Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deg1mhm Structured version   Visualization version   GIF version

Theorem deg1mhm 39814
Description: Homomorphic property of the polynomial degree. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
deg1mhm.d 𝐷 = ( deg1𝑅)
deg1mhm.b 𝐵 = (Base‘𝑃)
deg1mhm.p 𝑃 = (Poly1𝑅)
deg1mhm.z 0 = (0g𝑃)
deg1mhm.y 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 }))
deg1mhm.n 𝑁 = (ℂflds0)
Assertion
Ref Expression
deg1mhm (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁))

Proof of Theorem deg1mhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1mhm.p . . . . . 6 𝑃 = (Poly1𝑅)
21ply1domn 24719 . . . . 5 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
3 deg1mhm.b . . . . . . 7 𝐵 = (Base‘𝑃)
4 deg1mhm.z . . . . . . 7 0 = (0g𝑃)
5 eqid 2823 . . . . . . 7 (mulGrp‘𝑃) = (mulGrp‘𝑃)
63, 4, 5isdomn3 39811 . . . . . 6 (𝑃 ∈ Domn ↔ (𝑃 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃))))
76simprbi 499 . . . . 5 (𝑃 ∈ Domn → (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)))
82, 7syl 17 . . . 4 (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)))
9 deg1mhm.y . . . . 5 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 }))
109submmnd 17980 . . . 4 ((𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)) → 𝑌 ∈ Mnd)
118, 10syl 17 . . 3 (𝑅 ∈ Domn → 𝑌 ∈ Mnd)
12 nn0subm 20602 . . . 4 0 ∈ (SubMnd‘ℂfld)
13 deg1mhm.n . . . . 5 𝑁 = (ℂflds0)
1413submmnd 17980 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 𝑁 ∈ Mnd)
1512, 14mp1i 13 . . 3 (𝑅 ∈ Domn → 𝑁 ∈ Mnd)
1611, 15jca 514 . 2 (𝑅 ∈ Domn → (𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd))
17 deg1mhm.d . . . . . . . 8 𝐷 = ( deg1𝑅)
1817, 1, 3deg1xrf 24677 . . . . . . 7 𝐷:𝐵⟶ℝ*
19 ffn 6516 . . . . . . 7 (𝐷:𝐵⟶ℝ*𝐷 Fn 𝐵)
2018, 19ax-mp 5 . . . . . 6 𝐷 Fn 𝐵
21 difss 4110 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
22 fnssres 6472 . . . . . 6 ((𝐷 Fn 𝐵 ∧ (𝐵 ∖ { 0 }) ⊆ 𝐵) → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }))
2320, 21, 22mp2an 690 . . . . 5 (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 })
2423a1i 11 . . . 4 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }))
25 fvres 6691 . . . . . . 7 (𝑥 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷𝑥))
2625adantl 484 . . . . . 6 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷𝑥))
27 domnring 20071 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2827adantr 483 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring)
29 eldifi 4105 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
3029adantl 484 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
31 eldifsni 4724 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
3231adantl 484 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥0 )
3317, 1, 4, 3deg1nn0cl 24684 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑥0 ) → (𝐷𝑥) ∈ ℕ0)
3428, 30, 32, 33syl3anc 1367 . . . . . 6 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐷𝑥) ∈ ℕ0)
3526, 34eqeltrd 2915 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0)
3635ralrimiva 3184 . . . 4 (𝑅 ∈ Domn → ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0)
37 ffnfv 6884 . . . 4 ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ↔ ((𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0))
3824, 36, 37sylanbrc 585 . . 3 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0)
39 eqid 2823 . . . . . 6 (RLReg‘𝑅) = (RLReg‘𝑅)
40 eqid 2823 . . . . . 6 (.r𝑃) = (.r𝑃)
4127adantr 483 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Ring)
4229ad2antrl 726 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥𝐵)
4331ad2antrl 726 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥0 )
44 simpl 485 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Domn)
45 eqid 2823 . . . . . . . 8 (coe1𝑥) = (coe1𝑥)
4617, 1, 4, 3, 39, 45deg1ldgdomn 24690 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥𝐵𝑥0 ) → ((coe1𝑥)‘(𝐷𝑥)) ∈ (RLReg‘𝑅))
4744, 42, 43, 46syl3anc 1367 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((coe1𝑥)‘(𝐷𝑥)) ∈ (RLReg‘𝑅))
48 eldifi 4105 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
4948ad2antll 727 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦𝐵)
50 eldifsni 4724 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦0 )
5150ad2antll 727 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦0 )
5217, 1, 39, 3, 40, 4, 41, 42, 43, 47, 49, 51deg1mul2 24710 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝐷‘(𝑥(.r𝑃)𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
53 domnring 20071 . . . . . . . . . 10 (𝑃 ∈ Domn → 𝑃 ∈ Ring)
542, 53syl 17 . . . . . . . . 9 (𝑅 ∈ Domn → 𝑃 ∈ Ring)
5554adantr 483 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Ring)
563, 40ringcl 19313 . . . . . . . 8 ((𝑃 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
5755, 42, 49, 56syl3anc 1367 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
582adantr 483 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Domn)
593, 40, 4domnmuln0 20073 . . . . . . . 8 ((𝑃 ∈ Domn ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥(.r𝑃)𝑦) ≠ 0 )
6058, 42, 43, 49, 51, 59syl122anc 1375 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ≠ 0 )
61 eldifsn 4721 . . . . . . 7 ((𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r𝑃)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑃)𝑦) ≠ 0 ))
6257, 60, 61sylanbrc 585 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }))
63 fvres 6691 . . . . . 6 ((𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (𝐷‘(𝑥(.r𝑃)𝑦)))
6462, 63syl 17 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (𝐷‘(𝑥(.r𝑃)𝑦)))
65 fvres 6691 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦) = (𝐷𝑦))
6625, 65oveqan12d 7177 . . . . . 6 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
6766adantl 484 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
6852, 64, 673eqtr4d 2868 . . . 4 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)))
6968ralrimivva 3193 . . 3 (𝑅 ∈ Domn → ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)))
70 eqid 2823 . . . . . . . 8 (1r𝑃) = (1r𝑃)
713, 70ringidcl 19320 . . . . . . 7 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝐵)
7254, 71syl 17 . . . . . 6 (𝑅 ∈ Domn → (1r𝑃) ∈ 𝐵)
73 domnnzr 20070 . . . . . . 7 (𝑃 ∈ Domn → 𝑃 ∈ NzRing)
7470, 4nzrnz 20035 . . . . . . 7 (𝑃 ∈ NzRing → (1r𝑃) ≠ 0 )
752, 73, 743syl 18 . . . . . 6 (𝑅 ∈ Domn → (1r𝑃) ≠ 0 )
76 eldifsn 4721 . . . . . 6 ((1r𝑃) ∈ (𝐵 ∖ { 0 }) ↔ ((1r𝑃) ∈ 𝐵 ∧ (1r𝑃) ≠ 0 ))
7772, 75, 76sylanbrc 585 . . . . 5 (𝑅 ∈ Domn → (1r𝑃) ∈ (𝐵 ∖ { 0 }))
78 fvres 6691 . . . . 5 ((1r𝑃) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = (𝐷‘(1r𝑃)))
7977, 78syl 17 . . . 4 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = (𝐷‘(1r𝑃)))
805, 70ringidval 19255 . . . . . . 7 (1r𝑃) = (0g‘(mulGrp‘𝑃))
819, 80subm0 17982 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)) → (1r𝑃) = (0g𝑌))
828, 81syl 17 . . . . 5 (𝑅 ∈ Domn → (1r𝑃) = (0g𝑌))
8382fveq2d 6676 . . . 4 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)))
84 domnnzr 20070 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
85 eqid 2823 . . . . . . 7 (Monic1p𝑅) = (Monic1p𝑅)
861, 70, 85, 17mon1pid 39812 . . . . . 6 (𝑅 ∈ NzRing → ((1r𝑃) ∈ (Monic1p𝑅) ∧ (𝐷‘(1r𝑃)) = 0))
8786simprd 498 . . . . 5 (𝑅 ∈ NzRing → (𝐷‘(1r𝑃)) = 0)
8884, 87syl 17 . . . 4 (𝑅 ∈ Domn → (𝐷‘(1r𝑃)) = 0)
8979, 83, 883eqtr3d 2866 . . 3 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0)
9038, 69, 893jca 1124 . 2 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0))
915, 3mgpbas 19247 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑃))
929, 91ressbas2 16557 . . . 4 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝑌))
9321, 92ax-mp 5 . . 3 (𝐵 ∖ { 0 }) = (Base‘𝑌)
94 nn0sscn 11905 . . . 4 0 ⊆ ℂ
95 cnfldbas 20551 . . . . 5 ℂ = (Base‘ℂfld)
9613, 95ressbas2 16557 . . . 4 (ℕ0 ⊆ ℂ → ℕ0 = (Base‘𝑁))
9794, 96ax-mp 5 . . 3 0 = (Base‘𝑁)
983fvexi 6686 . . . . 5 𝐵 ∈ V
99 difexg 5233 . . . . 5 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
10098, 99ax-mp 5 . . . 4 (𝐵 ∖ { 0 }) ∈ V
1015, 40mgpplusg 19245 . . . . 5 (.r𝑃) = (+g‘(mulGrp‘𝑃))
1029, 101ressplusg 16614 . . . 4 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑃) = (+g𝑌))
103100, 102ax-mp 5 . . 3 (.r𝑃) = (+g𝑌)
104 nn0ex 11906 . . . 4 0 ∈ V
105 cnfldadd 20552 . . . . 5 + = (+g‘ℂfld)
10613, 105ressplusg 16614 . . . 4 (ℕ0 ∈ V → + = (+g𝑁))
107104, 106ax-mp 5 . . 3 + = (+g𝑁)
108 eqid 2823 . . 3 (0g𝑌) = (0g𝑌)
109 cnfld0 20571 . . . . 5 0 = (0g‘ℂfld)
11013, 109subm0 17982 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g𝑁))
11112, 110ax-mp 5 . . 3 0 = (0g𝑁)
11293, 97, 103, 107, 108, 111ismhm 17960 . 2 ((𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁) ↔ ((𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0)))
11316, 90, 112sylanbrc 585 1 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  cdif 3935  wss 3938  {csn 4569  cres 5559   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539   + caddc 10542  *cxr 10676  0cn0 11900  Basecbs 16485  s cress 16486  +gcplusg 16567  .rcmulr 16568  0gc0g 16715  Mndcmnd 17913   MndHom cmhm 17956  SubMndcsubmnd 17957  mulGrpcmgp 19241  1rcur 19253  Ringcrg 19299  NzRingcnzr 20032  RLRegcrlreg 20054  Domncdomn 20055  Poly1cpl1 20347  coe1cco1 20348  fldccnfld 20547   deg1 cdg1 24650  Monic1pcmn1 24721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-subrg 19535  df-lmod 19638  df-lss 19706  df-nzr 20033  df-rlreg 20058  df-domn 20059  df-ascl 20089  df-psr 20138  df-mvr 20139  df-mpl 20140  df-opsr 20142  df-psr1 20350  df-vr1 20351  df-ply1 20352  df-coe1 20353  df-cnfld 20548  df-mdeg 24651  df-deg1 24652  df-mon1 24726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator