Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deg1mhm Structured version   Visualization version   GIF version

Theorem deg1mhm 42902
Description: Homomorphic property of the polynomial degree. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
deg1mhm.d 𝐷 = (deg1𝑅)
deg1mhm.b 𝐵 = (Base‘𝑃)
deg1mhm.p 𝑃 = (Poly1𝑅)
deg1mhm.z 0 = (0g𝑃)
deg1mhm.y 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 }))
deg1mhm.n 𝑁 = (ℂflds0)
Assertion
Ref Expression
deg1mhm (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁))

Proof of Theorem deg1mhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1mhm.p . . . . . 6 𝑃 = (Poly1𝑅)
21ply1domn 26148 . . . . 5 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
3 deg1mhm.b . . . . . . 7 𝐵 = (Base‘𝑃)
4 deg1mhm.z . . . . . . 7 0 = (0g𝑃)
5 eqid 2726 . . . . . . 7 (mulGrp‘𝑃) = (mulGrp‘𝑃)
63, 4, 5isdomn3 20689 . . . . . 6 (𝑃 ∈ Domn ↔ (𝑃 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃))))
76simprbi 495 . . . . 5 (𝑃 ∈ Domn → (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)))
82, 7syl 17 . . . 4 (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)))
9 deg1mhm.y . . . . 5 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 }))
109submmnd 18798 . . . 4 ((𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)) → 𝑌 ∈ Mnd)
118, 10syl 17 . . 3 (𝑅 ∈ Domn → 𝑌 ∈ Mnd)
12 nn0subm 21415 . . . 4 0 ∈ (SubMnd‘ℂfld)
13 deg1mhm.n . . . . 5 𝑁 = (ℂflds0)
1413submmnd 18798 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 𝑁 ∈ Mnd)
1512, 14mp1i 13 . . 3 (𝑅 ∈ Domn → 𝑁 ∈ Mnd)
1611, 15jca 510 . 2 (𝑅 ∈ Domn → (𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd))
17 deg1mhm.d . . . . . . . 8 𝐷 = (deg1𝑅)
1817, 1, 3deg1xrf 26105 . . . . . . 7 𝐷:𝐵⟶ℝ*
19 ffn 6720 . . . . . . 7 (𝐷:𝐵⟶ℝ*𝐷 Fn 𝐵)
2018, 19ax-mp 5 . . . . . 6 𝐷 Fn 𝐵
21 difss 4128 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
22 fnssres 6676 . . . . . 6 ((𝐷 Fn 𝐵 ∧ (𝐵 ∖ { 0 }) ⊆ 𝐵) → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }))
2320, 21, 22mp2an 690 . . . . 5 (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 })
2423a1i 11 . . . 4 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }))
25 fvres 6912 . . . . . . 7 (𝑥 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷𝑥))
2625adantl 480 . . . . . 6 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷𝑥))
27 domnring 20681 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2827adantr 479 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring)
29 eldifi 4123 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
3029adantl 480 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
31 eldifsni 4789 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
3231adantl 480 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥0 )
3317, 1, 4, 3deg1nn0cl 26112 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑥0 ) → (𝐷𝑥) ∈ ℕ0)
3428, 30, 32, 33syl3anc 1368 . . . . . 6 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐷𝑥) ∈ ℕ0)
3526, 34eqeltrd 2826 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0)
3635ralrimiva 3136 . . . 4 (𝑅 ∈ Domn → ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0)
37 ffnfv 7125 . . . 4 ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ↔ ((𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0))
3824, 36, 37sylanbrc 581 . . 3 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0)
39 eqid 2726 . . . . . 6 (RLReg‘𝑅) = (RLReg‘𝑅)
40 eqid 2726 . . . . . 6 (.r𝑃) = (.r𝑃)
4127adantr 479 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Ring)
4229ad2antrl 726 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥𝐵)
4331ad2antrl 726 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥0 )
44 simpl 481 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Domn)
45 eqid 2726 . . . . . . . 8 (coe1𝑥) = (coe1𝑥)
4617, 1, 4, 3, 39, 45deg1ldgdomn 26118 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥𝐵𝑥0 ) → ((coe1𝑥)‘(𝐷𝑥)) ∈ (RLReg‘𝑅))
4744, 42, 43, 46syl3anc 1368 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((coe1𝑥)‘(𝐷𝑥)) ∈ (RLReg‘𝑅))
48 eldifi 4123 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
4948ad2antll 727 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦𝐵)
50 eldifsni 4789 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦0 )
5150ad2antll 727 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦0 )
5217, 1, 39, 3, 40, 4, 41, 42, 43, 47, 49, 51deg1mul2 26138 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝐷‘(𝑥(.r𝑃)𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
53 domnring 20681 . . . . . . . . . 10 (𝑃 ∈ Domn → 𝑃 ∈ Ring)
542, 53syl 17 . . . . . . . . 9 (𝑅 ∈ Domn → 𝑃 ∈ Ring)
5554adantr 479 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Ring)
563, 40ringcl 20229 . . . . . . . 8 ((𝑃 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
5755, 42, 49, 56syl3anc 1368 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
582adantr 479 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Domn)
593, 40, 4domnmuln0 20683 . . . . . . . 8 ((𝑃 ∈ Domn ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥(.r𝑃)𝑦) ≠ 0 )
6058, 42, 43, 49, 51, 59syl122anc 1376 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ≠ 0 )
61 eldifsn 4785 . . . . . . 7 ((𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r𝑃)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑃)𝑦) ≠ 0 ))
6257, 60, 61sylanbrc 581 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }))
63 fvres 6912 . . . . . 6 ((𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (𝐷‘(𝑥(.r𝑃)𝑦)))
6462, 63syl 17 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (𝐷‘(𝑥(.r𝑃)𝑦)))
65 fvres 6912 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦) = (𝐷𝑦))
6625, 65oveqan12d 7435 . . . . . 6 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
6766adantl 480 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
6852, 64, 673eqtr4d 2776 . . . 4 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)))
6968ralrimivva 3191 . . 3 (𝑅 ∈ Domn → ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)))
70 eqid 2726 . . . . . . . 8 (1r𝑃) = (1r𝑃)
713, 70ringidcl 20241 . . . . . . 7 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝐵)
7254, 71syl 17 . . . . . 6 (𝑅 ∈ Domn → (1r𝑃) ∈ 𝐵)
73 domnnzr 20680 . . . . . . 7 (𝑃 ∈ Domn → 𝑃 ∈ NzRing)
7470, 4nzrnz 20493 . . . . . . 7 (𝑃 ∈ NzRing → (1r𝑃) ≠ 0 )
752, 73, 743syl 18 . . . . . 6 (𝑅 ∈ Domn → (1r𝑃) ≠ 0 )
76 eldifsn 4785 . . . . . 6 ((1r𝑃) ∈ (𝐵 ∖ { 0 }) ↔ ((1r𝑃) ∈ 𝐵 ∧ (1r𝑃) ≠ 0 ))
7772, 75, 76sylanbrc 581 . . . . 5 (𝑅 ∈ Domn → (1r𝑃) ∈ (𝐵 ∖ { 0 }))
78 fvres 6912 . . . . 5 ((1r𝑃) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = (𝐷‘(1r𝑃)))
7977, 78syl 17 . . . 4 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = (𝐷‘(1r𝑃)))
805, 70ringidval 20162 . . . . . . 7 (1r𝑃) = (0g‘(mulGrp‘𝑃))
819, 80subm0 18800 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)) → (1r𝑃) = (0g𝑌))
828, 81syl 17 . . . . 5 (𝑅 ∈ Domn → (1r𝑃) = (0g𝑌))
8382fveq2d 6897 . . . 4 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)))
84 domnnzr 20680 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
85 eqid 2726 . . . . . . 7 (Monic1p𝑅) = (Monic1p𝑅)
861, 70, 85, 17mon1pid 26178 . . . . . 6 (𝑅 ∈ NzRing → ((1r𝑃) ∈ (Monic1p𝑅) ∧ (𝐷‘(1r𝑃)) = 0))
8786simprd 494 . . . . 5 (𝑅 ∈ NzRing → (𝐷‘(1r𝑃)) = 0)
8884, 87syl 17 . . . 4 (𝑅 ∈ Domn → (𝐷‘(1r𝑃)) = 0)
8979, 83, 883eqtr3d 2774 . . 3 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0)
9038, 69, 893jca 1125 . 2 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0))
915, 3mgpbas 20119 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑃))
929, 91ressbas2 17246 . . . 4 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝑌))
9321, 92ax-mp 5 . . 3 (𝐵 ∖ { 0 }) = (Base‘𝑌)
94 nn0sscn 12523 . . . 4 0 ⊆ ℂ
95 cnfldbas 21343 . . . . 5 ℂ = (Base‘ℂfld)
9613, 95ressbas2 17246 . . . 4 (ℕ0 ⊆ ℂ → ℕ0 = (Base‘𝑁))
9794, 96ax-mp 5 . . 3 0 = (Base‘𝑁)
983fvexi 6907 . . . . 5 𝐵 ∈ V
99 difexg 5326 . . . . 5 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
10098, 99ax-mp 5 . . . 4 (𝐵 ∖ { 0 }) ∈ V
1015, 40mgpplusg 20117 . . . . 5 (.r𝑃) = (+g‘(mulGrp‘𝑃))
1029, 101ressplusg 17299 . . . 4 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑃) = (+g𝑌))
103100, 102ax-mp 5 . . 3 (.r𝑃) = (+g𝑌)
104 nn0ex 12524 . . . 4 0 ∈ V
105 cnfldadd 21345 . . . . 5 + = (+g‘ℂfld)
10613, 105ressplusg 17299 . . . 4 (ℕ0 ∈ V → + = (+g𝑁))
107104, 106ax-mp 5 . . 3 + = (+g𝑁)
108 eqid 2726 . . 3 (0g𝑌) = (0g𝑌)
109 cnfld0 21380 . . . . 5 0 = (0g‘ℂfld)
11013, 109subm0 18800 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g𝑁))
11112, 110ax-mp 5 . . 3 0 = (0g𝑁)
11293, 97, 103, 107, 108, 111ismhm 18770 . 2 ((𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁) ↔ ((𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0)))
11316, 90, 112sylanbrc 581 1 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  Vcvv 3462  cdif 3943  wss 3946  {csn 4623  cres 5676   Fn wfn 6541  wf 6542  cfv 6546  (class class class)co 7416  cc 11147  0cc0 11149   + caddc 11152  *cxr 11288  0cn0 12518  Basecbs 17208  s cress 17237  +gcplusg 17261  .rcmulr 17262  0gc0g 17449  Mndcmnd 18722   MndHom cmhm 18766  SubMndcsubmnd 18767  mulGrpcmgp 20113  1rcur 20160  Ringcrg 20212  NzRingcnzr 20490  RLRegcrlreg 20665  Domncdomn 20666  fldccnfld 21339  Poly1cpl1 22162  coe1cco1 22163  deg1cdg1 26075  Monic1pcmn1 26150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227  ax-addf 11228
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-ofr 7683  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-sup 9478  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-fz 13533  df-fzo 13676  df-seq 14016  df-hash 14343  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-hom 17285  df-cco 17286  df-0g 17451  df-gsum 17452  df-prds 17457  df-pws 17459  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mulg 19058  df-subg 19113  df-ghm 19203  df-cntz 19307  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-cring 20215  df-nzr 20491  df-subrng 20524  df-subrg 20549  df-rlreg 20668  df-domn 20669  df-lmod 20834  df-lss 20905  df-cnfld 21340  df-ascl 21849  df-psr 21902  df-mvr 21903  df-mpl 21904  df-opsr 21906  df-psr1 22165  df-vr1 22166  df-ply1 22167  df-coe1 22168  df-mdeg 26076  df-deg1 26077  df-mon1 26155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator