| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cytpfn | Structured version Visualization version GIF version | ||
| Description: Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| cytpfn | ⊢ CytP Fn ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7445 | . 2 ⊢ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))) ∈ V | |
| 2 | df-cytp 43148 | . 2 ⊢ CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))))) | |
| 3 | 1, 2 | fnmpti 6690 | 1 ⊢ CytP Fn ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3928 {csn 4606 ↦ cmpt 5205 ◡ccnv 5664 “ cima 5668 Fn wfn 6535 ‘cfv 6540 (class class class)co 7412 ℂcc 11134 0cc0 11136 ℕcn 12247 ↾s cress 17251 Σg cgsu 17455 -gcsg 18921 odcod 19509 mulGrpcmgp 20104 ℂfldccnfld 21325 algSccascl 21825 var1cv1 22124 Poly1cpl1 22125 CytPccytp 43147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6493 df-fun 6542 df-fn 6543 df-fv 6548 df-ov 7415 df-cytp 43148 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |