| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cytpfn | Structured version Visualization version GIF version | ||
| Description: Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| cytpfn | ⊢ CytP Fn ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7402 | . 2 ⊢ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))) ∈ V | |
| 2 | df-cytp 43160 | . 2 ⊢ CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))))) | |
| 3 | 1, 2 | fnmpti 6643 | 1 ⊢ CytP Fn ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3908 {csn 4585 ↦ cmpt 5183 ◡ccnv 5630 “ cima 5634 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 ℕcn 12162 ↾s cress 17176 Σg cgsu 17379 -gcsg 18843 odcod 19430 mulGrpcmgp 20025 ℂfldccnfld 21240 algSccascl 21737 var1cv1 22036 Poly1cpl1 22037 CytPccytp 43159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 df-ov 7372 df-cytp 43160 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |