|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > iinon | Structured version Visualization version GIF version | ||
| Description: The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| iinon | ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfiin3g 5978 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | 
| 3 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | rnmptss 7142 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On) | 
| 5 | dm0rn0 5934 | . . . . . 6 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅) | |
| 6 | dmmptg 6261 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
| 7 | 6 | eqeq1d 2738 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ 𝐴 = ∅)) | 
| 8 | 5, 7 | bitr3id 285 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ 𝐴 = ∅)) | 
| 9 | 8 | necon3bid 2984 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅ ↔ 𝐴 ≠ ∅)) | 
| 10 | 9 | biimpar 477 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) | 
| 11 | oninton 7816 | . . 3 ⊢ ((ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) | |
| 12 | 4, 10, 11 | syl2an2r 685 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) | 
| 13 | 2, 12 | eqeltrd 2840 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ⊆ wss 3950 ∅c0 4332 ∩ cint 4945 ∩ ciin 4991 ↦ cmpt 5224 dom cdm 5684 ran crn 5685 Oncon0 6383 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-fun 6562 df-fn 6563 df-f 6564 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |