MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinon Structured version   Visualization version   GIF version

Theorem iinon 8309
Description: The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iinon ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinon
StepHypRef Expression
1 dfiin3g 5932 . . 3 (∀𝑥𝐴 𝐵 ∈ On → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
21adantr 480 . 2 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
3 eqid 2729 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43rnmptss 7095 . . 3 (∀𝑥𝐴 𝐵 ∈ On → ran (𝑥𝐴𝐵) ⊆ On)
5 dm0rn0 5888 . . . . . 6 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
6 dmmptg 6215 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ On → dom (𝑥𝐴𝐵) = 𝐴)
76eqeq1d 2731 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ On → (dom (𝑥𝐴𝐵) = ∅ ↔ 𝐴 = ∅))
85, 7bitr3id 285 . . . . 5 (∀𝑥𝐴 𝐵 ∈ On → (ran (𝑥𝐴𝐵) = ∅ ↔ 𝐴 = ∅))
98necon3bid 2969 . . . 4 (∀𝑥𝐴 𝐵 ∈ On → (ran (𝑥𝐴𝐵) ≠ ∅ ↔ 𝐴 ≠ ∅))
109biimpar 477 . . 3 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥𝐴𝐵) ≠ ∅)
11 oninton 7771 . . 3 ((ran (𝑥𝐴𝐵) ⊆ On ∧ ran (𝑥𝐴𝐵) ≠ ∅) → ran (𝑥𝐴𝐵) ∈ On)
124, 10, 11syl2an2r 685 . 2 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥𝐴𝐵) ∈ On)
132, 12eqeltrd 2828 1 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  c0 4296   cint 4910   ciin 4956  cmpt 5188  dom cdm 5638  ran crn 5639  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator