Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deg1mhm Structured version   Visualization version   GIF version

Theorem deg1mhm 38311
Description: Homomorphic property of the polynomial degree. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
deg1mhm.d 𝐷 = ( deg1𝑅)
deg1mhm.b 𝐵 = (Base‘𝑃)
deg1mhm.p 𝑃 = (Poly1𝑅)
deg1mhm.z 0 = (0g𝑃)
deg1mhm.y 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 }))
deg1mhm.n 𝑁 = (ℂflds0)
Assertion
Ref Expression
deg1mhm (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁))

Proof of Theorem deg1mhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1mhm.p . . . . . 6 𝑃 = (Poly1𝑅)
21ply1domn 24103 . . . . 5 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
3 deg1mhm.b . . . . . . 7 𝐵 = (Base‘𝑃)
4 deg1mhm.z . . . . . . 7 0 = (0g𝑃)
5 eqid 2771 . . . . . . 7 (mulGrp‘𝑃) = (mulGrp‘𝑃)
63, 4, 5isdomn3 38308 . . . . . 6 (𝑃 ∈ Domn ↔ (𝑃 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃))))
76simprbi 484 . . . . 5 (𝑃 ∈ Domn → (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)))
82, 7syl 17 . . . 4 (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)))
9 deg1mhm.y . . . . 5 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 }))
109submmnd 17562 . . . 4 ((𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)) → 𝑌 ∈ Mnd)
118, 10syl 17 . . 3 (𝑅 ∈ Domn → 𝑌 ∈ Mnd)
12 nn0subm 20016 . . . 4 0 ∈ (SubMnd‘ℂfld)
13 deg1mhm.n . . . . 5 𝑁 = (ℂflds0)
1413submmnd 17562 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 𝑁 ∈ Mnd)
1512, 14mp1i 13 . . 3 (𝑅 ∈ Domn → 𝑁 ∈ Mnd)
1611, 15jca 501 . 2 (𝑅 ∈ Domn → (𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd))
17 deg1mhm.d . . . . . . . 8 𝐷 = ( deg1𝑅)
1817, 1, 3deg1xrf 24061 . . . . . . 7 𝐷:𝐵⟶ℝ*
19 ffn 6185 . . . . . . 7 (𝐷:𝐵⟶ℝ*𝐷 Fn 𝐵)
2018, 19ax-mp 5 . . . . . 6 𝐷 Fn 𝐵
21 difss 3888 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
22 fnssres 6144 . . . . . 6 ((𝐷 Fn 𝐵 ∧ (𝐵 ∖ { 0 }) ⊆ 𝐵) → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }))
2320, 21, 22mp2an 672 . . . . 5 (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 })
2423a1i 11 . . . 4 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }))
25 fvres 6348 . . . . . . 7 (𝑥 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷𝑥))
2625adantl 467 . . . . . 6 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷𝑥))
27 domnring 19511 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2827adantr 466 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring)
29 eldifi 3883 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
3029adantl 467 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
31 eldifsni 4457 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
3231adantl 467 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥0 )
3317, 1, 4, 3deg1nn0cl 24068 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑥0 ) → (𝐷𝑥) ∈ ℕ0)
3428, 30, 32, 33syl3anc 1476 . . . . . 6 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐷𝑥) ∈ ℕ0)
3526, 34eqeltrd 2850 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0)
3635ralrimiva 3115 . . . 4 (𝑅 ∈ Domn → ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0)
37 ffnfv 6530 . . . 4 ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ↔ ((𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0))
3824, 36, 37sylanbrc 572 . . 3 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0)
39 eqid 2771 . . . . . 6 (RLReg‘𝑅) = (RLReg‘𝑅)
40 eqid 2771 . . . . . 6 (.r𝑃) = (.r𝑃)
4127adantr 466 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Ring)
4229ad2antrl 707 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥𝐵)
4331ad2antrl 707 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥0 )
44 simpl 468 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Domn)
45 eqid 2771 . . . . . . . 8 (coe1𝑥) = (coe1𝑥)
4617, 1, 4, 3, 39, 45deg1ldgdomn 24074 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥𝐵𝑥0 ) → ((coe1𝑥)‘(𝐷𝑥)) ∈ (RLReg‘𝑅))
4744, 42, 43, 46syl3anc 1476 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((coe1𝑥)‘(𝐷𝑥)) ∈ (RLReg‘𝑅))
48 eldifi 3883 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
4948ad2antll 708 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦𝐵)
50 eldifsni 4457 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦0 )
5150ad2antll 708 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦0 )
5217, 1, 39, 3, 40, 4, 41, 42, 43, 47, 49, 51deg1mul2 24094 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝐷‘(𝑥(.r𝑃)𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
53 domnring 19511 . . . . . . . . . 10 (𝑃 ∈ Domn → 𝑃 ∈ Ring)
542, 53syl 17 . . . . . . . . 9 (𝑅 ∈ Domn → 𝑃 ∈ Ring)
5554adantr 466 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Ring)
563, 40ringcl 18769 . . . . . . . 8 ((𝑃 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
5755, 42, 49, 56syl3anc 1476 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
582adantr 466 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Domn)
593, 40, 4domnmuln0 19513 . . . . . . . 8 ((𝑃 ∈ Domn ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥(.r𝑃)𝑦) ≠ 0 )
6058, 42, 43, 49, 51, 59syl122anc 1485 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ≠ 0 )
61 eldifsn 4453 . . . . . . 7 ((𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r𝑃)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑃)𝑦) ≠ 0 ))
6257, 60, 61sylanbrc 572 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }))
63 fvres 6348 . . . . . 6 ((𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (𝐷‘(𝑥(.r𝑃)𝑦)))
6462, 63syl 17 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (𝐷‘(𝑥(.r𝑃)𝑦)))
65 fvres 6348 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦) = (𝐷𝑦))
6625, 65oveqan12d 6812 . . . . . 6 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
6766adantl 467 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
6852, 64, 673eqtr4d 2815 . . . 4 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)))
6968ralrimivva 3120 . . 3 (𝑅 ∈ Domn → ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)))
70 eqid 2771 . . . . . . . 8 (1r𝑃) = (1r𝑃)
713, 70ringidcl 18776 . . . . . . 7 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝐵)
7254, 71syl 17 . . . . . 6 (𝑅 ∈ Domn → (1r𝑃) ∈ 𝐵)
73 domnnzr 19510 . . . . . . 7 (𝑃 ∈ Domn → 𝑃 ∈ NzRing)
7470, 4nzrnz 19475 . . . . . . 7 (𝑃 ∈ NzRing → (1r𝑃) ≠ 0 )
752, 73, 743syl 18 . . . . . 6 (𝑅 ∈ Domn → (1r𝑃) ≠ 0 )
76 eldifsn 4453 . . . . . 6 ((1r𝑃) ∈ (𝐵 ∖ { 0 }) ↔ ((1r𝑃) ∈ 𝐵 ∧ (1r𝑃) ≠ 0 ))
7772, 75, 76sylanbrc 572 . . . . 5 (𝑅 ∈ Domn → (1r𝑃) ∈ (𝐵 ∖ { 0 }))
78 fvres 6348 . . . . 5 ((1r𝑃) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = (𝐷‘(1r𝑃)))
7977, 78syl 17 . . . 4 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = (𝐷‘(1r𝑃)))
805, 70ringidval 18711 . . . . . . 7 (1r𝑃) = (0g‘(mulGrp‘𝑃))
819, 80subm0 17564 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)) → (1r𝑃) = (0g𝑌))
828, 81syl 17 . . . . 5 (𝑅 ∈ Domn → (1r𝑃) = (0g𝑌))
8382fveq2d 6336 . . . 4 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)))
84 domnnzr 19510 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
85 eqid 2771 . . . . . . 7 (Monic1p𝑅) = (Monic1p𝑅)
861, 70, 85, 17mon1pid 38309 . . . . . 6 (𝑅 ∈ NzRing → ((1r𝑃) ∈ (Monic1p𝑅) ∧ (𝐷‘(1r𝑃)) = 0))
8786simprd 483 . . . . 5 (𝑅 ∈ NzRing → (𝐷‘(1r𝑃)) = 0)
8884, 87syl 17 . . . 4 (𝑅 ∈ Domn → (𝐷‘(1r𝑃)) = 0)
8979, 83, 883eqtr3d 2813 . . 3 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0)
9038, 69, 893jca 1122 . 2 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0))
915, 3mgpbas 18703 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑃))
929, 91ressbas2 16138 . . . 4 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝑌))
9321, 92ax-mp 5 . . 3 (𝐵 ∖ { 0 }) = (Base‘𝑌)
94 nn0sscn 11499 . . . 4 0 ⊆ ℂ
95 cnfldbas 19965 . . . . 5 ℂ = (Base‘ℂfld)
9613, 95ressbas2 16138 . . . 4 (ℕ0 ⊆ ℂ → ℕ0 = (Base‘𝑁))
9794, 96ax-mp 5 . . 3 0 = (Base‘𝑁)
98 fvex 6342 . . . . . 6 (Base‘𝑃) ∈ V
993, 98eqeltri 2846 . . . . 5 𝐵 ∈ V
100 difexg 4942 . . . . 5 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
10199, 100ax-mp 5 . . . 4 (𝐵 ∖ { 0 }) ∈ V
1025, 40mgpplusg 18701 . . . . 5 (.r𝑃) = (+g‘(mulGrp‘𝑃))
1039, 102ressplusg 16201 . . . 4 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑃) = (+g𝑌))
104101, 103ax-mp 5 . . 3 (.r𝑃) = (+g𝑌)
105 nn0ex 11500 . . . 4 0 ∈ V
106 cnfldadd 19966 . . . . 5 + = (+g‘ℂfld)
10713, 106ressplusg 16201 . . . 4 (ℕ0 ∈ V → + = (+g𝑁))
108105, 107ax-mp 5 . . 3 + = (+g𝑁)
109 eqid 2771 . . 3 (0g𝑌) = (0g𝑌)
110 cnfld0 19985 . . . . 5 0 = (0g‘ℂfld)
11113, 110subm0 17564 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g𝑁))
11212, 111ax-mp 5 . . 3 0 = (0g𝑁)
11393, 97, 104, 108, 109, 112ismhm 17545 . 2 ((𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁) ↔ ((𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0)))
11416, 90, 113sylanbrc 572 1 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  Vcvv 3351  cdif 3720  wss 3723  {csn 4316  cres 5251   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138   + caddc 10141  *cxr 10275  0cn0 11494  Basecbs 16064  s cress 16065  +gcplusg 16149  .rcmulr 16150  0gc0g 16308  Mndcmnd 17502   MndHom cmhm 17541  SubMndcsubmnd 17542  mulGrpcmgp 18697  1rcur 18709  Ringcrg 18755  NzRingcnzr 19472  RLRegcrlreg 19494  Domncdomn 19495  Poly1cpl1 19762  coe1cco1 19763  fldccnfld 19961   deg1 cdg1 24034  Monic1pcmn1 24105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17799  df-ghm 17866  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-subrg 18988  df-lmod 19075  df-lss 19143  df-nzr 19473  df-rlreg 19498  df-domn 19499  df-ascl 19529  df-psr 19571  df-mvr 19572  df-mpl 19573  df-opsr 19575  df-psr1 19765  df-vr1 19766  df-ply1 19767  df-coe1 19768  df-cnfld 19962  df-mdeg 24035  df-deg1 24036  df-mon1 24110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator