| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneifv3 | Structured version Visualization version GIF version | ||
| Description: Value of the neighborhoods (convergents) in terms of the closure (interior) function. (Contributed by RP, 27-Jun-2021.) |
| Ref | Expression |
|---|---|
| clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
| clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
| clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
| clsneifv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| clsneifv3 | ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑠))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin5 3908 | . 2 ⊢ (𝒫 𝐵 ∩ (𝑁‘𝑋)) = {𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ (𝑁‘𝑋)} | |
| 2 | clsnei.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 3 | clsnei.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
| 4 | clsnei.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 5 | clsnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 6 | clsnei.h | . . . . . . 7 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
| 7 | clsnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
| 8 | 2, 3, 4, 5, 6, 7 | clsneinex 44119 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 9 | elmapi 8768 | . . . . . 6 ⊢ (𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁:𝐵⟶𝒫 𝒫 𝐵) |
| 11 | clsneifv.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | 10, 11 | ffvelcdmd 7013 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝒫 𝒫 𝐵) |
| 13 | 12 | elpwid 4557 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝒫 𝐵) |
| 14 | sseqin2 4171 | . . 3 ⊢ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 ↔ (𝒫 𝐵 ∩ (𝑁‘𝑋)) = (𝑁‘𝑋)) | |
| 15 | 13, 14 | sylib 218 | . 2 ⊢ (𝜑 → (𝒫 𝐵 ∩ (𝑁‘𝑋)) = (𝑁‘𝑋)) |
| 16 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐾𝐻𝑁) |
| 17 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
| 18 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
| 19 | 2, 3, 4, 5, 6, 16, 17, 18 | clsneiel2 44121 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑠)) ↔ ¬ 𝑠 ∈ (𝑁‘𝑋))) |
| 20 | 19 | con2bid 354 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑠 ∈ (𝑁‘𝑋) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑠)))) |
| 21 | 20 | rabbidva 3399 | . 2 ⊢ (𝜑 → {𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ (𝑁‘𝑋)} = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑠))}) |
| 22 | 1, 15, 21 | 3eqtr3a 2789 | 1 ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑠))}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {crab 3393 Vcvv 3434 ∖ cdif 3897 ∩ cin 3899 ⊆ wss 3900 𝒫 cpw 4548 class class class wbr 5089 ↦ cmpt 5170 ∘ ccom 5618 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ∈ cmpo 7343 ↑m cmap 8745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |