Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cytpfn Structured version   Visualization version   GIF version

Theorem cytpfn 43190
Description: Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
cytpfn CytP Fn ℕ

Proof of Theorem cytpfn
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7420 . 2 ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))) ∈ V
2 df-cytp 43187 . 2 CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))))
31, 2fnmpti 6661 1 CytP Fn ℕ
Colors of variables: wff setvar class
Syntax hints:  cdif 3911  {csn 4589  cmpt 5188  ccnv 5637  cima 5641   Fn wfn 6506  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  cn 12186  s cress 17200   Σg cgsu 17403  -gcsg 18867  odcod 19454  mulGrpcmgp 20049  fldccnfld 21264  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061  CytPccytp 43186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-ov 7390  df-cytp 43187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator