MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinon Structured version   Visualization version   GIF version

Theorem iinon 7720
Description: The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iinon ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinon
StepHypRef Expression
1 dfiin3g 5625 . . 3 (∀𝑥𝐴 𝐵 ∈ On → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
21adantr 474 . 2 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
3 eqid 2778 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43rnmptss 6656 . . 3 (∀𝑥𝐴 𝐵 ∈ On → ran (𝑥𝐴𝐵) ⊆ On)
5 dm0rn0 5587 . . . . . 6 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
6 dmmptg 5886 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ On → dom (𝑥𝐴𝐵) = 𝐴)
76eqeq1d 2780 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ On → (dom (𝑥𝐴𝐵) = ∅ ↔ 𝐴 = ∅))
85, 7syl5bbr 277 . . . . 5 (∀𝑥𝐴 𝐵 ∈ On → (ran (𝑥𝐴𝐵) = ∅ ↔ 𝐴 = ∅))
98necon3bid 3013 . . . 4 (∀𝑥𝐴 𝐵 ∈ On → (ran (𝑥𝐴𝐵) ≠ ∅ ↔ 𝐴 ≠ ∅))
109biimpar 471 . . 3 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥𝐴𝐵) ≠ ∅)
11 oninton 7278 . . 3 ((ran (𝑥𝐴𝐵) ⊆ On ∧ ran (𝑥𝐴𝐵) ≠ ∅) → ran (𝑥𝐴𝐵) ∈ On)
124, 10, 11syl2an2r 675 . 2 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥𝐴𝐵) ∈ On)
132, 12eqeltrd 2859 1 ((∀𝑥𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  wral 3090  wss 3792  c0 4141   cint 4710   ciin 4754  cmpt 4965  dom cdm 5355  ran crn 5356  Oncon0 5976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-ord 5979  df-on 5980  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator