![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinon | Structured version Visualization version GIF version |
Description: The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
iinon | ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin3g 5921 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
2 | 1 | adantr 482 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
3 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | rnmptss 7071 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On) |
5 | dm0rn0 5881 | . . . . . 6 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅) | |
6 | dmmptg 6195 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
7 | 6 | eqeq1d 2735 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ 𝐴 = ∅)) |
8 | 5, 7 | bitr3id 285 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ 𝐴 = ∅)) |
9 | 8 | necon3bid 2985 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅ ↔ 𝐴 ≠ ∅)) |
10 | 9 | biimpar 479 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
11 | oninton 7731 | . . 3 ⊢ ((ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) | |
12 | 4, 10, 11 | syl2an2r 684 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) |
13 | 2, 12 | eqeltrd 2834 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ⊆ wss 3911 ∅c0 4283 ∩ cint 4908 ∩ ciin 4956 ↦ cmpt 5189 dom cdm 5634 ran crn 5635 Oncon0 6318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ord 6321 df-on 6322 df-fun 6499 df-fn 6500 df-f 6501 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |