Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneifv4 Structured version   Visualization version   GIF version

Theorem clsneifv4 44107
Description: Value of the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
clsneifv.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
clsneifv4 (𝜑 → (𝐾𝑆) = {𝑥𝐵 ∣ ¬ (𝐵𝑆) ∈ (𝑁𝑥)})
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑥   𝐵,𝑛,𝑜,𝑝,𝑥   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐾,𝑗,𝑘,𝑙,𝑚,𝑥   𝑛,𝐾,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙   𝑛,𝑁,𝑜,𝑝   𝑆,𝑚,𝑥   𝑆,𝑜   𝜑,𝑖,𝑗,𝑘,𝑙,𝑥   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑥)   𝑃(𝑥,𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑆(𝑖,𝑗,𝑘,𝑛,𝑝,𝑙)   𝐹(𝑥,𝑚)   𝐻(𝑥,𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑥,𝑚)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem clsneifv4
StepHypRef Expression
1 dfin5 3925 . 2 (𝐵 ∩ (𝐾𝑆)) = {𝑥𝐵𝑥 ∈ (𝐾𝑆)}
2 clsnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 clsnei.p . . . . . . 7 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
4 clsnei.d . . . . . . 7 𝐷 = (𝑃𝐵)
5 clsnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
6 clsnei.h . . . . . . 7 𝐻 = (𝐹𝐷)
7 clsnei.r . . . . . . 7 (𝜑𝐾𝐻𝑁)
82, 3, 4, 5, 6, 7clsneikex 44102 . . . . . 6 (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
9 elmapi 8825 . . . . . 6 (𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵)
108, 9syl 17 . . . . 5 (𝜑𝐾:𝒫 𝐵⟶𝒫 𝐵)
11 clsneifv.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
1210, 11ffvelcdmd 7060 . . . 4 (𝜑 → (𝐾𝑆) ∈ 𝒫 𝐵)
1312elpwid 4575 . . 3 (𝜑 → (𝐾𝑆) ⊆ 𝐵)
14 sseqin2 4189 . . 3 ((𝐾𝑆) ⊆ 𝐵 ↔ (𝐵 ∩ (𝐾𝑆)) = (𝐾𝑆))
1513, 14sylib 218 . 2 (𝜑 → (𝐵 ∩ (𝐾𝑆)) = (𝐾𝑆))
167adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝐾𝐻𝑁)
17 simpr 484 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
1811adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝑆 ∈ 𝒫 𝐵)
192, 3, 4, 5, 6, 16, 17, 18clsneiel1 44104 . . 3 ((𝜑𝑥𝐵) → (𝑥 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑥)))
2019rabbidva 3415 . 2 (𝜑 → {𝑥𝐵𝑥 ∈ (𝐾𝑆)} = {𝑥𝐵 ∣ ¬ (𝐵𝑆) ∈ (𝑁𝑥)})
211, 15, 203eqtr3a 2789 1 (𝜑 → (𝐾𝑆) = {𝑥𝐵 ∣ ¬ (𝐵𝑆) ∈ (𝑁𝑥)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cdif 3914  cin 3916  wss 3917  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator