Step | Hyp | Ref
| Expression |
1 | | fzfid 13942 |
. . . 4
β’ (π β (1...(β―βπ΅)) β Fin) |
2 | | ablfac.a |
. . . . 5
β’ π΄ = {π€ β β β£ π€ β₯ (β―βπ΅)} |
3 | | prmnn 16615 |
. . . . . . . 8
β’ (π€ β β β π€ β
β) |
4 | 3 | 3ad2ant2 1132 |
. . . . . . 7
β’ ((π β§ π€ β β β§ π€ β₯ (β―βπ΅)) β π€ β β) |
5 | | prmz 16616 |
. . . . . . . . 9
β’ (π€ β β β π€ β
β€) |
6 | | ablfac.1 |
. . . . . . . . . . 11
β’ (π β πΊ β Abel) |
7 | | ablgrp 19694 |
. . . . . . . . . . 11
β’ (πΊ β Abel β πΊ β Grp) |
8 | | ablfac.b |
. . . . . . . . . . . 12
β’ π΅ = (BaseβπΊ) |
9 | 8 | grpbn0 18887 |
. . . . . . . . . . 11
β’ (πΊ β Grp β π΅ β β
) |
10 | 6, 7, 9 | 3syl 18 |
. . . . . . . . . 10
β’ (π β π΅ β β
) |
11 | | ablfac.2 |
. . . . . . . . . . 11
β’ (π β π΅ β Fin) |
12 | | hashnncl 14330 |
. . . . . . . . . . 11
β’ (π΅ β Fin β
((β―βπ΅) β
β β π΅ β
β
)) |
13 | 11, 12 | syl 17 |
. . . . . . . . . 10
β’ (π β ((β―βπ΅) β β β π΅ β β
)) |
14 | 10, 13 | mpbird 256 |
. . . . . . . . 9
β’ (π β (β―βπ΅) β
β) |
15 | | dvdsle 16257 |
. . . . . . . . 9
β’ ((π€ β β€ β§
(β―βπ΅) β
β) β (π€ β₯
(β―βπ΅) β
π€ β€ (β―βπ΅))) |
16 | 5, 14, 15 | syl2anr 595 |
. . . . . . . 8
β’ ((π β§ π€ β β) β (π€ β₯ (β―βπ΅) β π€ β€ (β―βπ΅))) |
17 | 16 | 3impia 1115 |
. . . . . . 7
β’ ((π β§ π€ β β β§ π€ β₯ (β―βπ΅)) β π€ β€ (β―βπ΅)) |
18 | 14 | nnzd 12589 |
. . . . . . . . 9
β’ (π β (β―βπ΅) β
β€) |
19 | 18 | 3ad2ant1 1131 |
. . . . . . . 8
β’ ((π β§ π€ β β β§ π€ β₯ (β―βπ΅)) β (β―βπ΅) β β€) |
20 | | fznn 13573 |
. . . . . . . 8
β’
((β―βπ΅)
β β€ β (π€
β (1...(β―βπ΅)) β (π€ β β β§ π€ β€ (β―βπ΅)))) |
21 | 19, 20 | syl 17 |
. . . . . . 7
β’ ((π β§ π€ β β β§ π€ β₯ (β―βπ΅)) β (π€ β (1...(β―βπ΅)) β (π€ β β β§ π€ β€ (β―βπ΅)))) |
22 | 4, 17, 21 | mpbir2and 709 |
. . . . . 6
β’ ((π β§ π€ β β β§ π€ β₯ (β―βπ΅)) β π€ β (1...(β―βπ΅))) |
23 | 22 | rabssdv 4071 |
. . . . 5
β’ (π β {π€ β β β£ π€ β₯ (β―βπ΅)} β (1...(β―βπ΅))) |
24 | 2, 23 | eqsstrid 4029 |
. . . 4
β’ (π β π΄ β (1...(β―βπ΅))) |
25 | 1, 24 | ssfid 9269 |
. . 3
β’ (π β π΄ β Fin) |
26 | | dfin5 3955 |
. . . . . . . 8
β’ (Word
πΆ β© (πβ(πβπ))) = {π¦ β Word πΆ β£ π¦ β (πβ(πβπ))} |
27 | | ablfac.o |
. . . . . . . . . . . . . 14
β’ π = (odβπΊ) |
28 | | ablfac.s |
. . . . . . . . . . . . . 14
β’ π = (π β π΄ β¦ {π₯ β π΅ β£ (πβπ₯) β₯ (πβ(π pCnt (β―βπ΅)))}) |
29 | 2 | ssrab3 4079 |
. . . . . . . . . . . . . . 15
β’ π΄ β
β |
30 | 29 | a1i 11 |
. . . . . . . . . . . . . 14
β’ (π β π΄ β β) |
31 | 8, 27, 28, 6, 11, 30 | ablfac1b 19981 |
. . . . . . . . . . . . 13
β’ (π β πΊdom DProd π) |
32 | 8 | fvexi 6904 |
. . . . . . . . . . . . . . . 16
β’ π΅ β V |
33 | 32 | rabex 5331 |
. . . . . . . . . . . . . . 15
β’ {π₯ β π΅ β£ (πβπ₯) β₯ (πβ(π pCnt (β―βπ΅)))} β V |
34 | 33, 28 | dmmpti 6693 |
. . . . . . . . . . . . . 14
β’ dom π = π΄ |
35 | 34 | a1i 11 |
. . . . . . . . . . . . 13
β’ (π β dom π = π΄) |
36 | 31, 35 | dprdf2 19918 |
. . . . . . . . . . . 12
β’ (π β π:π΄βΆ(SubGrpβπΊ)) |
37 | 36 | ffvelcdmda 7085 |
. . . . . . . . . . 11
β’ ((π β§ π β π΄) β (πβπ) β (SubGrpβπΊ)) |
38 | | ablfac.c |
. . . . . . . . . . . 12
β’ πΆ = {π β (SubGrpβπΊ) β£ (πΊ βΎs π) β (CycGrp β© ran pGrp
)} |
39 | | ablfac.w |
. . . . . . . . . . . 12
β’ π = (π β (SubGrpβπΊ) β¦ {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = π)}) |
40 | 8, 38, 6, 11, 27, 2, 28, 39 | ablfaclem1 19996 |
. . . . . . . . . . 11
β’ ((πβπ) β (SubGrpβπΊ) β (πβ(πβπ)) = {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ))}) |
41 | 37, 40 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ π β π΄) β (πβ(πβπ)) = {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ))}) |
42 | | ssrab2 4076 |
. . . . . . . . . 10
β’ {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ))} β Word πΆ |
43 | 41, 42 | eqsstrdi 4035 |
. . . . . . . . 9
β’ ((π β§ π β π΄) β (πβ(πβπ)) β Word πΆ) |
44 | | sseqin2 4214 |
. . . . . . . . 9
β’ ((πβ(πβπ)) β Word πΆ β (Word πΆ β© (πβ(πβπ))) = (πβ(πβπ))) |
45 | 43, 44 | sylib 217 |
. . . . . . . 8
β’ ((π β§ π β π΄) β (Word πΆ β© (πβ(πβπ))) = (πβ(πβπ))) |
46 | 26, 45 | eqtr3id 2784 |
. . . . . . 7
β’ ((π β§ π β π΄) β {π¦ β Word πΆ β£ π¦ β (πβ(πβπ))} = (πβ(πβπ))) |
47 | 46, 41 | eqtrd 2770 |
. . . . . 6
β’ ((π β§ π β π΄) β {π¦ β Word πΆ β£ π¦ β (πβ(πβπ))} = {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ))}) |
48 | | eqid 2730 |
. . . . . . . . 9
β’
(Baseβ(πΊ
βΎs (πβπ))) = (Baseβ(πΊ βΎs (πβπ))) |
49 | | eqid 2730 |
. . . . . . . . 9
β’ {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} = {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp
)} |
50 | | eqid 2730 |
. . . . . . . . . . 11
β’ (πΊ βΎs (πβπ)) = (πΊ βΎs (πβπ)) |
51 | 50 | subgabl 19745 |
. . . . . . . . . 10
β’ ((πΊ β Abel β§ (πβπ) β (SubGrpβπΊ)) β (πΊ βΎs (πβπ)) β Abel) |
52 | 6, 37, 51 | syl2an2r 681 |
. . . . . . . . 9
β’ ((π β§ π β π΄) β (πΊ βΎs (πβπ)) β Abel) |
53 | 30 | sselda 3981 |
. . . . . . . . . 10
β’ ((π β§ π β π΄) β π β β) |
54 | 50 | subgbas 19046 |
. . . . . . . . . . . . . 14
β’ ((πβπ) β (SubGrpβπΊ) β (πβπ) = (Baseβ(πΊ βΎs (πβπ)))) |
55 | 37, 54 | syl 17 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΄) β (πβπ) = (Baseβ(πΊ βΎs (πβπ)))) |
56 | 55 | fveq2d 6894 |
. . . . . . . . . . . 12
β’ ((π β§ π β π΄) β (β―β(πβπ)) = (β―β(Baseβ(πΊ βΎs (πβπ))))) |
57 | 8, 27, 28, 6, 11, 30 | ablfac1a 19980 |
. . . . . . . . . . . 12
β’ ((π β§ π β π΄) β (β―β(πβπ)) = (πβ(π pCnt (β―βπ΅)))) |
58 | 56, 57 | eqtr3d 2772 |
. . . . . . . . . . 11
β’ ((π β§ π β π΄) β (β―β(Baseβ(πΊ βΎs (πβπ)))) = (πβ(π pCnt (β―βπ΅)))) |
59 | 58 | oveq2d 7427 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΄) β (π pCnt (β―β(Baseβ(πΊ βΎs (πβπ))))) = (π pCnt (πβ(π pCnt (β―βπ΅))))) |
60 | 14 | adantr 479 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π΄) β (β―βπ΅) β β) |
61 | 53, 60 | pccld 16787 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β (π pCnt (β―βπ΅)) β
β0) |
62 | 61 | nn0zd 12588 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π΄) β (π pCnt (β―βπ΅)) β β€) |
63 | | pcid 16810 |
. . . . . . . . . . . . . 14
β’ ((π β β β§ (π pCnt (β―βπ΅)) β β€) β (π pCnt (πβ(π pCnt (β―βπ΅)))) = (π pCnt (β―βπ΅))) |
64 | 53, 62, 63 | syl2anc 582 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΄) β (π pCnt (πβ(π pCnt (β―βπ΅)))) = (π pCnt (β―βπ΅))) |
65 | 59, 64 | eqtrd 2770 |
. . . . . . . . . . . 12
β’ ((π β§ π β π΄) β (π pCnt (β―β(Baseβ(πΊ βΎs (πβπ))))) = (π pCnt (β―βπ΅))) |
66 | 65 | oveq2d 7427 |
. . . . . . . . . . 11
β’ ((π β§ π β π΄) β (πβ(π pCnt (β―β(Baseβ(πΊ βΎs (πβπ)))))) = (πβ(π pCnt (β―βπ΅)))) |
67 | 58, 66 | eqtr4d 2773 |
. . . . . . . . . 10
β’ ((π β§ π β π΄) β (β―β(Baseβ(πΊ βΎs (πβπ)))) = (πβ(π pCnt (β―β(Baseβ(πΊ βΎs (πβπ))))))) |
68 | 50 | subggrp 19045 |
. . . . . . . . . . . 12
β’ ((πβπ) β (SubGrpβπΊ) β (πΊ βΎs (πβπ)) β Grp) |
69 | 37, 68 | syl 17 |
. . . . . . . . . . 11
β’ ((π β§ π β π΄) β (πΊ βΎs (πβπ)) β Grp) |
70 | 11 | adantr 479 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΄) β π΅ β Fin) |
71 | 8 | subgss 19043 |
. . . . . . . . . . . . . 14
β’ ((πβπ) β (SubGrpβπΊ) β (πβπ) β π΅) |
72 | 37, 71 | syl 17 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΄) β (πβπ) β π΅) |
73 | 70, 72 | ssfid 9269 |
. . . . . . . . . . . 12
β’ ((π β§ π β π΄) β (πβπ) β Fin) |
74 | 55, 73 | eqeltrrd 2832 |
. . . . . . . . . . 11
β’ ((π β§ π β π΄) β (Baseβ(πΊ βΎs (πβπ))) β Fin) |
75 | 48 | pgpfi2 19515 |
. . . . . . . . . . 11
β’ (((πΊ βΎs (πβπ)) β Grp β§ (Baseβ(πΊ βΎs (πβπ))) β Fin) β (π pGrp (πΊ βΎs (πβπ)) β (π β β β§
(β―β(Baseβ(πΊ βΎs (πβπ)))) = (πβ(π pCnt (β―β(Baseβ(πΊ βΎs (πβπ))))))))) |
76 | 69, 74, 75 | syl2anc 582 |
. . . . . . . . . 10
β’ ((π β§ π β π΄) β (π pGrp (πΊ βΎs (πβπ)) β (π β β β§
(β―β(Baseβ(πΊ βΎs (πβπ)))) = (πβ(π pCnt (β―β(Baseβ(πΊ βΎs (πβπ))))))))) |
77 | 53, 67, 76 | mpbir2and 709 |
. . . . . . . . 9
β’ ((π β§ π β π΄) β π pGrp (πΊ βΎs (πβπ))) |
78 | 48, 49, 52, 77, 74 | pgpfac 19995 |
. . . . . . . 8
β’ ((π β§ π β π΄) β βπ β Word {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} ((πΊ βΎs (πβπ))dom DProd π β§ ((πΊ βΎs (πβπ)) DProd π ) = (Baseβ(πΊ βΎs (πβπ))))) |
79 | | ssrab2 4076 |
. . . . . . . . . . . . . 14
β’ {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} β
(SubGrpβ(πΊ
βΎs (πβπ))) |
80 | | sswrd 14476 |
. . . . . . . . . . . . . 14
β’ ({π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} β
(SubGrpβ(πΊ
βΎs (πβπ))) β Word {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} β
Word (SubGrpβ(πΊ
βΎs (πβπ)))) |
81 | 79, 80 | ax-mp 5 |
. . . . . . . . . . . . 13
β’ Word
{π β
(SubGrpβ(πΊ
βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} β
Word (SubGrpβ(πΊ
βΎs (πβπ))) |
82 | 81 | sseli 3977 |
. . . . . . . . . . . 12
β’ (π β Word {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} β
π β Word
(SubGrpβ(πΊ
βΎs (πβπ)))) |
83 | 37 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β π΄) β§ π β Word (SubGrpβ(πΊ βΎs (πβπ)))) β (πβπ) β (SubGrpβπΊ)) |
84 | 83 | adantr 479 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β π΄) β§ π β Word (SubGrpβ(πΊ βΎs (πβπ)))) β§ (πΊ βΎs (πβπ))dom DProd π ) β (πβπ) β (SubGrpβπΊ)) |
85 | 50 | subgdmdprd 19945 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πβπ) β (SubGrpβπΊ) β ((πΊ βΎs (πβπ))dom DProd π β (πΊdom DProd π β§ ran π β π« (πβπ)))) |
86 | 83, 85 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β π΄) β§ π β Word (SubGrpβ(πΊ βΎs (πβπ)))) β ((πΊ βΎs (πβπ))dom DProd π β (πΊdom DProd π β§ ran π β π« (πβπ)))) |
87 | 86 | simprbda 497 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β π΄) β§ π β Word (SubGrpβ(πΊ βΎs (πβπ)))) β§ (πΊ βΎs (πβπ))dom DProd π ) β πΊdom DProd π ) |
88 | 86 | simplbda 498 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β π΄) β§ π β Word (SubGrpβ(πΊ βΎs (πβπ)))) β§ (πΊ βΎs (πβπ))dom DProd π ) β ran π β π« (πβπ)) |
89 | 50, 84, 87, 88 | subgdprd 19946 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β π΄) β§ π β Word (SubGrpβ(πΊ βΎs (πβπ)))) β§ (πΊ βΎs (πβπ))dom DProd π ) β ((πΊ βΎs (πβπ)) DProd π ) = (πΊ DProd π )) |
90 | 55 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β π΄) β§ π β Word (SubGrpβ(πΊ βΎs (πβπ)))) β§ (πΊ βΎs (πβπ))dom DProd π ) β (πβπ) = (Baseβ(πΊ βΎs (πβπ)))) |
91 | 90 | eqcomd 2736 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β π΄) β§ π β Word (SubGrpβ(πΊ βΎs (πβπ)))) β§ (πΊ βΎs (πβπ))dom DProd π ) β (Baseβ(πΊ βΎs (πβπ))) = (πβπ)) |
92 | 89, 91 | eqeq12d 2746 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄) β§ π β Word (SubGrpβ(πΊ βΎs (πβπ)))) β§ (πΊ βΎs (πβπ))dom DProd π ) β (((πΊ βΎs (πβπ)) DProd π ) = (Baseβ(πΊ βΎs (πβπ))) β (πΊ DProd π ) = (πβπ))) |
93 | 92 | biimpd 228 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄) β§ π β Word (SubGrpβ(πΊ βΎs (πβπ)))) β§ (πΊ βΎs (πβπ))dom DProd π ) β (((πΊ βΎs (πβπ)) DProd π ) = (Baseβ(πΊ βΎs (πβπ))) β (πΊ DProd π ) = (πβπ))) |
94 | 93, 87 | jctild 524 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β π΄) β§ π β Word (SubGrpβ(πΊ βΎs (πβπ)))) β§ (πΊ βΎs (πβπ))dom DProd π ) β (((πΊ βΎs (πβπ)) DProd π ) = (Baseβ(πΊ βΎs (πβπ))) β (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ)))) |
95 | 94 | expimpd 452 |
. . . . . . . . . . . 12
β’ (((π β§ π β π΄) β§ π β Word (SubGrpβ(πΊ βΎs (πβπ)))) β (((πΊ βΎs (πβπ))dom DProd π β§ ((πΊ βΎs (πβπ)) DProd π ) = (Baseβ(πΊ βΎs (πβπ)))) β (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ)))) |
96 | 82, 95 | sylan2 591 |
. . . . . . . . . . 11
β’ (((π β§ π β π΄) β§ π β Word {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )}) β
(((πΊ βΎs
(πβπ))dom DProd π β§ ((πΊ βΎs (πβπ)) DProd π ) = (Baseβ(πΊ βΎs (πβπ)))) β (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ)))) |
97 | | oveq2 7419 |
. . . . . . . . . . . . . . . 16
β’ (π = π¦ β ((πΊ βΎs (πβπ)) βΎs π) = ((πΊ βΎs (πβπ)) βΎs π¦)) |
98 | 97 | eleq1d 2816 |
. . . . . . . . . . . . . . 15
β’ (π = π¦ β (((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp ) β
((πΊ βΎs
(πβπ)) βΎs π¦) β (CycGrp β© ran pGrp
))) |
99 | 98 | cbvrabv 3440 |
. . . . . . . . . . . . . 14
β’ {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} = {π¦ β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π¦) β (CycGrp β© ran pGrp
)} |
100 | 50 | subsubg 19065 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πβπ) β (SubGrpβπΊ) β (π¦ β (SubGrpβ(πΊ βΎs (πβπ))) β (π¦ β (SubGrpβπΊ) β§ π¦ β (πβπ)))) |
101 | 37, 100 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π΄) β (π¦ β (SubGrpβ(πΊ βΎs (πβπ))) β (π¦ β (SubGrpβπΊ) β§ π¦ β (πβπ)))) |
102 | 101 | simprbda 497 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β π΄) β§ π¦ β (SubGrpβ(πΊ βΎs (πβπ)))) β π¦ β (SubGrpβπΊ)) |
103 | 102 | 3adant3 1130 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β π΄) β§ π¦ β (SubGrpβ(πΊ βΎs (πβπ))) β§ ((πΊ βΎs (πβπ)) βΎs π¦) β (CycGrp β© ran pGrp )) β
π¦ β
(SubGrpβπΊ)) |
104 | 37 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β π΄) β§ π¦ β (SubGrpβ(πΊ βΎs (πβπ))) β§ ((πΊ βΎs (πβπ)) βΎs π¦) β (CycGrp β© ran pGrp )) β
(πβπ) β (SubGrpβπΊ)) |
105 | 101 | simplbda 498 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄) β§ π¦ β (SubGrpβ(πΊ βΎs (πβπ)))) β π¦ β (πβπ)) |
106 | 105 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β π΄) β§ π¦ β (SubGrpβ(πΊ βΎs (πβπ))) β§ ((πΊ βΎs (πβπ)) βΎs π¦) β (CycGrp β© ran pGrp )) β
π¦ β (πβπ)) |
107 | | ressabs 17198 |
. . . . . . . . . . . . . . . . . 18
β’ (((πβπ) β (SubGrpβπΊ) β§ π¦ β (πβπ)) β ((πΊ βΎs (πβπ)) βΎs π¦) = (πΊ βΎs π¦)) |
108 | 104, 106,
107 | syl2anc 582 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β π΄) β§ π¦ β (SubGrpβ(πΊ βΎs (πβπ))) β§ ((πΊ βΎs (πβπ)) βΎs π¦) β (CycGrp β© ran pGrp )) β
((πΊ βΎs
(πβπ)) βΎs π¦) = (πΊ βΎs π¦)) |
109 | | simp3 1136 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β π΄) β§ π¦ β (SubGrpβ(πΊ βΎs (πβπ))) β§ ((πΊ βΎs (πβπ)) βΎs π¦) β (CycGrp β© ran pGrp )) β
((πΊ βΎs
(πβπ)) βΎs π¦) β (CycGrp β© ran pGrp
)) |
110 | 108, 109 | eqeltrrd 2832 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β π΄) β§ π¦ β (SubGrpβ(πΊ βΎs (πβπ))) β§ ((πΊ βΎs (πβπ)) βΎs π¦) β (CycGrp β© ran pGrp )) β
(πΊ βΎs
π¦) β (CycGrp β© ran
pGrp )) |
111 | | oveq2 7419 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π¦ β (πΊ βΎs π) = (πΊ βΎs π¦)) |
112 | 111 | eleq1d 2816 |
. . . . . . . . . . . . . . . . 17
β’ (π = π¦ β ((πΊ βΎs π) β (CycGrp β© ran pGrp ) β
(πΊ βΎs
π¦) β (CycGrp β© ran
pGrp ))) |
113 | 112, 38 | elrab2 3685 |
. . . . . . . . . . . . . . . 16
β’ (π¦ β πΆ β (π¦ β (SubGrpβπΊ) β§ (πΊ βΎs π¦) β (CycGrp β© ran pGrp
))) |
114 | 103, 110,
113 | sylanbrc 581 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β π΄) β§ π¦ β (SubGrpβ(πΊ βΎs (πβπ))) β§ ((πΊ βΎs (πβπ)) βΎs π¦) β (CycGrp β© ran pGrp )) β
π¦ β πΆ) |
115 | 114 | rabssdv 4071 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π΄) β {π¦ β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π¦) β (CycGrp β© ran pGrp )} β
πΆ) |
116 | 99, 115 | eqsstrid 4029 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΄) β {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} β
πΆ) |
117 | | sswrd 14476 |
. . . . . . . . . . . . 13
β’ ({π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} β
πΆ β Word {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} β
Word πΆ) |
118 | 116, 117 | syl 17 |
. . . . . . . . . . . 12
β’ ((π β§ π β π΄) β Word {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} β
Word πΆ) |
119 | 118 | sselda 3981 |
. . . . . . . . . . 11
β’ (((π β§ π β π΄) β§ π β Word {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )}) β
π β Word πΆ) |
120 | 96, 119 | jctild 524 |
. . . . . . . . . 10
β’ (((π β§ π β π΄) β§ π β Word {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )}) β
(((πΊ βΎs
(πβπ))dom DProd π β§ ((πΊ βΎs (πβπ)) DProd π ) = (Baseβ(πΊ βΎs (πβπ)))) β (π β Word πΆ β§ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ))))) |
121 | 120 | expimpd 452 |
. . . . . . . . 9
β’ ((π β§ π β π΄) β ((π β Word {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} β§
((πΊ βΎs
(πβπ))dom DProd π β§ ((πΊ βΎs (πβπ)) DProd π ) = (Baseβ(πΊ βΎs (πβπ))))) β (π β Word πΆ β§ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ))))) |
122 | 121 | reximdv2 3162 |
. . . . . . . 8
β’ ((π β§ π β π΄) β (βπ β Word {π β (SubGrpβ(πΊ βΎs (πβπ))) β£ ((πΊ βΎs (πβπ)) βΎs π) β (CycGrp β© ran pGrp )} ((πΊ βΎs (πβπ))dom DProd π β§ ((πΊ βΎs (πβπ)) DProd π ) = (Baseβ(πΊ βΎs (πβπ)))) β βπ β Word πΆ(πΊdom DProd π β§ (πΊ DProd π ) = (πβπ)))) |
123 | 78, 122 | mpd 15 |
. . . . . . 7
β’ ((π β§ π β π΄) β βπ β Word πΆ(πΊdom DProd π β§ (πΊ DProd π ) = (πβπ))) |
124 | | rabn0 4384 |
. . . . . . 7
β’ ({π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ))} β β
β βπ β Word πΆ(πΊdom DProd π β§ (πΊ DProd π ) = (πβπ))) |
125 | 123, 124 | sylibr 233 |
. . . . . 6
β’ ((π β§ π β π΄) β {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ))} β β
) |
126 | 47, 125 | eqnetrd 3006 |
. . . . 5
β’ ((π β§ π β π΄) β {π¦ β Word πΆ β£ π¦ β (πβ(πβπ))} β β
) |
127 | | rabn0 4384 |
. . . . 5
β’ ({π¦ β Word πΆ β£ π¦ β (πβ(πβπ))} β β
β βπ¦ β Word πΆπ¦ β (πβ(πβπ))) |
128 | 126, 127 | sylib 217 |
. . . 4
β’ ((π β§ π β π΄) β βπ¦ β Word πΆπ¦ β (πβ(πβπ))) |
129 | 128 | ralrimiva 3144 |
. . 3
β’ (π β βπ β π΄ βπ¦ β Word πΆπ¦ β (πβ(πβπ))) |
130 | | eleq1 2819 |
. . . 4
β’ (π¦ = (πβπ) β (π¦ β (πβ(πβπ)) β (πβπ) β (πβ(πβπ)))) |
131 | 130 | ac6sfi 9289 |
. . 3
β’ ((π΄ β Fin β§ βπ β π΄ βπ¦ β Word πΆπ¦ β (πβ(πβπ))) β βπ(π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) |
132 | 25, 129, 131 | syl2anc 582 |
. 2
β’ (π β βπ(π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) |
133 | | sneq 4637 |
. . . . . . . . 9
β’ (π = π¦ β {π} = {π¦}) |
134 | | fveq2 6890 |
. . . . . . . . . 10
β’ (π = π¦ β (πβπ) = (πβπ¦)) |
135 | 134 | dmeqd 5904 |
. . . . . . . . 9
β’ (π = π¦ β dom (πβπ) = dom (πβπ¦)) |
136 | 133, 135 | xpeq12d 5706 |
. . . . . . . 8
β’ (π = π¦ β ({π} Γ dom (πβπ)) = ({π¦} Γ dom (πβπ¦))) |
137 | 136 | cbviunv 5042 |
. . . . . . 7
β’ βͺ π β π΄ ({π} Γ dom (πβπ)) = βͺ
π¦ β π΄ ({π¦} Γ dom (πβπ¦)) |
138 | | snfi 9046 |
. . . . . . . . . 10
β’ {π¦} β Fin |
139 | | simprl 767 |
. . . . . . . . . . . . 13
β’ ((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β π:π΄βΆWord πΆ) |
140 | 139 | ffvelcdmda 7085 |
. . . . . . . . . . . 12
β’ (((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β§ π¦ β π΄) β (πβπ¦) β Word πΆ) |
141 | | wrdf 14473 |
. . . . . . . . . . . 12
β’ ((πβπ¦) β Word πΆ β (πβπ¦):(0..^(β―β(πβπ¦)))βΆπΆ) |
142 | | fdm 6725 |
. . . . . . . . . . . 12
β’ ((πβπ¦):(0..^(β―β(πβπ¦)))βΆπΆ β dom (πβπ¦) = (0..^(β―β(πβπ¦)))) |
143 | 140, 141,
142 | 3syl 18 |
. . . . . . . . . . 11
β’ (((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β§ π¦ β π΄) β dom (πβπ¦) = (0..^(β―β(πβπ¦)))) |
144 | | fzofi 13943 |
. . . . . . . . . . 11
β’
(0..^(β―β(πβπ¦))) β Fin |
145 | 143, 144 | eqeltrdi 2839 |
. . . . . . . . . 10
β’ (((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β§ π¦ β π΄) β dom (πβπ¦) β Fin) |
146 | | xpfi 9319 |
. . . . . . . . . 10
β’ (({π¦} β Fin β§ dom (πβπ¦) β Fin) β ({π¦} Γ dom (πβπ¦)) β Fin) |
147 | 138, 145,
146 | sylancr 585 |
. . . . . . . . 9
β’ (((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β§ π¦ β π΄) β ({π¦} Γ dom (πβπ¦)) β Fin) |
148 | 147 | ralrimiva 3144 |
. . . . . . . 8
β’ ((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β βπ¦ β π΄ ({π¦} Γ dom (πβπ¦)) β Fin) |
149 | | iunfi 9342 |
. . . . . . . 8
β’ ((π΄ β Fin β§ βπ¦ β π΄ ({π¦} Γ dom (πβπ¦)) β Fin) β βͺ π¦ β π΄ ({π¦} Γ dom (πβπ¦)) β Fin) |
150 | 25, 148, 149 | syl2an2r 681 |
. . . . . . 7
β’ ((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β βͺ π¦ β π΄ ({π¦} Γ dom (πβπ¦)) β Fin) |
151 | 137, 150 | eqeltrid 2835 |
. . . . . 6
β’ ((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β βͺ π β π΄ ({π} Γ dom (πβπ)) β Fin) |
152 | | hashcl 14320 |
. . . . . 6
β’ (βͺ π β π΄ ({π} Γ dom (πβπ)) β Fin β (β―ββͺ π β π΄ ({π} Γ dom (πβπ))) β
β0) |
153 | | hashfzo0 14394 |
. . . . . 6
β’
((β―ββͺ π β π΄ ({π} Γ dom (πβπ))) β β0 β
(β―β(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))) = (β―ββͺ π β π΄ ({π} Γ dom (πβπ)))) |
154 | 151, 152,
153 | 3syl 18 |
. . . . 5
β’ ((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β
(β―β(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))) = (β―ββͺ π β π΄ ({π} Γ dom (πβπ)))) |
155 | | fzofi 13943 |
. . . . . 6
β’
(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ)))) β Fin |
156 | | hashen 14311 |
. . . . . 6
β’
(((0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ)))) β Fin β§ βͺ π β π΄ ({π} Γ dom (πβπ)) β Fin) β
((β―β(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))) = (β―ββͺ π β π΄ ({π} Γ dom (πβπ))) β (0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ)))) β βͺ π β π΄ ({π} Γ dom (πβπ)))) |
157 | 155, 151,
156 | sylancr 585 |
. . . . 5
β’ ((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β
((β―β(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))) = (β―ββͺ π β π΄ ({π} Γ dom (πβπ))) β (0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ)))) β βͺ π β π΄ ({π} Γ dom (πβπ)))) |
158 | 154, 157 | mpbid 231 |
. . . 4
β’ ((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β (0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ)))) β βͺ π β π΄ ({π} Γ dom (πβπ))) |
159 | | bren 8951 |
. . . 4
β’
((0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ)))) β βͺ π β π΄ ({π} Γ dom (πβπ)) β ββ β:(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))β1-1-ontoββͺ π β π΄ ({π} Γ dom (πβπ))) |
160 | 158, 159 | sylib 217 |
. . 3
β’ ((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β ββ β:(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))β1-1-ontoββͺ π β π΄ ({π} Γ dom (πβπ))) |
161 | 6 | adantr 479 |
. . . . . 6
β’ ((π β§ ((π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ))) β§ β:(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))β1-1-ontoββͺ π β π΄ ({π} Γ dom (πβπ)))) β πΊ β Abel) |
162 | 11 | adantr 479 |
. . . . . 6
β’ ((π β§ ((π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ))) β§ β:(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))β1-1-ontoββͺ π β π΄ ({π} Γ dom (πβπ)))) β π΅ β Fin) |
163 | | breq1 5150 |
. . . . . . . 8
β’ (π€ = π β (π€ β₯ (β―βπ΅) β π β₯ (β―βπ΅))) |
164 | 163 | cbvrabv 3440 |
. . . . . . 7
β’ {π€ β β β£ π€ β₯ (β―βπ΅)} = {π β β β£ π β₯ (β―βπ΅)} |
165 | 2, 164 | eqtri 2758 |
. . . . . 6
β’ π΄ = {π β β β£ π β₯ (β―βπ΅)} |
166 | | fveq2 6890 |
. . . . . . . . . . 11
β’ (π₯ = π β (πβπ₯) = (πβπ)) |
167 | 166 | breq1d 5157 |
. . . . . . . . . 10
β’ (π₯ = π β ((πβπ₯) β₯ (πβ(π pCnt (β―βπ΅))) β (πβπ) β₯ (πβ(π pCnt (β―βπ΅))))) |
168 | 167 | cbvrabv 3440 |
. . . . . . . . 9
β’ {π₯ β π΅ β£ (πβπ₯) β₯ (πβ(π pCnt (β―βπ΅)))} = {π β π΅ β£ (πβπ) β₯ (πβ(π pCnt (β―βπ΅)))} |
169 | | id 22 |
. . . . . . . . . . . 12
β’ (π = π β π = π) |
170 | | oveq1 7418 |
. . . . . . . . . . . 12
β’ (π = π β (π pCnt (β―βπ΅)) = (π pCnt (β―βπ΅))) |
171 | 169, 170 | oveq12d 7429 |
. . . . . . . . . . 11
β’ (π = π β (πβ(π pCnt (β―βπ΅))) = (πβ(π pCnt (β―βπ΅)))) |
172 | 171 | breq2d 5159 |
. . . . . . . . . 10
β’ (π = π β ((πβπ) β₯ (πβ(π pCnt (β―βπ΅))) β (πβπ) β₯ (πβ(π pCnt (β―βπ΅))))) |
173 | 172 | rabbidv 3438 |
. . . . . . . . 9
β’ (π = π β {π β π΅ β£ (πβπ) β₯ (πβ(π pCnt (β―βπ΅)))} = {π β π΅ β£ (πβπ) β₯ (πβ(π pCnt (β―βπ΅)))}) |
174 | 168, 173 | eqtrid 2782 |
. . . . . . . 8
β’ (π = π β {π₯ β π΅ β£ (πβπ₯) β₯ (πβ(π pCnt (β―βπ΅)))} = {π β π΅ β£ (πβπ) β₯ (πβ(π pCnt (β―βπ΅)))}) |
175 | 174 | cbvmptv 5260 |
. . . . . . 7
β’ (π β π΄ β¦ {π₯ β π΅ β£ (πβπ₯) β₯ (πβ(π pCnt (β―βπ΅)))}) = (π β π΄ β¦ {π β π΅ β£ (πβπ) β₯ (πβ(π pCnt (β―βπ΅)))}) |
176 | 28, 175 | eqtri 2758 |
. . . . . 6
β’ π = (π β π΄ β¦ {π β π΅ β£ (πβπ) β₯ (πβ(π pCnt (β―βπ΅)))}) |
177 | | breq2 5151 |
. . . . . . . . . 10
β’ (π = π‘ β (πΊdom DProd π β πΊdom DProd π‘)) |
178 | | oveq2 7419 |
. . . . . . . . . . 11
β’ (π = π‘ β (πΊ DProd π ) = (πΊ DProd π‘)) |
179 | 178 | eqeq1d 2732 |
. . . . . . . . . 10
β’ (π = π‘ β ((πΊ DProd π ) = π β (πΊ DProd π‘) = π)) |
180 | 177, 179 | anbi12d 629 |
. . . . . . . . 9
β’ (π = π‘ β ((πΊdom DProd π β§ (πΊ DProd π ) = π) β (πΊdom DProd π‘ β§ (πΊ DProd π‘) = π))) |
181 | 180 | cbvrabv 3440 |
. . . . . . . 8
β’ {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = π)} = {π‘ β Word πΆ β£ (πΊdom DProd π‘ β§ (πΊ DProd π‘) = π)} |
182 | 181 | mpteq2i 5252 |
. . . . . . 7
β’ (π β (SubGrpβπΊ) β¦ {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = π)}) = (π β (SubGrpβπΊ) β¦ {π‘ β Word πΆ β£ (πΊdom DProd π‘ β§ (πΊ DProd π‘) = π)}) |
183 | 39, 182 | eqtri 2758 |
. . . . . 6
β’ π = (π β (SubGrpβπΊ) β¦ {π‘ β Word πΆ β£ (πΊdom DProd π‘ β§ (πΊ DProd π‘) = π)}) |
184 | | simprll 775 |
. . . . . 6
β’ ((π β§ ((π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ))) β§ β:(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))β1-1-ontoββͺ π β π΄ ({π} Γ dom (πβπ)))) β π:π΄βΆWord πΆ) |
185 | | simprlr 776 |
. . . . . . 7
β’ ((π β§ ((π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ))) β§ β:(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))β1-1-ontoββͺ π β π΄ ({π} Γ dom (πβπ)))) β βπ β π΄ (πβπ) β (πβ(πβπ))) |
186 | | 2fveq3 6895 |
. . . . . . . . 9
β’ (π = π¦ β (πβ(πβπ)) = (πβ(πβπ¦))) |
187 | 134, 186 | eleq12d 2825 |
. . . . . . . 8
β’ (π = π¦ β ((πβπ) β (πβ(πβπ)) β (πβπ¦) β (πβ(πβπ¦)))) |
188 | 187 | cbvralvw 3232 |
. . . . . . 7
β’
(βπ β
π΄ (πβπ) β (πβ(πβπ)) β βπ¦ β π΄ (πβπ¦) β (πβ(πβπ¦))) |
189 | 185, 188 | sylib 217 |
. . . . . 6
β’ ((π β§ ((π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ))) β§ β:(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))β1-1-ontoββͺ π β π΄ ({π} Γ dom (πβπ)))) β βπ¦ β π΄ (πβπ¦) β (πβ(πβπ¦))) |
190 | | simprr 769 |
. . . . . 6
β’ ((π β§ ((π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ))) β§ β:(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))β1-1-ontoββͺ π β π΄ ({π} Γ dom (πβπ)))) β β:(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))β1-1-ontoββͺ π β π΄ ({π} Γ dom (πβπ))) |
191 | 8, 38, 161, 162, 27, 165, 176, 183, 184, 189, 137, 190 | ablfaclem2 19997 |
. . . . 5
β’ ((π β§ ((π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ))) β§ β:(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))β1-1-ontoββͺ π β π΄ ({π} Γ dom (πβπ)))) β (πβπ΅) β β
) |
192 | 191 | expr 455 |
. . . 4
β’ ((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β (β:(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))β1-1-ontoββͺ π β π΄ ({π} Γ dom (πβπ)) β (πβπ΅) β β
)) |
193 | 192 | exlimdv 1934 |
. . 3
β’ ((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β (ββ β:(0..^(β―ββͺ π β π΄ ({π} Γ dom (πβπ))))β1-1-ontoββͺ π β π΄ ({π} Γ dom (πβπ)) β (πβπ΅) β β
)) |
194 | 160, 193 | mpd 15 |
. 2
β’ ((π β§ (π:π΄βΆWord πΆ β§ βπ β π΄ (πβπ) β (πβ(πβπ)))) β (πβπ΅) β β
) |
195 | 132, 194 | exlimddv 1936 |
1
β’ (π β (πβπ΅) β β
) |