MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinon Structured version   Visualization version   GIF version

Theorem iinon 8270
Description: The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iinon ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinon
StepHypRef Expression
1 dfiin3g 5914 . . 3 (∀𝑥𝐴 𝐵 ∈ On → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
21adantr 480 . 2 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
3 eqid 2729 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43rnmptss 7061 . . 3 (∀𝑥𝐴 𝐵 ∈ On → ran (𝑥𝐴𝐵) ⊆ On)
5 dm0rn0 5871 . . . . . 6 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
6 dmmptg 6195 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ On → dom (𝑥𝐴𝐵) = 𝐴)
76eqeq1d 2731 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ On → (dom (𝑥𝐴𝐵) = ∅ ↔ 𝐴 = ∅))
85, 7bitr3id 285 . . . . 5 (∀𝑥𝐴 𝐵 ∈ On → (ran (𝑥𝐴𝐵) = ∅ ↔ 𝐴 = ∅))
98necon3bid 2969 . . . 4 (∀𝑥𝐴 𝐵 ∈ On → (ran (𝑥𝐴𝐵) ≠ ∅ ↔ 𝐴 ≠ ∅))
109biimpar 477 . . 3 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥𝐴𝐵) ≠ ∅)
11 oninton 7735 . . 3 ((ran (𝑥𝐴𝐵) ⊆ On ∧ ran (𝑥𝐴𝐵) ≠ ∅) → ran (𝑥𝐴𝐵) ∈ On)
124, 10, 11syl2an2r 685 . 2 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥𝐴𝐵) ∈ On)
132, 12eqeltrd 2828 1 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3905  c0 4286   cint 4899   ciin 4945  cmpt 5176  dom cdm 5623  ran crn 5624  Oncon0 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator