![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneifv4 | Structured version Visualization version GIF version |
Description: Value of the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
clsneifv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
clsneifv4 | ⊢ (𝜑 → (𝐾‘𝑆) = {𝑥 ∈ 𝐵 ∣ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3971 | . 2 ⊢ (𝐵 ∩ (𝐾‘𝑆)) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐾‘𝑆)} | |
2 | clsnei.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | clsnei.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
4 | clsnei.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
5 | clsnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
6 | clsnei.h | . . . . . . 7 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
7 | clsnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
8 | 2, 3, 4, 5, 6, 7 | clsneikex 44096 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
9 | elmapi 8888 | . . . . . 6 ⊢ (𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾:𝒫 𝐵⟶𝒫 𝐵) |
11 | clsneifv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
12 | 10, 11 | ffvelcdmd 7105 | . . . 4 ⊢ (𝜑 → (𝐾‘𝑆) ∈ 𝒫 𝐵) |
13 | 12 | elpwid 4614 | . . 3 ⊢ (𝜑 → (𝐾‘𝑆) ⊆ 𝐵) |
14 | sseqin2 4231 | . . 3 ⊢ ((𝐾‘𝑆) ⊆ 𝐵 ↔ (𝐵 ∩ (𝐾‘𝑆)) = (𝐾‘𝑆)) | |
15 | 13, 14 | sylib 218 | . 2 ⊢ (𝜑 → (𝐵 ∩ (𝐾‘𝑆)) = (𝐾‘𝑆)) |
16 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐾𝐻𝑁) |
17 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
18 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
19 | 2, 3, 4, 5, 6, 16, 17, 18 | clsneiel1 44098 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐾‘𝑆) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥))) |
20 | 19 | rabbidva 3440 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐾‘𝑆)} = {𝑥 ∈ 𝐵 ∣ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥)}) |
21 | 1, 15, 20 | 3eqtr3a 2799 | 1 ⊢ (𝜑 → (𝐾‘𝑆) = {𝑥 ∈ 𝐵 ∣ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 ∖ cdif 3960 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 class class class wbr 5148 ↦ cmpt 5231 ∘ ccom 5693 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ↑m cmap 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-map 8867 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |