| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneifv4 | Structured version Visualization version GIF version | ||
| Description: Value of the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021.) |
| Ref | Expression |
|---|---|
| clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
| clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
| clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
| clsneifv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| clsneifv4 | ⊢ (𝜑 → (𝐾‘𝑆) = {𝑥 ∈ 𝐵 ∣ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin5 3934 | . 2 ⊢ (𝐵 ∩ (𝐾‘𝑆)) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐾‘𝑆)} | |
| 2 | clsnei.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 3 | clsnei.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
| 4 | clsnei.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 5 | clsnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 6 | clsnei.h | . . . . . . 7 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
| 7 | clsnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
| 8 | 2, 3, 4, 5, 6, 7 | clsneikex 44130 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 9 | elmapi 8863 | . . . . . 6 ⊢ (𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾:𝒫 𝐵⟶𝒫 𝐵) |
| 11 | clsneifv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 12 | 10, 11 | ffvelcdmd 7075 | . . . 4 ⊢ (𝜑 → (𝐾‘𝑆) ∈ 𝒫 𝐵) |
| 13 | 12 | elpwid 4584 | . . 3 ⊢ (𝜑 → (𝐾‘𝑆) ⊆ 𝐵) |
| 14 | sseqin2 4198 | . . 3 ⊢ ((𝐾‘𝑆) ⊆ 𝐵 ↔ (𝐵 ∩ (𝐾‘𝑆)) = (𝐾‘𝑆)) | |
| 15 | 13, 14 | sylib 218 | . 2 ⊢ (𝜑 → (𝐵 ∩ (𝐾‘𝑆)) = (𝐾‘𝑆)) |
| 16 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐾𝐻𝑁) |
| 17 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 18 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
| 19 | 2, 3, 4, 5, 6, 16, 17, 18 | clsneiel1 44132 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐾‘𝑆) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥))) |
| 20 | 19 | rabbidva 3422 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐾‘𝑆)} = {𝑥 ∈ 𝐵 ∣ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥)}) |
| 21 | 1, 15, 20 | 3eqtr3a 2794 | 1 ⊢ (𝜑 → (𝐾‘𝑆) = {𝑥 ∈ 𝐵 ∣ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 class class class wbr 5119 ↦ cmpt 5201 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ↑m cmap 8840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |