜β„‚fld))((algScβ€˜(Poly1β€˜β„‚fld))β€˜π‘Ÿ)))))
31, 2fnmpti 6694 1 CytP Fn β„•
Colors of variables: wff setvar class
Syntax hints:   βˆ– cdif 3946  {csn 4629   ↦ cmpt 5232  β—‘ccnv 5676   β€œ cima 5680   Fn wfn 6539  β€˜cfv 6544  (class class class)co 7409  β„‚cc 11108  0cc0 11110  β„•cn 12212   β†Ύs cress 17173   Ξ£g cgsu 17386  -gcsg 18821  odcod 19392  mulGrpcmgp 19987  β„‚fldccnfld 20944  algSccascl 21407  var1cv1 21700  Poly1cpl1 21701  CytPccytp 41944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-ov 7412  df-cytp 41945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator