![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinon | Structured version Visualization version GIF version |
Description: The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
iinon | ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin3g 5625 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
2 | 1 | adantr 474 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
3 | eqid 2778 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | rnmptss 6656 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On) |
5 | dm0rn0 5587 | . . . . . 6 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅) | |
6 | dmmptg 5886 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
7 | 6 | eqeq1d 2780 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ 𝐴 = ∅)) |
8 | 5, 7 | syl5bbr 277 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ 𝐴 = ∅)) |
9 | 8 | necon3bid 3013 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅ ↔ 𝐴 ≠ ∅)) |
10 | 9 | biimpar 471 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
11 | oninton 7278 | . . 3 ⊢ ((ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) | |
12 | 4, 10, 11 | syl2an2r 675 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) |
13 | 2, 12 | eqeltrd 2859 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∀wral 3090 ⊆ wss 3792 ∅c0 4141 ∩ cint 4710 ∩ ciin 4754 ↦ cmpt 4965 dom cdm 5355 ran crn 5356 Oncon0 5976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |