Step | Hyp | Ref
| Expression |
1 | | deg1mhm.p |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝑅) |
2 | 1 | ply1domn 25021 |
. . . . 5
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) |
3 | | deg1mhm.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑃) |
4 | | deg1mhm.z |
. . . . . . 7
⊢ 0 =
(0g‘𝑃) |
5 | | eqid 2737 |
. . . . . . 7
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
6 | 3, 4, 5 | isdomn3 40732 |
. . . . . 6
⊢ (𝑃 ∈ Domn ↔ (𝑃 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃)))) |
7 | 6 | simprbi 500 |
. . . . 5
⊢ (𝑃 ∈ Domn → (𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃))) |
8 | 2, 7 | syl 17 |
. . . 4
⊢ (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃))) |
9 | | deg1mhm.y |
. . . . 5
⊢ 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 })) |
10 | 9 | submmnd 18240 |
. . . 4
⊢ ((𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃)) → 𝑌 ∈ Mnd) |
11 | 8, 10 | syl 17 |
. . 3
⊢ (𝑅 ∈ Domn → 𝑌 ∈ Mnd) |
12 | | nn0subm 20418 |
. . . 4
⊢
ℕ0 ∈
(SubMnd‘ℂfld) |
13 | | deg1mhm.n |
. . . . 5
⊢ 𝑁 = (ℂfld
↾s ℕ0) |
14 | 13 | submmnd 18240 |
. . . 4
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
𝑁 ∈
Mnd) |
15 | 12, 14 | mp1i 13 |
. . 3
⊢ (𝑅 ∈ Domn → 𝑁 ∈ Mnd) |
16 | 11, 15 | jca 515 |
. 2
⊢ (𝑅 ∈ Domn → (𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd)) |
17 | | deg1mhm.d |
. . . . . . . 8
⊢ 𝐷 = ( deg1
‘𝑅) |
18 | 17, 1, 3 | deg1xrf 24979 |
. . . . . . 7
⊢ 𝐷:𝐵⟶ℝ* |
19 | | ffn 6545 |
. . . . . . 7
⊢ (𝐷:𝐵⟶ℝ* → 𝐷 Fn 𝐵) |
20 | 18, 19 | ax-mp 5 |
. . . . . 6
⊢ 𝐷 Fn 𝐵 |
21 | | difss 4046 |
. . . . . 6
⊢ (𝐵 ∖ { 0 }) ⊆ 𝐵 |
22 | | fnssres 6500 |
. . . . . 6
⊢ ((𝐷 Fn 𝐵 ∧ (𝐵 ∖ { 0 }) ⊆ 𝐵) → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 })) |
23 | 20, 21, 22 | mp2an 692 |
. . . . 5
⊢ (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }) |
24 | 23 | a1i 11 |
. . . 4
⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 })) |
25 | | fvres 6736 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷‘𝑥)) |
26 | 25 | adantl 485 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷‘𝑥)) |
27 | | domnring 20334 |
. . . . . . . 8
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
28 | 27 | adantr 484 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring) |
29 | | eldifi 4041 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐵) |
30 | 29 | adantl 485 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ 𝐵) |
31 | | eldifsni 4703 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ≠ 0 ) |
32 | 31 | adantl 485 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ≠ 0 ) |
33 | 17, 1, 4, 3 | deg1nn0cl 24986 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → (𝐷‘𝑥) ∈
ℕ0) |
34 | 28, 30, 32, 33 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐷‘𝑥) ∈
ℕ0) |
35 | 26, 34 | eqeltrd 2838 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈
ℕ0) |
36 | 35 | ralrimiva 3105 |
. . . 4
⊢ (𝑅 ∈ Domn →
∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈
ℕ0) |
37 | | ffnfv 6935 |
. . . 4
⊢ ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0
})⟶ℕ0 ↔ ((𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈
ℕ0)) |
38 | 24, 36, 37 | sylanbrc 586 |
. . 3
⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0
})⟶ℕ0) |
39 | | eqid 2737 |
. . . . . 6
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
40 | | eqid 2737 |
. . . . . 6
⊢
(.r‘𝑃) = (.r‘𝑃) |
41 | 27 | adantr 484 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Ring) |
42 | 29 | ad2antrl 728 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥 ∈ 𝐵) |
43 | 31 | ad2antrl 728 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥 ≠ 0 ) |
44 | | simpl 486 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Domn) |
45 | | eqid 2737 |
. . . . . . . 8
⊢
(coe1‘𝑥) = (coe1‘𝑥) |
46 | 17, 1, 4, 3, 39, 45 | deg1ldgdomn 24992 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) →
((coe1‘𝑥)‘(𝐷‘𝑥)) ∈ (RLReg‘𝑅)) |
47 | 44, 42, 43, 46 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) →
((coe1‘𝑥)‘(𝐷‘𝑥)) ∈ (RLReg‘𝑅)) |
48 | | eldifi 4041 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦 ∈ 𝐵) |
49 | 48 | ad2antll 729 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦 ∈ 𝐵) |
50 | | eldifsni 4703 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦 ≠ 0 ) |
51 | 50 | ad2antll 729 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦 ≠ 0 ) |
52 | 17, 1, 39, 3, 40, 4, 41, 42, 43, 47, 49, 51 | deg1mul2 25012 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝐷‘(𝑥(.r‘𝑃)𝑦)) = ((𝐷‘𝑥) + (𝐷‘𝑦))) |
53 | | domnring 20334 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Domn → 𝑃 ∈ Ring) |
54 | 2, 53 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Ring) |
55 | 54 | adantr 484 |
. . . . . . . 8
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Ring) |
56 | 3, 40 | ringcl 19579 |
. . . . . . . 8
⊢ ((𝑃 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝑃)𝑦) ∈ 𝐵) |
57 | 55, 42, 49, 56 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r‘𝑃)𝑦) ∈ 𝐵) |
58 | 2 | adantr 484 |
. . . . . . . 8
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Domn) |
59 | 3, 40, 4 | domnmuln0 20336 |
. . . . . . . 8
⊢ ((𝑃 ∈ Domn ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥(.r‘𝑃)𝑦) ≠ 0 ) |
60 | 58, 42, 43, 49, 51, 59 | syl122anc 1381 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r‘𝑃)𝑦) ≠ 0 ) |
61 | | eldifsn 4700 |
. . . . . . 7
⊢ ((𝑥(.r‘𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r‘𝑃)𝑦) ∈ 𝐵 ∧ (𝑥(.r‘𝑃)𝑦) ≠ 0 )) |
62 | 57, 60, 61 | sylanbrc 586 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r‘𝑃)𝑦) ∈ (𝐵 ∖ { 0 })) |
63 | | fvres 6736 |
. . . . . 6
⊢ ((𝑥(.r‘𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (𝐷‘(𝑥(.r‘𝑃)𝑦))) |
64 | 62, 63 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (𝐷‘(𝑥(.r‘𝑃)𝑦))) |
65 | | fvres 6736 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦) = (𝐷‘𝑦)) |
66 | 25, 65 | oveqan12d 7232 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷‘𝑥) + (𝐷‘𝑦))) |
67 | 66 | adantl 485 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷‘𝑥) + (𝐷‘𝑦))) |
68 | 52, 64, 67 | 3eqtr4d 2787 |
. . . 4
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦))) |
69 | 68 | ralrimivva 3112 |
. . 3
⊢ (𝑅 ∈ Domn →
∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦))) |
70 | | eqid 2737 |
. . . . . . . 8
⊢
(1r‘𝑃) = (1r‘𝑃) |
71 | 3, 70 | ringidcl 19586 |
. . . . . . 7
⊢ (𝑃 ∈ Ring →
(1r‘𝑃)
∈ 𝐵) |
72 | 54, 71 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ Domn →
(1r‘𝑃)
∈ 𝐵) |
73 | | domnnzr 20333 |
. . . . . . 7
⊢ (𝑃 ∈ Domn → 𝑃 ∈ NzRing) |
74 | 70, 4 | nzrnz 20298 |
. . . . . . 7
⊢ (𝑃 ∈ NzRing →
(1r‘𝑃)
≠ 0
) |
75 | 2, 73, 74 | 3syl 18 |
. . . . . 6
⊢ (𝑅 ∈ Domn →
(1r‘𝑃)
≠ 0
) |
76 | | eldifsn 4700 |
. . . . . 6
⊢
((1r‘𝑃) ∈ (𝐵 ∖ { 0 }) ↔
((1r‘𝑃)
∈ 𝐵 ∧
(1r‘𝑃)
≠ 0
)) |
77 | 72, 75, 76 | sylanbrc 586 |
. . . . 5
⊢ (𝑅 ∈ Domn →
(1r‘𝑃)
∈ (𝐵 ∖ { 0
})) |
78 | | fvres 6736 |
. . . . 5
⊢
((1r‘𝑃) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(1r‘𝑃)) = (𝐷‘(1r‘𝑃))) |
79 | 77, 78 | syl 17 |
. . . 4
⊢ (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(1r‘𝑃)) = (𝐷‘(1r‘𝑃))) |
80 | 5, 70 | ringidval 19518 |
. . . . . . 7
⊢
(1r‘𝑃) = (0g‘(mulGrp‘𝑃)) |
81 | 9, 80 | subm0 18242 |
. . . . . 6
⊢ ((𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃)) → (1r‘𝑃) = (0g‘𝑌)) |
82 | 8, 81 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ Domn →
(1r‘𝑃) =
(0g‘𝑌)) |
83 | 82 | fveq2d 6721 |
. . . 4
⊢ (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(1r‘𝑃)) = ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(0g‘𝑌))) |
84 | | domnnzr 20333 |
. . . . 5
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
85 | | eqid 2737 |
. . . . . . 7
⊢
(Monic1p‘𝑅) = (Monic1p‘𝑅) |
86 | 1, 70, 85, 17 | mon1pid 40733 |
. . . . . 6
⊢ (𝑅 ∈ NzRing →
((1r‘𝑃)
∈ (Monic1p‘𝑅) ∧ (𝐷‘(1r‘𝑃)) = 0)) |
87 | 86 | simprd 499 |
. . . . 5
⊢ (𝑅 ∈ NzRing → (𝐷‘(1r‘𝑃)) = 0) |
88 | 84, 87 | syl 17 |
. . . 4
⊢ (𝑅 ∈ Domn → (𝐷‘(1r‘𝑃)) = 0) |
89 | 79, 83, 88 | 3eqtr3d 2785 |
. . 3
⊢ (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(0g‘𝑌)) = 0) |
90 | 38, 69, 89 | 3jca 1130 |
. 2
⊢ (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0
})⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(0g‘𝑌)) = 0)) |
91 | 5, 3 | mgpbas 19510 |
. . . . 5
⊢ 𝐵 =
(Base‘(mulGrp‘𝑃)) |
92 | 9, 91 | ressbas2 16791 |
. . . 4
⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝑌)) |
93 | 21, 92 | ax-mp 5 |
. . 3
⊢ (𝐵 ∖ { 0 }) = (Base‘𝑌) |
94 | | nn0sscn 12095 |
. . . 4
⊢
ℕ0 ⊆ ℂ |
95 | | cnfldbas 20367 |
. . . . 5
⊢ ℂ =
(Base‘ℂfld) |
96 | 13, 95 | ressbas2 16791 |
. . . 4
⊢
(ℕ0 ⊆ ℂ → ℕ0 =
(Base‘𝑁)) |
97 | 94, 96 | ax-mp 5 |
. . 3
⊢
ℕ0 = (Base‘𝑁) |
98 | 3 | fvexi 6731 |
. . . . 5
⊢ 𝐵 ∈ V |
99 | | difexg 5220 |
. . . . 5
⊢ (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈
V) |
100 | 98, 99 | ax-mp 5 |
. . . 4
⊢ (𝐵 ∖ { 0 }) ∈
V |
101 | 5, 40 | mgpplusg 19508 |
. . . . 5
⊢
(.r‘𝑃) = (+g‘(mulGrp‘𝑃)) |
102 | 9, 101 | ressplusg 16834 |
. . . 4
⊢ ((𝐵 ∖ { 0 }) ∈ V →
(.r‘𝑃) =
(+g‘𝑌)) |
103 | 100, 102 | ax-mp 5 |
. . 3
⊢
(.r‘𝑃) = (+g‘𝑌) |
104 | | nn0ex 12096 |
. . . 4
⊢
ℕ0 ∈ V |
105 | | cnfldadd 20368 |
. . . . 5
⊢ + =
(+g‘ℂfld) |
106 | 13, 105 | ressplusg 16834 |
. . . 4
⊢
(ℕ0 ∈ V → + = (+g‘𝑁)) |
107 | 104, 106 | ax-mp 5 |
. . 3
⊢ + =
(+g‘𝑁) |
108 | | eqid 2737 |
. . 3
⊢
(0g‘𝑌) = (0g‘𝑌) |
109 | | cnfld0 20387 |
. . . . 5
⊢ 0 =
(0g‘ℂfld) |
110 | 13, 109 | subm0 18242 |
. . . 4
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
0 = (0g‘𝑁)) |
111 | 12, 110 | ax-mp 5 |
. . 3
⊢ 0 =
(0g‘𝑁) |
112 | 93, 97, 103, 107, 108, 111 | ismhm 18220 |
. 2
⊢ ((𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁) ↔ ((𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0
})⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(0g‘𝑌)) = 0))) |
113 | 16, 90, 112 | sylanbrc 586 |
1
⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁)) |