Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneifv4 Structured version   Visualization version   GIF version

Theorem clsneifv4 39967
Description: Value of the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
clsneifv.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
clsneifv4 (𝜑 → (𝐾𝑆) = {𝑥𝐵 ∣ ¬ (𝐵𝑆) ∈ (𝑁𝑥)})
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑥   𝐵,𝑛,𝑜,𝑝,𝑥   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐾,𝑗,𝑘,𝑙,𝑚,𝑥   𝑛,𝐾,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙   𝑛,𝑁,𝑜,𝑝   𝑆,𝑚,𝑥   𝑆,𝑜   𝜑,𝑖,𝑗,𝑘,𝑙,𝑥   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑥)   𝑃(𝑥,𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑆(𝑖,𝑗,𝑘,𝑛,𝑝,𝑙)   𝐹(𝑥,𝑚)   𝐻(𝑥,𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑥,𝑚)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem clsneifv4
StepHypRef Expression
1 dfin5 3873 . 2 (𝐵 ∩ (𝐾𝑆)) = {𝑥𝐵𝑥 ∈ (𝐾𝑆)}
2 clsnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 clsnei.p . . . . . . 7 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
4 clsnei.d . . . . . . 7 𝐷 = (𝑃𝐵)
5 clsnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
6 clsnei.h . . . . . . 7 𝐻 = (𝐹𝐷)
7 clsnei.r . . . . . . 7 (𝜑𝐾𝐻𝑁)
82, 3, 4, 5, 6, 7clsneikex 39962 . . . . . 6 (𝜑𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
9 elmapi 8285 . . . . . 6 (𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵)
108, 9syl 17 . . . . 5 (𝜑𝐾:𝒫 𝐵⟶𝒫 𝐵)
11 clsneifv.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
1210, 11ffvelrnd 6724 . . . 4 (𝜑 → (𝐾𝑆) ∈ 𝒫 𝐵)
1312elpwid 4471 . . 3 (𝜑 → (𝐾𝑆) ⊆ 𝐵)
14 sseqin2 4118 . . 3 ((𝐾𝑆) ⊆ 𝐵 ↔ (𝐵 ∩ (𝐾𝑆)) = (𝐾𝑆))
1513, 14sylib 219 . 2 (𝜑 → (𝐵 ∩ (𝐾𝑆)) = (𝐾𝑆))
167adantr 481 . . . 4 ((𝜑𝑥𝐵) → 𝐾𝐻𝑁)
17 simpr 485 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
1811adantr 481 . . . 4 ((𝜑𝑥𝐵) → 𝑆 ∈ 𝒫 𝐵)
192, 3, 4, 5, 6, 16, 17, 18clsneiel1 39964 . . 3 ((𝜑𝑥𝐵) → (𝑥 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑥)))
2019rabbidva 3426 . 2 (𝜑 → {𝑥𝐵𝑥 ∈ (𝐾𝑆)} = {𝑥𝐵 ∣ ¬ (𝐵𝑆) ∈ (𝑁𝑥)})
211, 15, 203eqtr3a 2857 1 (𝜑 → (𝐾𝑆) = {𝑥𝐵 ∣ ¬ (𝐵𝑆) ∈ (𝑁𝑥)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1525  wcel 2083  {crab 3111  Vcvv 3440  cdif 3862  cin 3864  wss 3865  𝒫 cpw 4459   class class class wbr 4968  cmpt 5047  ccom 5454  wf 6228  cfv 6232  (class class class)co 7023  cmpo 7025  𝑚 cmap 8263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-1st 7552  df-2nd 7553  df-map 8265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator