Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deg1mhm Structured version   Visualization version   GIF version

Theorem deg1mhm 43217
Description: Homomorphic property of the polynomial degree. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
deg1mhm.d 𝐷 = (deg1𝑅)
deg1mhm.b 𝐵 = (Base‘𝑃)
deg1mhm.p 𝑃 = (Poly1𝑅)
deg1mhm.z 0 = (0g𝑃)
deg1mhm.y 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 }))
deg1mhm.n 𝑁 = (ℂflds0)
Assertion
Ref Expression
deg1mhm (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁))

Proof of Theorem deg1mhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1mhm.p . . . . . 6 𝑃 = (Poly1𝑅)
21ply1domn 26164 . . . . 5 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
3 deg1mhm.b . . . . . . 7 𝐵 = (Base‘𝑃)
4 deg1mhm.z . . . . . . 7 0 = (0g𝑃)
5 eqid 2736 . . . . . . 7 (mulGrp‘𝑃) = (mulGrp‘𝑃)
63, 4, 5isdomn3 20716 . . . . . 6 (𝑃 ∈ Domn ↔ (𝑃 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃))))
76simprbi 496 . . . . 5 (𝑃 ∈ Domn → (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)))
82, 7syl 17 . . . 4 (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)))
9 deg1mhm.y . . . . 5 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 }))
109submmnd 18827 . . . 4 ((𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)) → 𝑌 ∈ Mnd)
118, 10syl 17 . . 3 (𝑅 ∈ Domn → 𝑌 ∈ Mnd)
12 nn0subm 21441 . . . 4 0 ∈ (SubMnd‘ℂfld)
13 deg1mhm.n . . . . 5 𝑁 = (ℂflds0)
1413submmnd 18827 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 𝑁 ∈ Mnd)
1512, 14mp1i 13 . . 3 (𝑅 ∈ Domn → 𝑁 ∈ Mnd)
1611, 15jca 511 . 2 (𝑅 ∈ Domn → (𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd))
17 deg1mhm.d . . . . . . . 8 𝐷 = (deg1𝑅)
1817, 1, 3deg1xrf 26121 . . . . . . 7 𝐷:𝐵⟶ℝ*
19 ffn 6735 . . . . . . 7 (𝐷:𝐵⟶ℝ*𝐷 Fn 𝐵)
2018, 19ax-mp 5 . . . . . 6 𝐷 Fn 𝐵
21 difss 4135 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
22 fnssres 6690 . . . . . 6 ((𝐷 Fn 𝐵 ∧ (𝐵 ∖ { 0 }) ⊆ 𝐵) → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }))
2320, 21, 22mp2an 692 . . . . 5 (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 })
2423a1i 11 . . . 4 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }))
25 fvres 6924 . . . . . . 7 (𝑥 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷𝑥))
2625adantl 481 . . . . . 6 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) = (𝐷𝑥))
27 domnring 20708 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2827adantr 480 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring)
29 eldifi 4130 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
3029adantl 481 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
31 eldifsni 4789 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
3231adantl 481 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥0 )
3317, 1, 4, 3deg1nn0cl 26128 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑥0 ) → (𝐷𝑥) ∈ ℕ0)
3428, 30, 32, 33syl3anc 1372 . . . . . 6 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐷𝑥) ∈ ℕ0)
3526, 34eqeltrd 2840 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0)
3635ralrimiva 3145 . . . 4 (𝑅 ∈ Domn → ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0)
37 ffnfv 7138 . . . 4 ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ↔ ((𝐷 ↾ (𝐵 ∖ { 0 })) Fn (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) ∈ ℕ0))
3824, 36, 37sylanbrc 583 . . 3 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0)
39 eqid 2736 . . . . . 6 (RLReg‘𝑅) = (RLReg‘𝑅)
40 eqid 2736 . . . . . 6 (.r𝑃) = (.r𝑃)
4127adantr 480 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Ring)
4229ad2antrl 728 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥𝐵)
4331ad2antrl 728 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑥0 )
44 simpl 482 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑅 ∈ Domn)
45 eqid 2736 . . . . . . . 8 (coe1𝑥) = (coe1𝑥)
4617, 1, 4, 3, 39, 45deg1ldgdomn 26134 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑥𝐵𝑥0 ) → ((coe1𝑥)‘(𝐷𝑥)) ∈ (RLReg‘𝑅))
4744, 42, 43, 46syl3anc 1372 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((coe1𝑥)‘(𝐷𝑥)) ∈ (RLReg‘𝑅))
48 eldifi 4130 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
4948ad2antll 729 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦𝐵)
50 eldifsni 4789 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦0 )
5150ad2antll 729 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦0 )
5217, 1, 39, 3, 40, 4, 41, 42, 43, 47, 49, 51deg1mul2 26154 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝐷‘(𝑥(.r𝑃)𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
53 domnring 20708 . . . . . . . . . 10 (𝑃 ∈ Domn → 𝑃 ∈ Ring)
542, 53syl 17 . . . . . . . . 9 (𝑅 ∈ Domn → 𝑃 ∈ Ring)
5554adantr 480 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Ring)
563, 40ringcl 20248 . . . . . . . 8 ((𝑃 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
5755, 42, 49, 56syl3anc 1372 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ∈ 𝐵)
582adantr 480 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑃 ∈ Domn)
593, 40, 4domnmuln0 20710 . . . . . . . 8 ((𝑃 ∈ Domn ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥(.r𝑃)𝑦) ≠ 0 )
6058, 42, 43, 49, 51, 59syl122anc 1380 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ≠ 0 )
61 eldifsn 4785 . . . . . . 7 ((𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r𝑃)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑃)𝑦) ≠ 0 ))
6257, 60, 61sylanbrc 583 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }))
63 fvres 6924 . . . . . 6 ((𝑥(.r𝑃)𝑦) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (𝐷‘(𝑥(.r𝑃)𝑦)))
6462, 63syl 17 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (𝐷‘(𝑥(.r𝑃)𝑦)))
65 fvres 6924 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦) = (𝐷𝑦))
6625, 65oveqan12d 7451 . . . . . 6 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
6766adantl 481 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) = ((𝐷𝑥) + (𝐷𝑦)))
6852, 64, 673eqtr4d 2786 . . . 4 ((𝑅 ∈ Domn ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)))
6968ralrimivva 3201 . . 3 (𝑅 ∈ Domn → ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)))
70 eqid 2736 . . . . . . . 8 (1r𝑃) = (1r𝑃)
713, 70ringidcl 20263 . . . . . . 7 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝐵)
7254, 71syl 17 . . . . . 6 (𝑅 ∈ Domn → (1r𝑃) ∈ 𝐵)
73 domnnzr 20707 . . . . . . 7 (𝑃 ∈ Domn → 𝑃 ∈ NzRing)
7470, 4nzrnz 20516 . . . . . . 7 (𝑃 ∈ NzRing → (1r𝑃) ≠ 0 )
752, 73, 743syl 18 . . . . . 6 (𝑅 ∈ Domn → (1r𝑃) ≠ 0 )
76 eldifsn 4785 . . . . . 6 ((1r𝑃) ∈ (𝐵 ∖ { 0 }) ↔ ((1r𝑃) ∈ 𝐵 ∧ (1r𝑃) ≠ 0 ))
7772, 75, 76sylanbrc 583 . . . . 5 (𝑅 ∈ Domn → (1r𝑃) ∈ (𝐵 ∖ { 0 }))
78 fvres 6924 . . . . 5 ((1r𝑃) ∈ (𝐵 ∖ { 0 }) → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = (𝐷‘(1r𝑃)))
7977, 78syl 17 . . . 4 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = (𝐷‘(1r𝑃)))
805, 70ringidval 20181 . . . . . . 7 (1r𝑃) = (0g‘(mulGrp‘𝑃))
819, 80subm0 18829 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ (SubMnd‘(mulGrp‘𝑃)) → (1r𝑃) = (0g𝑌))
828, 81syl 17 . . . . 5 (𝑅 ∈ Domn → (1r𝑃) = (0g𝑌))
8382fveq2d 6909 . . . 4 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(1r𝑃)) = ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)))
84 domnnzr 20707 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
85 eqid 2736 . . . . . . 7 (Monic1p𝑅) = (Monic1p𝑅)
861, 70, 85, 17mon1pid 26194 . . . . . 6 (𝑅 ∈ NzRing → ((1r𝑃) ∈ (Monic1p𝑅) ∧ (𝐷‘(1r𝑃)) = 0))
8786simprd 495 . . . . 5 (𝑅 ∈ NzRing → (𝐷‘(1r𝑃)) = 0)
8884, 87syl 17 . . . 4 (𝑅 ∈ Domn → (𝐷‘(1r𝑃)) = 0)
8979, 83, 883eqtr3d 2784 . . 3 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0)
9038, 69, 893jca 1128 . 2 (𝑅 ∈ Domn → ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0))
915, 3mgpbas 20143 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑃))
929, 91ressbas2 17284 . . . 4 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘𝑌))
9321, 92ax-mp 5 . . 3 (𝐵 ∖ { 0 }) = (Base‘𝑌)
94 nn0sscn 12533 . . . 4 0 ⊆ ℂ
95 cnfldbas 21369 . . . . 5 ℂ = (Base‘ℂfld)
9613, 95ressbas2 17284 . . . 4 (ℕ0 ⊆ ℂ → ℕ0 = (Base‘𝑁))
9794, 96ax-mp 5 . . 3 0 = (Base‘𝑁)
983fvexi 6919 . . . . 5 𝐵 ∈ V
99 difexg 5328 . . . . 5 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
10098, 99ax-mp 5 . . . 4 (𝐵 ∖ { 0 }) ∈ V
1015, 40mgpplusg 20142 . . . . 5 (.r𝑃) = (+g‘(mulGrp‘𝑃))
1029, 101ressplusg 17335 . . . 4 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑃) = (+g𝑌))
103100, 102ax-mp 5 . . 3 (.r𝑃) = (+g𝑌)
104 nn0ex 12534 . . . 4 0 ∈ V
105 cnfldadd 21371 . . . . 5 + = (+g‘ℂfld)
10613, 105ressplusg 17335 . . . 4 (ℕ0 ∈ V → + = (+g𝑁))
107104, 106ax-mp 5 . . 3 + = (+g𝑁)
108 eqid 2736 . . 3 (0g𝑌) = (0g𝑌)
109 cnfld0 21406 . . . . 5 0 = (0g‘ℂfld)
11013, 109subm0 18829 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g𝑁))
11112, 110ax-mp 5 . . 3 0 = (0g𝑁)
11293, 97, 103, 107, 108, 111ismhm 18799 . 2 ((𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁) ↔ ((𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 })):(𝐵 ∖ { 0 })⟶ℕ0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })((𝐷 ↾ (𝐵 ∖ { 0 }))‘(𝑥(.r𝑃)𝑦)) = (((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑥) + ((𝐷 ↾ (𝐵 ∖ { 0 }))‘𝑦)) ∧ ((𝐷 ↾ (𝐵 ∖ { 0 }))‘(0g𝑌)) = 0)))
11316, 90, 112sylanbrc 583 1 (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  Vcvv 3479  cdif 3947  wss 3950  {csn 4625  cres 5686   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156   + caddc 11159  *cxr 11295  0cn0 12528  Basecbs 17248  s cress 17275  +gcplusg 17298  .rcmulr 17299  0gc0g 17485  Mndcmnd 18748   MndHom cmhm 18795  SubMndcsubmnd 18796  mulGrpcmgp 20138  1rcur 20179  Ringcrg 20231  NzRingcnzr 20513  RLRegcrlreg 20692  Domncdomn 20693  fldccnfld 21365  Poly1cpl1 22179  coe1cco1 22180  deg1cdg1 26094  Monic1pcmn1 26166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-nzr 20514  df-subrng 20547  df-subrg 20571  df-rlreg 20695  df-domn 20696  df-lmod 20861  df-lss 20931  df-cnfld 21366  df-ascl 21876  df-psr 21930  df-mvr 21931  df-mpl 21932  df-opsr 21934  df-psr1 22182  df-vr1 22183  df-ply1 22184  df-coe1 22185  df-mdeg 26095  df-deg1 26096  df-mon1 26171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator