Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneifv3 Structured version   Visualization version   GIF version

Theorem clsneifv3 44122
Description: Value of the neighborhoods (convergents) in terms of the closure (interior) function. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
clsneifv.x (𝜑𝑋𝐵)
Assertion
Ref Expression
clsneifv3 (𝜑 → (𝑁𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑠))})
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠   𝐵,𝑛,𝑜,𝑝,𝑠   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐾,𝑗,𝑘,𝑙,𝑚   𝑛,𝐾,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙,𝑠   𝑛,𝑁,𝑜,𝑝   𝑋,𝑙,𝑚,𝑠   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑠)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑠,𝑝,𝑙)   𝐹(𝑚,𝑠)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑠,𝑝,𝑙)   𝐾(𝑠)   𝑁(𝑚)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑠,𝑝,𝑙)   𝑋(𝑖,𝑗,𝑘,𝑛,𝑜,𝑝)

Proof of Theorem clsneifv3
StepHypRef Expression
1 dfin5 3908 . 2 (𝒫 𝐵 ∩ (𝑁𝑋)) = {𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋)}
2 clsnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 clsnei.p . . . . . . 7 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
4 clsnei.d . . . . . . 7 𝐷 = (𝑃𝐵)
5 clsnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
6 clsnei.h . . . . . . 7 𝐻 = (𝐹𝐷)
7 clsnei.r . . . . . . 7 (𝜑𝐾𝐻𝑁)
82, 3, 4, 5, 6, 7clsneinex 44119 . . . . . 6 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
9 elmapi 8768 . . . . . 6 (𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵)
108, 9syl 17 . . . . 5 (𝜑𝑁:𝐵⟶𝒫 𝒫 𝐵)
11 clsneifv.x . . . . 5 (𝜑𝑋𝐵)
1210, 11ffvelcdmd 7013 . . . 4 (𝜑 → (𝑁𝑋) ∈ 𝒫 𝒫 𝐵)
1312elpwid 4557 . . 3 (𝜑 → (𝑁𝑋) ⊆ 𝒫 𝐵)
14 sseqin2 4171 . . 3 ((𝑁𝑋) ⊆ 𝒫 𝐵 ↔ (𝒫 𝐵 ∩ (𝑁𝑋)) = (𝑁𝑋))
1513, 14sylib 218 . 2 (𝜑 → (𝒫 𝐵 ∩ (𝑁𝑋)) = (𝑁𝑋))
167adantr 480 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐾𝐻𝑁)
1711adantr 480 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑋𝐵)
18 simpr 484 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
192, 3, 4, 5, 6, 16, 17, 18clsneiel2 44121 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐾‘(𝐵𝑠)) ↔ ¬ 𝑠 ∈ (𝑁𝑋)))
2019con2bid 354 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑠 ∈ (𝑁𝑋) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑠))))
2120rabbidva 3399 . 2 (𝜑 → {𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋)} = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑠))})
221, 15, 213eqtr3a 2789 1 (𝜑 → (𝑁𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑠))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  {crab 3393  Vcvv 3434  cdif 3897  cin 3899  wss 3900  𝒫 cpw 4548   class class class wbr 5089  cmpt 5170  ccom 5618  wf 6473  cfv 6477  (class class class)co 7341  cmpo 7343  m cmap 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator