| Step | Hyp | Ref
| Expression |
| 1 | | deg1mhm.p |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝑅) |
| 2 | 1 | ply1domn 26086 |
. . . . 5
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) |
| 3 | | deg1mhm.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑃) |
| 4 | | deg1mhm.z |
. . . . . . 7
⊢ 0 =
(0g‘𝑃) |
| 5 | | eqid 2736 |
. . . . . . 7
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
| 6 | 3, 4, 5 | isdomn3 20680 |
. . . . . 6
⊢ (𝑃 ∈ Domn ↔ (𝑃 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃)))) |
| 7 | 6 | simprbi 496 |
. . . . 5
⊢ (𝑃 ∈ Domn → (𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃))) |
| 8 | 2, 7 | syl 17 |
. . . 4
⊢ (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃))) |
| 9 | | deg1mhm.y |
. . . . 5
⊢ 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 })) |
| 10 | 9 | submmnd 18796 |
. . . 4
⊢ ((𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃)) → 𝑌 ∈ Mnd) |
| 11 | 8, 10 | syl 17 |
. . 3
⊢ (𝑅 ∈ Domn → 𝑌 ∈ Mnd) |
| 12 | | nn0subm 21395 |
. . . 4
⊢
ℕ0 ∈
(SubMnd‘ℂfld) |
| 13 | | deg1mhm.n |
. . . . 5
⊢ 𝑁 = (ℂfld
↾s ℕ0) |
| 14 | 13 | submmnd 18796 |
. . . 4
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
𝑁 ∈
Mnd) |
| 15 | 12, 14 | mp1i 13 |
. . 3
⊢ (𝑅 ∈ Domn → 𝑁 ∈ Mnd) |
| 16 | 11, 15 | jca 511 |
. 2
⊢ (𝑅 ∈ Domn → (𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd)) |
| 17 | | deg1mhm.d |
. . . . . . . 8
⊢ 𝐷 = (deg1‘𝑅) |
| 18 | 17, 1, 3 | deg1xrf 26043 |
. . . . . . 7
⊢ 𝐷:𝐵⟶ℝ* |
| 19 | | ffn 6711 |
. . . . . . 7
⊢ (𝐷:𝐵⟶ℝ* → 𝐷 Fn 𝐵) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . 6
⊢ 𝐷 Fn 𝐵 |
| 21 | | difss 4116 |
. . . . . 6
⊢ (𝐵 ∖ { 0 }) ⊆ 𝐵 |
| 22 | | fnssres 6666 |
. . . . . 6
⊢ ((𝐷 Fn 𝐵 ∧ (𝐵 ∖ { 0 }) ⊆ 𝐵) → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 })) |
| 23 | 20, 21, 22 | mp2an 692 |
. . . . 5
⊢ (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }) |
| 24 | 23 | a1i 11 |
. . . 4
⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 })) |
| 25 | | fvres 6900 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷‘𝑥)) |
| 26 | 25 | adantl 481 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷‘𝑥)) |
| 27 | | domnring 20672 |
. . . . . . . 8
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| 28 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring) |
| 29 | | eldifi 4111 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐵) |
| 30 | 29 | adantl 481 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ 𝐵) |
| 31 | | eldifsni 4771 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ≠ 0 ) |
| 32 | 31 | adantl 481 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ≠ 0 ) |
| 33 | 17, 1, 4, 3 | deg1nn0cl 26050 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → (𝐷‘𝑥) ∈
ℕ0) |
| 34 | 28, 30, 32, 33 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐷‘𝑥) ∈
ℕ0) |
| 35 | 26, 34 | eqeltrd 2835 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈
ℕ0) |
| 36 | 35 | ralrimiva 3133 |
. . . 4
⊢ (𝑅 ∈ Domn →
∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈
ℕ0) |
| 37 | | ffnfv 7114 |
. . . 4
⊢ ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0
})⟶ℕ0 ↔ ((𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈
ℕ0)) |
| 38 | 24, 36, 37 | sylanbrc 583 |
. . 3
⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0
})⟶ℕ0) |
| 39 | | eqid 2736 |
. . . . . 6
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
| 40 | | eqid 2736 |
. . . . . 6
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 41 | 27 | adantr 480 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Ring) |
| 42 | 29 | ad2antrl 728 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥 ∈ 𝐵) |
| 43 | 31 | ad2antrl 728 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥 ≠ 0 ) |
| 44 | | simpl 482 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Domn) |
| 45 | | eqid 2736 |
. . . . . . . 8
⊢
(coe1‘𝑥) = (coe1‘𝑥) |
| 46 | 17, 1, 4, 3, 39, 45 | deg1ldgdomn 26056 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) →
((coe1‘𝑥)‘(𝐷‘𝑥)) ∈ (RLReg‘𝑅)) |
| 47 | 44, 42, 43, 46 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) →
((coe1‘𝑥)‘(𝐷‘𝑥)) ∈ (RLReg‘𝑅)) |
| 48 | | eldifi 4111 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦 ∈ 𝐵) |
| 49 | 48 | ad2antll 729 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦 ∈ 𝐵) |
| 50 | | eldifsni 4771 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦 ≠ 0 ) |
| 51 | 50 | ad2antll 729 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦 ≠ 0 ) |
| 52 | 17, 1, 39, 3, 40, 4, 41, 42, 43, 47, 49, 51 | deg1mul2 26076 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝐷‘(𝑥(.r‘𝑃)𝑦)) = ((𝐷‘𝑥) + (𝐷‘𝑦))) |
| 53 | | domnring 20672 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Domn → 𝑃 ∈ Ring) |
| 54 | 2, 53 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Ring) |
| 55 | 54 | adantr 480 |
. . . . . . . 8
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Ring) |
| 56 | 3, 40 | ringcl 20215 |
. . . . . . . 8
⊢ ((𝑃 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝑃)𝑦) ∈ 𝐵) |
| 57 | 55, 42, 49, 56 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r‘𝑃)𝑦) ∈ 𝐵) |
| 58 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Domn) |
| 59 | 3, 40, 4 | domnmuln0 20674 |
. . . . . . . 8
⊢ ((𝑃 ∈ Domn ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥(.r‘𝑃)𝑦) ≠ 0 ) |
| 60 | 58, 42, 43, 49, 51, 59 | syl122anc 1381 |
. . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r‘𝑃)𝑦) ≠ 0 ) |
| 61 | | eldifsn 4767 |
. . . . . . 7
⊢ ((𝑥(.r‘𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r‘𝑃)𝑦) ∈ 𝐵 ∧ (𝑥(.r‘𝑃)𝑦) ≠ 0 )) |
| 62 | 57, 60, 61 | sylanbrc 583 |
. . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r‘𝑃)𝑦) ∈ (𝐵 ∖ { 0 })) |
| 63 | | fvres 6900 |
. . . . . 6
⊢ ((𝑥(.r‘𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (𝐷‘(𝑥(.r‘𝑃)𝑦))) |
| 64 | 62, 63 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (𝐷‘(𝑥(.r‘𝑃)𝑦))) |
| 65 | | fvres 6900 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦) = (𝐷‘𝑦)) |
| 66 | 25, 65 | oveqan12d 7429 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷‘𝑥) + (𝐷‘𝑦))) |
| 67 | 66 | adantl 481 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷‘𝑥) + (𝐷‘𝑦))) |
| 68 | 52, 64, 67 | 3eqtr4d 2781 |
. . . 4
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦))) |
| 69 | 68 | ralrimivva 3188 |
. . 3
⊢ (𝑅 ∈ Domn →
∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦))) |
| 70 | | eqid 2736 |
. . . . . . . 8
⊢
(1r‘𝑃) = (1r‘𝑃) |
| 71 | 3, 70 | ringidcl 20230 |
. . . . . . 7
⊢ (𝑃 ∈ Ring →
(1r‘𝑃)
∈ 𝐵) |
| 72 | 54, 71 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ Domn →
(1r‘𝑃)
∈ 𝐵) |
| 73 | | domnnzr 20671 |
. . . . . . 7
⊢ (𝑃 ∈ Domn → 𝑃 ∈ NzRing) |
| 74 | 70, 4 | nzrnz 20480 |
. . . . . . 7
⊢ (𝑃 ∈ NzRing →
(1r‘𝑃)
≠ 0
) |
| 75 | 2, 73, 74 | 3syl 18 |
. . . . . 6
⊢ (𝑅 ∈ Domn →
(1r‘𝑃)
≠ 0
) |
| 76 | | eldifsn 4767 |
. . . . . 6
⊢
((1r‘𝑃) ∈ (𝐵 ∖ { 0 }) ↔
((1r‘𝑃)
∈ 𝐵 ∧
(1r‘𝑃)
≠ 0
)) |
| 77 | 72, 75, 76 | sylanbrc 583 |
. . . . 5
⊢ (𝑅 ∈ Domn →
(1r‘𝑃)
∈ (𝐵 ∖ { 0
})) |
| 78 | | fvres 6900 |
. . . . 5
⊢
((1r‘𝑃) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(1r‘𝑃)) = (𝐷‘(1r‘𝑃))) |
| 79 | 77, 78 | syl 17 |
. . . 4
⊢ (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(1r‘𝑃)) = (𝐷‘(1r‘𝑃))) |
| 80 | 5, 70 | ringidval 20148 |
. . . . . . 7
⊢
(1r‘𝑃) = (0g‘(mulGrp‘𝑃)) |
| 81 | 9, 80 | subm0 18798 |
. . . . . 6
⊢ ((𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃)) → (1r‘𝑃) = (0g‘𝑌)) |
| 82 | 8, 81 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ Domn →
(1r‘𝑃) =
(0g‘𝑌)) |
| 83 | 82 | fveq2d 6885 |
. . . 4
⊢ (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(1r‘𝑃)) = ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(0g‘𝑌))) |
| 84 | | domnnzr 20671 |
. . . . 5
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| 85 | | eqid 2736 |
. . . . . . 7
⊢
(Monic1p‘𝑅) = (Monic1p‘𝑅) |
| 86 | 1, 70, 85, 17 | mon1pid 26116 |
. . . . . 6
⊢ (𝑅 ∈ NzRing →
((1r‘𝑃)
∈ (Monic1p‘𝑅) ∧ (𝐷‘(1r‘𝑃)) = 0)) |
| 87 | 86 | simprd 495 |
. . . . 5
⊢ (𝑅 ∈ NzRing → (𝐷‘(1r‘𝑃)) = 0) |
| 88 | 84, 87 | syl 17 |
. . . 4
⊢ (𝑅 ∈ Domn → (𝐷‘(1r‘𝑃)) = 0) |
| 89 | 79, 83, 88 | 3eqtr3d 2779 |
. . 3
⊢ (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(0g‘𝑌)) = 0) |
| 90 | 38, 69, 89 | 3jca 1128 |
. 2
⊢ (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0
})⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(0g‘𝑌)) = 0)) |
| 91 | 5, 3 | mgpbas 20110 |
. . . . 5
⊢ 𝐵 =
(Base‘(mulGrp‘𝑃)) |
| 92 | 9, 91 | ressbas2 17264 |
. . . 4
⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝑌)) |
| 93 | 21, 92 | ax-mp 5 |
. . 3
⊢ (𝐵 ∖ { 0 }) = (Base‘𝑌) |
| 94 | | nn0sscn 12511 |
. . . 4
⊢
ℕ0 ⊆ ℂ |
| 95 | | cnfldbas 21324 |
. . . . 5
⊢ ℂ =
(Base‘ℂfld) |
| 96 | 13, 95 | ressbas2 17264 |
. . . 4
⊢
(ℕ0 ⊆ ℂ → ℕ0 =
(Base‘𝑁)) |
| 97 | 94, 96 | ax-mp 5 |
. . 3
⊢
ℕ0 = (Base‘𝑁) |
| 98 | 3 | fvexi 6895 |
. . . . 5
⊢ 𝐵 ∈ V |
| 99 | | difexg 5304 |
. . . . 5
⊢ (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈
V) |
| 100 | 98, 99 | ax-mp 5 |
. . . 4
⊢ (𝐵 ∖ { 0 }) ∈
V |
| 101 | 5, 40 | mgpplusg 20109 |
. . . . 5
⊢
(.r‘𝑃) = (+g‘(mulGrp‘𝑃)) |
| 102 | 9, 101 | ressplusg 17310 |
. . . 4
⊢ ((𝐵 ∖ { 0 }) ∈ V →
(.r‘𝑃) =
(+g‘𝑌)) |
| 103 | 100, 102 | ax-mp 5 |
. . 3
⊢
(.r‘𝑃) = (+g‘𝑌) |
| 104 | | nn0ex 12512 |
. . . 4
⊢
ℕ0 ∈ V |
| 105 | | cnfldadd 21326 |
. . . . 5
⊢ + =
(+g‘ℂfld) |
| 106 | 13, 105 | ressplusg 17310 |
. . . 4
⊢
(ℕ0 ∈ V → + = (+g‘𝑁)) |
| 107 | 104, 106 | ax-mp 5 |
. . 3
⊢ + =
(+g‘𝑁) |
| 108 | | eqid 2736 |
. . 3
⊢
(0g‘𝑌) = (0g‘𝑌) |
| 109 | | cnfld0 21360 |
. . . . 5
⊢ 0 =
(0g‘ℂfld) |
| 110 | 13, 109 | subm0 18798 |
. . . 4
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
0 = (0g‘𝑁)) |
| 111 | 12, 110 | ax-mp 5 |
. . 3
⊢ 0 =
(0g‘𝑁) |
| 112 | 93, 97, 103, 107, 108, 111 | ismhm 18768 |
. 2
⊢ ((𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁) ↔ ((𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0
})⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(0g‘𝑌)) = 0))) |
| 113 | 16, 90, 112 | sylanbrc 583 |
1
⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁)) |