Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneifv3 Structured version   Visualization version   GIF version

Theorem ntrneifv3 44046
Description: The value of the neighbors (convergents) expressed in terms of the interior (closure) function. (Contributed by RP, 26-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
ntrnei.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ntrneifv3 (𝜑 → (𝑁𝑋) = {𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠)})
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠   𝑘,𝐼,𝑙,𝑚   𝑁,𝑠   𝑋,𝑙,𝑚,𝑠   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrneifv3
StepHypRef Expression
1 dfin5 3984 . 2 (𝒫 𝐵 ∩ (𝑁𝑋)) = {𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋)}
2 ntrnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
4 ntrnei.r . . . . . . 7 (𝜑𝐼𝐹𝑁)
52, 3, 4ntrneinex 44041 . . . . . 6 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
6 elmapi 8909 . . . . . 6 (𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵)
75, 6syl 17 . . . . 5 (𝜑𝑁:𝐵⟶𝒫 𝒫 𝐵)
8 ntrnei.x . . . . 5 (𝜑𝑋𝐵)
97, 8ffvelcdmd 7121 . . . 4 (𝜑 → (𝑁𝑋) ∈ 𝒫 𝒫 𝐵)
109elpwid 4631 . . 3 (𝜑 → (𝑁𝑋) ⊆ 𝒫 𝐵)
11 sseqin2 4244 . . 3 ((𝑁𝑋) ⊆ 𝒫 𝐵 ↔ (𝒫 𝐵 ∩ (𝑁𝑋)) = (𝑁𝑋))
1210, 11sylib 218 . 2 (𝜑 → (𝒫 𝐵 ∩ (𝑁𝑋)) = (𝑁𝑋))
134adantr 480 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁)
148adantr 480 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑋𝐵)
15 simpr 484 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
162, 3, 13, 14, 15ntrneiel 44045 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑋)))
1716bicomd 223 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑠 ∈ (𝑁𝑋) ↔ 𝑋 ∈ (𝐼𝑠)))
1817rabbidva 3450 . 2 (𝜑 → {𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋)} = {𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠)})
191, 12, 183eqtr3a 2804 1 (𝜑 → (𝑁𝑋) = {𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  wf 6571  cfv 6575  (class class class)co 7450  cmpo 7452  m cmap 8886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-map 8888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator