Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cytpfn Structured version   Visualization version   GIF version

Theorem cytpfn 43204
Description: Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
cytpfn CytP Fn ℕ

Proof of Theorem cytpfn
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7471 . 2 ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))) ∈ V
2 df-cytp 43201 . 2 CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))))
31, 2fnmpti 6719 1 CytP Fn ℕ
Colors of variables: wff setvar class
Syntax hints:  cdif 3963  {csn 4634  cmpt 5234  ccnv 5692  cima 5696   Fn wfn 6564  cfv 6569  (class class class)co 7438  cc 11160  0cc0 11162  cn 12273  s cress 17283   Σg cgsu 17496  -gcsg 18975  odcod 19566  mulGrpcmgp 20161  fldccnfld 21391  algSccascl 21899  var1cv1 22202  Poly1cpl1 22203  CytPccytp 43200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fn 6572  df-fv 6577  df-ov 7441  df-cytp 43201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator