MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinon Structured version   Visualization version   GIF version

Theorem iinon 8268
Description: The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iinon ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinon
StepHypRef Expression
1 dfiin3g 5914 . . 3 (∀𝑥𝐴 𝐵 ∈ On → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
21adantr 480 . 2 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
3 eqid 2733 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43rnmptss 7064 . . 3 (∀𝑥𝐴 𝐵 ∈ On → ran (𝑥𝐴𝐵) ⊆ On)
5 dm0rn0 5870 . . . . . 6 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
6 dmmptg 6196 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ On → dom (𝑥𝐴𝐵) = 𝐴)
76eqeq1d 2735 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ On → (dom (𝑥𝐴𝐵) = ∅ ↔ 𝐴 = ∅))
85, 7bitr3id 285 . . . . 5 (∀𝑥𝐴 𝐵 ∈ On → (ran (𝑥𝐴𝐵) = ∅ ↔ 𝐴 = ∅))
98necon3bid 2973 . . . 4 (∀𝑥𝐴 𝐵 ∈ On → (ran (𝑥𝐴𝐵) ≠ ∅ ↔ 𝐴 ≠ ∅))
109biimpar 477 . . 3 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥𝐴𝐵) ≠ ∅)
11 oninton 7736 . . 3 ((ran (𝑥𝐴𝐵) ⊆ On ∧ ran (𝑥𝐴𝐵) ≠ ∅) → ran (𝑥𝐴𝐵) ∈ On)
124, 10, 11syl2an2r 685 . 2 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥𝐴𝐵) ∈ On)
132, 12eqeltrd 2833 1 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wss 3898  c0 4282   cint 4899   ciin 4944  cmpt 5176  dom cdm 5621  ran crn 5622  Oncon0 6313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6316  df-on 6317  df-fun 6490  df-fn 6491  df-f 6492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator