![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneifv4 | Structured version Visualization version GIF version |
Description: Value of the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
clsneifv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
clsneifv4 | ⊢ (𝜑 → (𝐾‘𝑆) = {𝑥 ∈ 𝐵 ∣ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3984 | . 2 ⊢ (𝐵 ∩ (𝐾‘𝑆)) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐾‘𝑆)} | |
2 | clsnei.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | clsnei.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
4 | clsnei.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
5 | clsnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
6 | clsnei.h | . . . . . . 7 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
7 | clsnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
8 | 2, 3, 4, 5, 6, 7 | clsneikex 44068 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
9 | elmapi 8907 | . . . . . 6 ⊢ (𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾:𝒫 𝐵⟶𝒫 𝐵) |
11 | clsneifv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
12 | 10, 11 | ffvelcdmd 7119 | . . . 4 ⊢ (𝜑 → (𝐾‘𝑆) ∈ 𝒫 𝐵) |
13 | 12 | elpwid 4631 | . . 3 ⊢ (𝜑 → (𝐾‘𝑆) ⊆ 𝐵) |
14 | sseqin2 4244 | . . 3 ⊢ ((𝐾‘𝑆) ⊆ 𝐵 ↔ (𝐵 ∩ (𝐾‘𝑆)) = (𝐾‘𝑆)) | |
15 | 13, 14 | sylib 218 | . 2 ⊢ (𝜑 → (𝐵 ∩ (𝐾‘𝑆)) = (𝐾‘𝑆)) |
16 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐾𝐻𝑁) |
17 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
18 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
19 | 2, 3, 4, 5, 6, 16, 17, 18 | clsneiel1 44070 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐾‘𝑆) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥))) |
20 | 19 | rabbidva 3450 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐾‘𝑆)} = {𝑥 ∈ 𝐵 ∣ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥)}) |
21 | 1, 15, 20 | 3eqtr3a 2804 | 1 ⊢ (𝜑 → (𝐾‘𝑆) = {𝑥 ∈ 𝐵 ∣ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 ↦ cmpt 5249 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |