Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cytpfn Structured version   Visualization version   GIF version

Theorem cytpfn 41033
Description: Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
cytpfn CytP Fn ℕ

Proof of Theorem cytpfn
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7308 . 2 ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))) ∈ V
2 df-cytp 41028 . 2 CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))))
31, 2fnmpti 6576 1 CytP Fn ℕ
Colors of variables: wff setvar class
Syntax hints:  cdif 3884  {csn 4561  cmpt 5157  ccnv 5588  cima 5592   Fn wfn 6428  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  cn 11973  s cress 16941   Σg cgsu 17151  -gcsg 18579  odcod 19132  mulGrpcmgp 19720  fldccnfld 20597  algSccascl 21059  var1cv1 21347  Poly1cpl1 21348  CytPccytp 41027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-ov 7278  df-cytp 41028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator