![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinon | Structured version Visualization version GIF version |
Description: The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
iinon | ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin3g 5678 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
2 | 1 | adantr 473 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
3 | eqid 2778 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | rnmptss 6709 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On) |
5 | dm0rn0 5640 | . . . . . 6 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅) | |
6 | dmmptg 5935 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
7 | 6 | eqeq1d 2780 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ 𝐴 = ∅)) |
8 | 5, 7 | syl5bbr 277 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ 𝐴 = ∅)) |
9 | 8 | necon3bid 3011 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅ ↔ 𝐴 ≠ ∅)) |
10 | 9 | biimpar 470 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
11 | oninton 7331 | . . 3 ⊢ ((ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) | |
12 | 4, 10, 11 | syl2an2r 672 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) |
13 | 2, 12 | eqeltrd 2866 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ∀wral 3088 ⊆ wss 3829 ∅c0 4178 ∩ cint 4749 ∩ ciin 4793 ↦ cmpt 5008 dom cdm 5407 ran crn 5408 Oncon0 6029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-ord 6032 df-on 6033 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-fv 6196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |