![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinon | Structured version Visualization version GIF version |
Description: The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
iinon | ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin3g 5962 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
2 | 1 | adantr 481 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
3 | eqid 2732 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | rnmptss 7118 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On) |
5 | dm0rn0 5922 | . . . . . 6 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅) | |
6 | dmmptg 6238 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
7 | 6 | eqeq1d 2734 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ 𝐴 = ∅)) |
8 | 5, 7 | bitr3id 284 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ 𝐴 = ∅)) |
9 | 8 | necon3bid 2985 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅ ↔ 𝐴 ≠ ∅)) |
10 | 9 | biimpar 478 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
11 | oninton 7779 | . . 3 ⊢ ((ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) | |
12 | 4, 10, 11 | syl2an2r 683 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) |
13 | 2, 12 | eqeltrd 2833 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ⊆ wss 3947 ∅c0 4321 ∩ cint 4949 ∩ ciin 4997 ↦ cmpt 5230 dom cdm 5675 ran crn 5676 Oncon0 6361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-fun 6542 df-fn 6543 df-f 6544 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |