Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deg1mhm Structured version   Visualization version   GIF version

Theorem deg1mhm 43162
Description: Homomorphic property of the polynomial degree. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
deg1mhm.d 𝐷 = (deg1𝑅)
deg1mhm.b 𝐵 = (Base‘𝑃)
deg1mhm.p 𝑃 = (Poly1𝑅)
deg1mhm.z 0 = (0g𝑃)
deg1mhm.y 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 }))
deg1mhm.n 𝑁 = (ℂflds0)
Assertion
Ref Expression
deg1mhm (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁))

Proof of Theorem deg1mhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1mhm.p . . . . . 6 𝑃 = (Poly1𝑅)
21ply1domn 26005 . . . . 5 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
3 deg1mhm.b . . . . . . 7 𝐵 = (Base‘𝑃)
4 deg1mhm.z . . . . . . 7 0 = (0g𝑃)
5 eqid 2729 . . . . . . 7 (mulGrp‘𝑃) = (mulGrp‘𝑃)
63, 4, 5isdomn3 20600 . . . . . 6 (𝑃 ∈ Domn ↔ (𝑃 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃))))
76simprbi 496 . . . . 5 (𝑃 ∈ Domn → (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)))
82, 7syl 17 . . . 4 (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)))
9 deg1mhm.y . . . . 5 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 }))
109submmnd 18716 . . . 4 ((𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)) → 𝑌 ∈ Mnd)
118, 10syl 17 . . 3 (𝑅 ∈ Domn → 𝑌 ∈ Mnd)
12 nn0subm 21315 . . . 4 0 ∈ (SubMnd‘ℂfld)
13 deg1mhm.n . . . . 5 𝑁 = (ℂflds0)
1413submmnd 18716 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 𝑁 ∈ Mnd)
1512, 14mp1i 13 . . 3 (𝑅 ∈ Domn → 𝑁 ∈ Mnd)
1611, 15jca 511 . 2 (𝑅 ∈ Domn → (𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd))
17 deg1mhm.d . . . . . . . 8 𝐷 = (deg1𝑅)
1817, 1, 3deg1xrf 25962 . . . . . . 7 𝐷:𝐵⟶ℝ*
19 ffn 6670 . . . . . . 7 (𝐷:𝐵⟶ℝ*𝐷 Fn 𝐵)
2018, 19ax-mp 5 . . . . . 6 𝐷 Fn 𝐵
21 difss 4095 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
22 fnssres 6623 . . . . . 6 ((𝐷 Fn 𝐵 ∧ (𝐵 ∖ { 0 }) ⊆ 𝐵) → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }))
2320, 21, 22mp2an 692 . . . . 5 (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 })
2423a1i 11 . . . 4 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }))
25 fvres 6859 . . . . . . 7 (𝑥 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷𝑥))
2625adantl 481 . . . . . 6 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷𝑥))
27 domnring 20592 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2827adantr 480 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring)
29 eldifi 4090 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
3029adantl 481 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
31 eldifsni 4750 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
3231adantl 481 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥0 )
3317, 1, 4, 3deg1nn0cl 25969 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑥0 ) → (𝐷𝑥) ∈ ℕ0)
3428, 30, 32, 33syl3anc 1373 . . . . . 6 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐷𝑥) ∈ ℕ0)
3526, 34eqeltrd 2828 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0)
3635ralrimiva 3125 . . . 4 (𝑅 ∈ Domn → ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0)
37 ffnfv 7073 . . . 4 ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ↔ ((𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0))
3824, 36, 37sylanbrc 583 . . 3 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0)
39 eqid 2729 . . . . . 6 (RLReg‘𝑅) = (RLReg‘𝑅)
40 eqid 2729 . . . . . 6 (.r𝑃) = (.r𝑃)
4127adantr 480 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Ring)
4229ad2antrl 728 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥𝐵)
4331ad2antrl 728 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥0 )
44 simpl 482 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Domn)
45 eqid 2729 . . . . . . . 8 (coe1𝑥) = (coe1𝑥)
4617, 1, 4, 3, 39, 45deg1ldgdomn 25975 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥𝐵𝑥0 ) → ((coe1𝑥)‘(𝐷𝑥)) ∈ (RLReg‘𝑅))
4744, 42, 43, 46syl3anc 1373 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((coe1𝑥)‘(𝐷𝑥)) ∈ (RLReg‘𝑅))
48 eldifi 4090 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
4948ad2antll 729 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦𝐵)
50 eldifsni 4750 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦0 )
5150ad2antll 729 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦0 )
5217, 1, 39, 3, 40, 4, 41, 42, 43, 47, 49, 51deg1mul2 25995 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝐷‘(𝑥(.r𝑃)𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
53 domnring 20592 . . . . . . . . . 10 (𝑃 ∈ Domn → 𝑃 ∈ Ring)
542, 53syl 17 . . . . . . . . 9 (𝑅 ∈ Domn → 𝑃 ∈ Ring)
5554adantr 480 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Ring)
563, 40ringcl 20135 . . . . . . . 8 ((𝑃 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
5755, 42, 49, 56syl3anc 1373 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
582adantr 480 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Domn)
593, 40, 4domnmuln0 20594 . . . . . . . 8 ((𝑃 ∈ Domn ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥(.r𝑃)𝑦) ≠ 0 )
6058, 42, 43, 49, 51, 59syl122anc 1381 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ≠ 0 )
61 eldifsn 4746 . . . . . . 7 ((𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r𝑃)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑃)𝑦) ≠ 0 ))
6257, 60, 61sylanbrc 583 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }))
63 fvres 6859 . . . . . 6 ((𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (𝐷‘(𝑥(.r𝑃)𝑦)))
6462, 63syl 17 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (𝐷‘(𝑥(.r𝑃)𝑦)))
65 fvres 6859 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦) = (𝐷𝑦))
6625, 65oveqan12d 7388 . . . . . 6 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
6766adantl 481 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
6852, 64, 673eqtr4d 2774 . . . 4 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)))
6968ralrimivva 3178 . . 3 (𝑅 ∈ Domn → ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)))
70 eqid 2729 . . . . . . . 8 (1r𝑃) = (1r𝑃)
713, 70ringidcl 20150 . . . . . . 7 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝐵)
7254, 71syl 17 . . . . . 6 (𝑅 ∈ Domn → (1r𝑃) ∈ 𝐵)
73 domnnzr 20591 . . . . . . 7 (𝑃 ∈ Domn → 𝑃 ∈ NzRing)
7470, 4nzrnz 20400 . . . . . . 7 (𝑃 ∈ NzRing → (1r𝑃) ≠ 0 )
752, 73, 743syl 18 . . . . . 6 (𝑅 ∈ Domn → (1r𝑃) ≠ 0 )
76 eldifsn 4746 . . . . . 6 ((1r𝑃) ∈ (𝐵 ∖ { 0 }) ↔ ((1r𝑃) ∈ 𝐵 ∧ (1r𝑃) ≠ 0 ))
7772, 75, 76sylanbrc 583 . . . . 5 (𝑅 ∈ Domn → (1r𝑃) ∈ (𝐵 ∖ { 0 }))
78 fvres 6859 . . . . 5 ((1r𝑃) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = (𝐷‘(1r𝑃)))
7977, 78syl 17 . . . 4 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = (𝐷‘(1r𝑃)))
805, 70ringidval 20068 . . . . . . 7 (1r𝑃) = (0g‘(mulGrp‘𝑃))
819, 80subm0 18718 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)) → (1r𝑃) = (0g𝑌))
828, 81syl 17 . . . . 5 (𝑅 ∈ Domn → (1r𝑃) = (0g𝑌))
8382fveq2d 6844 . . . 4 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)))
84 domnnzr 20591 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
85 eqid 2729 . . . . . . 7 (Monic1p𝑅) = (Monic1p𝑅)
861, 70, 85, 17mon1pid 26035 . . . . . 6 (𝑅 ∈ NzRing → ((1r𝑃) ∈ (Monic1p𝑅) ∧ (𝐷‘(1r𝑃)) = 0))
8786simprd 495 . . . . 5 (𝑅 ∈ NzRing → (𝐷‘(1r𝑃)) = 0)
8884, 87syl 17 . . . 4 (𝑅 ∈ Domn → (𝐷‘(1r𝑃)) = 0)
8979, 83, 883eqtr3d 2772 . . 3 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0)
9038, 69, 893jca 1128 . 2 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0))
915, 3mgpbas 20030 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑃))
929, 91ressbas2 17184 . . . 4 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝑌))
9321, 92ax-mp 5 . . 3 (𝐵 ∖ { 0 }) = (Base‘𝑌)
94 nn0sscn 12423 . . . 4 0 ⊆ ℂ
95 cnfldbas 21244 . . . . 5 ℂ = (Base‘ℂfld)
9613, 95ressbas2 17184 . . . 4 (ℕ0 ⊆ ℂ → ℕ0 = (Base‘𝑁))
9794, 96ax-mp 5 . . 3 0 = (Base‘𝑁)
983fvexi 6854 . . . . 5 𝐵 ∈ V
99 difexg 5279 . . . . 5 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
10098, 99ax-mp 5 . . . 4 (𝐵 ∖ { 0 }) ∈ V
1015, 40mgpplusg 20029 . . . . 5 (.r𝑃) = (+g‘(mulGrp‘𝑃))
1029, 101ressplusg 17230 . . . 4 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑃) = (+g𝑌))
103100, 102ax-mp 5 . . 3 (.r𝑃) = (+g𝑌)
104 nn0ex 12424 . . . 4 0 ∈ V
105 cnfldadd 21246 . . . . 5 + = (+g‘ℂfld)
10613, 105ressplusg 17230 . . . 4 (ℕ0 ∈ V → + = (+g𝑁))
107104, 106ax-mp 5 . . 3 + = (+g𝑁)
108 eqid 2729 . . 3 (0g𝑌) = (0g𝑌)
109 cnfld0 21280 . . . . 5 0 = (0g‘ℂfld)
11013, 109subm0 18718 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g𝑁))
11112, 110ax-mp 5 . . 3 0 = (0g𝑁)
11293, 97, 103, 107, 108, 111ismhm 18688 . 2 ((𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁) ↔ ((𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0)))
11316, 90, 112sylanbrc 583 1 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  cdif 3908  wss 3911  {csn 4585  cres 5633   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044   + caddc 11047  *cxr 11183  0cn0 12418  Basecbs 17155  s cress 17176  +gcplusg 17196  .rcmulr 17197  0gc0g 17378  Mndcmnd 18637   MndHom cmhm 18684  SubMndcsubmnd 18685  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  NzRingcnzr 20397  RLRegcrlreg 20576  Domncdomn 20577  fldccnfld 21240  Poly1cpl1 22037  coe1cco1 22038  deg1cdg1 25935  Monic1pcmn1 26007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-lmod 20744  df-lss 20814  df-cnfld 21241  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-coe1 22043  df-mdeg 25936  df-deg1 25937  df-mon1 26012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator