MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinon Structured version   Visualization version   GIF version

Theorem iinon 8381
Description: The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iinon ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinon
StepHypRef Expression
1 dfiin3g 5978 . . 3 (∀𝑥𝐴 𝐵 ∈ On → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
21adantr 480 . 2 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
3 eqid 2736 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43rnmptss 7142 . . 3 (∀𝑥𝐴 𝐵 ∈ On → ran (𝑥𝐴𝐵) ⊆ On)
5 dm0rn0 5934 . . . . . 6 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
6 dmmptg 6261 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ On → dom (𝑥𝐴𝐵) = 𝐴)
76eqeq1d 2738 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ On → (dom (𝑥𝐴𝐵) = ∅ ↔ 𝐴 = ∅))
85, 7bitr3id 285 . . . . 5 (∀𝑥𝐴 𝐵 ∈ On → (ran (𝑥𝐴𝐵) = ∅ ↔ 𝐴 = ∅))
98necon3bid 2984 . . . 4 (∀𝑥𝐴 𝐵 ∈ On → (ran (𝑥𝐴𝐵) ≠ ∅ ↔ 𝐴 ≠ ∅))
109biimpar 477 . . 3 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥𝐴𝐵) ≠ ∅)
11 oninton 7816 . . 3 ((ran (𝑥𝐴𝐵) ⊆ On ∧ ran (𝑥𝐴𝐵) ≠ ∅) → ran (𝑥𝐴𝐵) ∈ On)
124, 10, 11syl2an2r 685 . 2 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥𝐴𝐵) ∈ On)
132, 12eqeltrd 2840 1 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  wss 3950  c0 4332   cint 4945   ciin 4991  cmpt 5224  dom cdm 5684  ran crn 5685  Oncon0 6383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-fun 6562  df-fn 6563  df-f 6564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator