| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cytpfn | Structured version Visualization version GIF version | ||
| Description: Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| cytpfn | ⊢ CytP Fn ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7427 | . 2 ⊢ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))) ∈ V | |
| 2 | df-cytp 43159 | . 2 ⊢ CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))))) | |
| 3 | 1, 2 | fnmpti 6669 | 1 ⊢ CytP Fn ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3919 {csn 4597 ↦ cmpt 5196 ◡ccnv 5645 “ cima 5649 Fn wfn 6514 ‘cfv 6519 (class class class)co 7394 ℂcc 11084 0cc0 11086 ℕcn 12197 ↾s cress 17206 Σg cgsu 17409 -gcsg 18873 odcod 19460 mulGrpcmgp 20055 ℂfldccnfld 21270 algSccascl 21767 var1cv1 22066 Poly1cpl1 22067 CytPccytp 43158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fn 6522 df-fv 6527 df-ov 7397 df-cytp 43159 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |