| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | deg1mhm.p | . . . . . 6
⊢ 𝑃 = (Poly1‘𝑅) | 
| 2 | 1 | ply1domn 26164 | . . . . 5
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) | 
| 3 |  | deg1mhm.b | . . . . . . 7
⊢ 𝐵 = (Base‘𝑃) | 
| 4 |  | deg1mhm.z | . . . . . . 7
⊢  0 =
(0g‘𝑃) | 
| 5 |  | eqid 2736 | . . . . . . 7
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) | 
| 6 | 3, 4, 5 | isdomn3 20716 | . . . . . 6
⊢ (𝑃 ∈ Domn ↔ (𝑃 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃)))) | 
| 7 | 6 | simprbi 496 | . . . . 5
⊢ (𝑃 ∈ Domn → (𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃))) | 
| 8 | 2, 7 | syl 17 | . . . 4
⊢ (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃))) | 
| 9 |  | deg1mhm.y | . . . . 5
⊢ 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 })) | 
| 10 | 9 | submmnd 18827 | . . . 4
⊢ ((𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃)) → 𝑌 ∈ Mnd) | 
| 11 | 8, 10 | syl 17 | . . 3
⊢ (𝑅 ∈ Domn → 𝑌 ∈ Mnd) | 
| 12 |  | nn0subm 21441 | . . . 4
⊢
ℕ0 ∈
(SubMnd‘ℂfld) | 
| 13 |  | deg1mhm.n | . . . . 5
⊢ 𝑁 = (ℂfld
↾s ℕ0) | 
| 14 | 13 | submmnd 18827 | . . . 4
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
𝑁 ∈
Mnd) | 
| 15 | 12, 14 | mp1i 13 | . . 3
⊢ (𝑅 ∈ Domn → 𝑁 ∈ Mnd) | 
| 16 | 11, 15 | jca 511 | . 2
⊢ (𝑅 ∈ Domn → (𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd)) | 
| 17 |  | deg1mhm.d | . . . . . . . 8
⊢ 𝐷 = (deg1‘𝑅) | 
| 18 | 17, 1, 3 | deg1xrf 26121 | . . . . . . 7
⊢ 𝐷:𝐵⟶ℝ* | 
| 19 |  | ffn 6735 | . . . . . . 7
⊢ (𝐷:𝐵⟶ℝ* → 𝐷 Fn 𝐵) | 
| 20 | 18, 19 | ax-mp 5 | . . . . . 6
⊢ 𝐷 Fn 𝐵 | 
| 21 |  | difss 4135 | . . . . . 6
⊢ (𝐵 ∖ { 0 }) ⊆ 𝐵 | 
| 22 |  | fnssres 6690 | . . . . . 6
⊢ ((𝐷 Fn 𝐵 ∧ (𝐵 ∖ { 0 }) ⊆ 𝐵) → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 })) | 
| 23 | 20, 21, 22 | mp2an 692 | . . . . 5
⊢ (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }) | 
| 24 | 23 | a1i 11 | . . . 4
⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 })) | 
| 25 |  | fvres 6924 | . . . . . . 7
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷‘𝑥)) | 
| 26 | 25 | adantl 481 | . . . . . 6
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷‘𝑥)) | 
| 27 |  | domnring 20708 | . . . . . . . 8
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | 
| 28 | 27 | adantr 480 | . . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring) | 
| 29 |  | eldifi 4130 | . . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐵) | 
| 30 | 29 | adantl 481 | . . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ 𝐵) | 
| 31 |  | eldifsni 4789 | . . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ≠ 0 ) | 
| 32 | 31 | adantl 481 | . . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ≠ 0 ) | 
| 33 | 17, 1, 4, 3 | deg1nn0cl 26128 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → (𝐷‘𝑥) ∈
ℕ0) | 
| 34 | 28, 30, 32, 33 | syl3anc 1372 | . . . . . 6
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐷‘𝑥) ∈
ℕ0) | 
| 35 | 26, 34 | eqeltrd 2840 | . . . . 5
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈
ℕ0) | 
| 36 | 35 | ralrimiva 3145 | . . . 4
⊢ (𝑅 ∈ Domn →
∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈
ℕ0) | 
| 37 |  | ffnfv 7138 | . . . 4
⊢ ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0
})⟶ℕ0 ↔ ((𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈
ℕ0)) | 
| 38 | 24, 36, 37 | sylanbrc 583 | . . 3
⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0
})⟶ℕ0) | 
| 39 |  | eqid 2736 | . . . . . 6
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) | 
| 40 |  | eqid 2736 | . . . . . 6
⊢
(.r‘𝑃) = (.r‘𝑃) | 
| 41 | 27 | adantr 480 | . . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Ring) | 
| 42 | 29 | ad2antrl 728 | . . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥 ∈ 𝐵) | 
| 43 | 31 | ad2antrl 728 | . . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥 ≠ 0 ) | 
| 44 |  | simpl 482 | . . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Domn) | 
| 45 |  | eqid 2736 | . . . . . . . 8
⊢
(coe1‘𝑥) = (coe1‘𝑥) | 
| 46 | 17, 1, 4, 3, 39, 45 | deg1ldgdomn 26134 | . . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) →
((coe1‘𝑥)‘(𝐷‘𝑥)) ∈ (RLReg‘𝑅)) | 
| 47 | 44, 42, 43, 46 | syl3anc 1372 | . . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) →
((coe1‘𝑥)‘(𝐷‘𝑥)) ∈ (RLReg‘𝑅)) | 
| 48 |  | eldifi 4130 | . . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦 ∈ 𝐵) | 
| 49 | 48 | ad2antll 729 | . . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦 ∈ 𝐵) | 
| 50 |  | eldifsni 4789 | . . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦 ≠ 0 ) | 
| 51 | 50 | ad2antll 729 | . . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦 ≠ 0 ) | 
| 52 | 17, 1, 39, 3, 40, 4, 41, 42, 43, 47, 49, 51 | deg1mul2 26154 | . . . . 5
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝐷‘(𝑥(.r‘𝑃)𝑦)) = ((𝐷‘𝑥) + (𝐷‘𝑦))) | 
| 53 |  | domnring 20708 | . . . . . . . . . 10
⊢ (𝑃 ∈ Domn → 𝑃 ∈ Ring) | 
| 54 | 2, 53 | syl 17 | . . . . . . . . 9
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Ring) | 
| 55 | 54 | adantr 480 | . . . . . . . 8
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Ring) | 
| 56 | 3, 40 | ringcl 20248 | . . . . . . . 8
⊢ ((𝑃 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝑃)𝑦) ∈ 𝐵) | 
| 57 | 55, 42, 49, 56 | syl3anc 1372 | . . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r‘𝑃)𝑦) ∈ 𝐵) | 
| 58 | 2 | adantr 480 | . . . . . . . 8
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Domn) | 
| 59 | 3, 40, 4 | domnmuln0 20710 | . . . . . . . 8
⊢ ((𝑃 ∈ Domn ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝑥(.r‘𝑃)𝑦) ≠ 0 ) | 
| 60 | 58, 42, 43, 49, 51, 59 | syl122anc 1380 | . . . . . . 7
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r‘𝑃)𝑦) ≠ 0 ) | 
| 61 |  | eldifsn 4785 | . . . . . . 7
⊢ ((𝑥(.r‘𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r‘𝑃)𝑦) ∈ 𝐵 ∧ (𝑥(.r‘𝑃)𝑦) ≠ 0 )) | 
| 62 | 57, 60, 61 | sylanbrc 583 | . . . . . 6
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r‘𝑃)𝑦) ∈ (𝐵 ∖ { 0 })) | 
| 63 |  | fvres 6924 | . . . . . 6
⊢ ((𝑥(.r‘𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (𝐷‘(𝑥(.r‘𝑃)𝑦))) | 
| 64 | 62, 63 | syl 17 | . . . . 5
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (𝐷‘(𝑥(.r‘𝑃)𝑦))) | 
| 65 |  | fvres 6924 | . . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦) = (𝐷‘𝑦)) | 
| 66 | 25, 65 | oveqan12d 7451 | . . . . . 6
⊢ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷‘𝑥) + (𝐷‘𝑦))) | 
| 67 | 66 | adantl 481 | . . . . 5
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷‘𝑥) + (𝐷‘𝑦))) | 
| 68 | 52, 64, 67 | 3eqtr4d 2786 | . . . 4
⊢ ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦))) | 
| 69 | 68 | ralrimivva 3201 | . . 3
⊢ (𝑅 ∈ Domn →
∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦))) | 
| 70 |  | eqid 2736 | . . . . . . . 8
⊢
(1r‘𝑃) = (1r‘𝑃) | 
| 71 | 3, 70 | ringidcl 20263 | . . . . . . 7
⊢ (𝑃 ∈ Ring →
(1r‘𝑃)
∈ 𝐵) | 
| 72 | 54, 71 | syl 17 | . . . . . 6
⊢ (𝑅 ∈ Domn →
(1r‘𝑃)
∈ 𝐵) | 
| 73 |  | domnnzr 20707 | . . . . . . 7
⊢ (𝑃 ∈ Domn → 𝑃 ∈ NzRing) | 
| 74 | 70, 4 | nzrnz 20516 | . . . . . . 7
⊢ (𝑃 ∈ NzRing →
(1r‘𝑃)
≠ 0
) | 
| 75 | 2, 73, 74 | 3syl 18 | . . . . . 6
⊢ (𝑅 ∈ Domn →
(1r‘𝑃)
≠ 0
) | 
| 76 |  | eldifsn 4785 | . . . . . 6
⊢
((1r‘𝑃) ∈ (𝐵 ∖ { 0 }) ↔
((1r‘𝑃)
∈ 𝐵 ∧
(1r‘𝑃)
≠ 0
)) | 
| 77 | 72, 75, 76 | sylanbrc 583 | . . . . 5
⊢ (𝑅 ∈ Domn →
(1r‘𝑃)
∈ (𝐵 ∖ { 0
})) | 
| 78 |  | fvres 6924 | . . . . 5
⊢
((1r‘𝑃) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(1r‘𝑃)) = (𝐷‘(1r‘𝑃))) | 
| 79 | 77, 78 | syl 17 | . . . 4
⊢ (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(1r‘𝑃)) = (𝐷‘(1r‘𝑃))) | 
| 80 | 5, 70 | ringidval 20181 | . . . . . . 7
⊢
(1r‘𝑃) = (0g‘(mulGrp‘𝑃)) | 
| 81 | 9, 80 | subm0 18829 | . . . . . 6
⊢ ((𝐵 ∖ { 0 }) ∈
(SubMnd‘(mulGrp‘𝑃)) → (1r‘𝑃) = (0g‘𝑌)) | 
| 82 | 8, 81 | syl 17 | . . . . 5
⊢ (𝑅 ∈ Domn →
(1r‘𝑃) =
(0g‘𝑌)) | 
| 83 | 82 | fveq2d 6909 | . . . 4
⊢ (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(1r‘𝑃)) = ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(0g‘𝑌))) | 
| 84 |  | domnnzr 20707 | . . . . 5
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | 
| 85 |  | eqid 2736 | . . . . . . 7
⊢
(Monic1p‘𝑅) = (Monic1p‘𝑅) | 
| 86 | 1, 70, 85, 17 | mon1pid 26194 | . . . . . 6
⊢ (𝑅 ∈ NzRing →
((1r‘𝑃)
∈ (Monic1p‘𝑅) ∧ (𝐷‘(1r‘𝑃)) = 0)) | 
| 87 | 86 | simprd 495 | . . . . 5
⊢ (𝑅 ∈ NzRing → (𝐷‘(1r‘𝑃)) = 0) | 
| 88 | 84, 87 | syl 17 | . . . 4
⊢ (𝑅 ∈ Domn → (𝐷‘(1r‘𝑃)) = 0) | 
| 89 | 79, 83, 88 | 3eqtr3d 2784 | . . 3
⊢ (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(0g‘𝑌)) = 0) | 
| 90 | 38, 69, 89 | 3jca 1128 | . 2
⊢ (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0
})⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(0g‘𝑌)) = 0)) | 
| 91 | 5, 3 | mgpbas 20143 | . . . . 5
⊢ 𝐵 =
(Base‘(mulGrp‘𝑃)) | 
| 92 | 9, 91 | ressbas2 17284 | . . . 4
⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝑌)) | 
| 93 | 21, 92 | ax-mp 5 | . . 3
⊢ (𝐵 ∖ { 0 }) = (Base‘𝑌) | 
| 94 |  | nn0sscn 12533 | . . . 4
⊢
ℕ0 ⊆ ℂ | 
| 95 |  | cnfldbas 21369 | . . . . 5
⊢ ℂ =
(Base‘ℂfld) | 
| 96 | 13, 95 | ressbas2 17284 | . . . 4
⊢
(ℕ0 ⊆ ℂ → ℕ0 =
(Base‘𝑁)) | 
| 97 | 94, 96 | ax-mp 5 | . . 3
⊢
ℕ0 = (Base‘𝑁) | 
| 98 | 3 | fvexi 6919 | . . . . 5
⊢ 𝐵 ∈ V | 
| 99 |  | difexg 5328 | . . . . 5
⊢ (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈
V) | 
| 100 | 98, 99 | ax-mp 5 | . . . 4
⊢ (𝐵 ∖ { 0 }) ∈
V | 
| 101 | 5, 40 | mgpplusg 20142 | . . . . 5
⊢
(.r‘𝑃) = (+g‘(mulGrp‘𝑃)) | 
| 102 | 9, 101 | ressplusg 17335 | . . . 4
⊢ ((𝐵 ∖ { 0 }) ∈ V →
(.r‘𝑃) =
(+g‘𝑌)) | 
| 103 | 100, 102 | ax-mp 5 | . . 3
⊢
(.r‘𝑃) = (+g‘𝑌) | 
| 104 |  | nn0ex 12534 | . . . 4
⊢
ℕ0 ∈ V | 
| 105 |  | cnfldadd 21371 | . . . . 5
⊢  + =
(+g‘ℂfld) | 
| 106 | 13, 105 | ressplusg 17335 | . . . 4
⊢
(ℕ0 ∈ V → + = (+g‘𝑁)) | 
| 107 | 104, 106 | ax-mp 5 | . . 3
⊢  + =
(+g‘𝑁) | 
| 108 |  | eqid 2736 | . . 3
⊢
(0g‘𝑌) = (0g‘𝑌) | 
| 109 |  | cnfld0 21406 | . . . . 5
⊢ 0 =
(0g‘ℂfld) | 
| 110 | 13, 109 | subm0 18829 | . . . 4
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
0 = (0g‘𝑁)) | 
| 111 | 12, 110 | ax-mp 5 | . . 3
⊢ 0 =
(0g‘𝑁) | 
| 112 | 93, 97, 103, 107, 108, 111 | ismhm 18799 | . 2
⊢ ((𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁) ↔ ((𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0
})⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r‘𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0
}))‘(0g‘𝑌)) = 0))) | 
| 113 | 16, 90, 112 | sylanbrc 583 | 1
⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁)) |