MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem3 Structured version   Visualization version   GIF version

Theorem ablfaclem3 19203
Description: Lemma for ablfac 19204. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
ablfac.o 𝑂 = (od‘𝐺)
ablfac.a 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac.w 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
Assertion
Ref Expression
ablfaclem3 (𝜑 → (𝑊𝐵) ≠ ∅)
Distinct variable groups:   𝑠,𝑝,𝑥,𝐴   𝑔,𝑟,𝑠,𝑆   𝑔,𝑝,𝑤,𝑥,𝐵,𝑟,𝑠   𝑂,𝑝,𝑥   𝐶,𝑔,𝑝,𝑠,𝑤,𝑥   𝑊,𝑝,𝑤,𝑥   𝜑,𝑝,𝑠,𝑤,𝑥   𝑔,𝐺,𝑝,𝑟,𝑠,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑔,𝑟)   𝐴(𝑤,𝑔,𝑟)   𝐶(𝑟)   𝑆(𝑥,𝑤,𝑝)   𝑂(𝑤,𝑔,𝑠,𝑟)   𝑊(𝑔,𝑠,𝑟)

Proof of Theorem ablfaclem3
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑞 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13335 . . . 4 (𝜑 → (1...(♯‘𝐵)) ∈ Fin)
2 ablfac.a . . . . 5 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
3 prmnn 16012 . . . . . . . 8 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ)
433ad2ant2 1130 . . . . . . 7 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ∈ ℕ)
5 prmz 16013 . . . . . . . . 9 (𝑤 ∈ ℙ → 𝑤 ∈ ℤ)
6 ablfac.1 . . . . . . . . . . 11 (𝜑𝐺 ∈ Abel)
7 ablgrp 18905 . . . . . . . . . . 11 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
8 ablfac.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
98grpbn0 18126 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
106, 7, 93syl 18 . . . . . . . . . 10 (𝜑𝐵 ≠ ∅)
11 ablfac.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ Fin)
12 hashnncl 13721 . . . . . . . . . . 11 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1311, 12syl 17 . . . . . . . . . 10 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1410, 13mpbird 259 . . . . . . . . 9 (𝜑 → (♯‘𝐵) ∈ ℕ)
15 dvdsle 15654 . . . . . . . . 9 ((𝑤 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (𝑤 ∥ (♯‘𝐵) → 𝑤 ≤ (♯‘𝐵)))
165, 14, 15syl2anr 598 . . . . . . . 8 ((𝜑𝑤 ∈ ℙ) → (𝑤 ∥ (♯‘𝐵) → 𝑤 ≤ (♯‘𝐵)))
17163impia 1113 . . . . . . 7 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ≤ (♯‘𝐵))
1814nnzd 12080 . . . . . . . . 9 (𝜑 → (♯‘𝐵) ∈ ℤ)
19183ad2ant1 1129 . . . . . . . 8 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ)
20 fznn 12969 . . . . . . . 8 ((♯‘𝐵) ∈ ℤ → (𝑤 ∈ (1...(♯‘𝐵)) ↔ (𝑤 ∈ ℕ ∧ 𝑤 ≤ (♯‘𝐵))))
2119, 20syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → (𝑤 ∈ (1...(♯‘𝐵)) ↔ (𝑤 ∈ ℕ ∧ 𝑤 ≤ (♯‘𝐵))))
224, 17, 21mpbir2and 711 . . . . . 6 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ∈ (1...(♯‘𝐵)))
2322rabssdv 4051 . . . . 5 (𝜑 → {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵)))
242, 23eqsstrid 4015 . . . 4 (𝜑𝐴 ⊆ (1...(♯‘𝐵)))
251, 24ssfid 8735 . . 3 (𝜑𝐴 ∈ Fin)
26 dfin5 3944 . . . . . . . 8 (Word 𝐶 ∩ (𝑊‘(𝑆𝑞))) = {𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞))}
27 ablfac.o . . . . . . . . . . . . . 14 𝑂 = (od‘𝐺)
28 ablfac.s . . . . . . . . . . . . . 14 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
292ssrab3 4057 . . . . . . . . . . . . . . 15 𝐴 ⊆ ℙ
3029a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℙ)
318, 27, 28, 6, 11, 30ablfac1b 19186 . . . . . . . . . . . . 13 (𝜑𝐺dom DProd 𝑆)
328fvexi 6679 . . . . . . . . . . . . . . . 16 𝐵 ∈ V
3332rabex 5228 . . . . . . . . . . . . . . 15 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
3433, 28dmmpti 6487 . . . . . . . . . . . . . 14 dom 𝑆 = 𝐴
3534a1i 11 . . . . . . . . . . . . 13 (𝜑 → dom 𝑆 = 𝐴)
3631, 35dprdf2 19123 . . . . . . . . . . . 12 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
3736ffvelrnda 6846 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
38 ablfac.c . . . . . . . . . . . 12 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
39 ablfac.w . . . . . . . . . . . 12 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
408, 38, 6, 11, 27, 2, 28, 39ablfaclem1 19201 . . . . . . . . . . 11 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝑊‘(𝑆𝑞)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))})
4137, 40syl 17 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝑊‘(𝑆𝑞)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))})
42 ssrab2 4056 . . . . . . . . . 10 {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))} ⊆ Word 𝐶
4341, 42eqsstrdi 4021 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑊‘(𝑆𝑞)) ⊆ Word 𝐶)
44 sseqin2 4192 . . . . . . . . 9 ((𝑊‘(𝑆𝑞)) ⊆ Word 𝐶 ↔ (Word 𝐶 ∩ (𝑊‘(𝑆𝑞))) = (𝑊‘(𝑆𝑞)))
4543, 44sylib 220 . . . . . . . 8 ((𝜑𝑞𝐴) → (Word 𝐶 ∩ (𝑊‘(𝑆𝑞))) = (𝑊‘(𝑆𝑞)))
4626, 45syl5eqr 2870 . . . . . . 7 ((𝜑𝑞𝐴) → {𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞))} = (𝑊‘(𝑆𝑞)))
4746, 41eqtrd 2856 . . . . . 6 ((𝜑𝑞𝐴) → {𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞))} = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))})
48 eqid 2821 . . . . . . . . 9 (Base‘(𝐺s (𝑆𝑞))) = (Base‘(𝐺s (𝑆𝑞)))
49 eqid 2821 . . . . . . . . 9 {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} = {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
50 eqid 2821 . . . . . . . . . . 11 (𝐺s (𝑆𝑞)) = (𝐺s (𝑆𝑞))
5150subgabl 18950 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ (𝑆𝑞) ∈ (SubGrp‘𝐺)) → (𝐺s (𝑆𝑞)) ∈ Abel)
526, 37, 51syl2an2r 683 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝐺s (𝑆𝑞)) ∈ Abel)
5330sselda 3967 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝑞 ∈ ℙ)
5450subgbas 18277 . . . . . . . . . . . . . 14 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝑆𝑞) = (Base‘(𝐺s (𝑆𝑞))))
5537, 54syl 17 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑆𝑞) = (Base‘(𝐺s (𝑆𝑞))))
5655fveq2d 6669 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) = (♯‘(Base‘(𝐺s (𝑆𝑞)))))
578, 27, 28, 6, 11, 30ablfac1a 19185 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
5856, 57eqtr3d 2858 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(Base‘(𝐺s (𝑆𝑞)))) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
5958oveq2d 7166 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘(Base‘(𝐺s (𝑆𝑞))))) = (𝑞 pCnt (𝑞↑(𝑞 pCnt (♯‘𝐵)))))
6014adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑞𝐴) → (♯‘𝐵) ∈ ℕ)
6153, 60pccld 16181 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
6261nn0zd 12079 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℤ)
63 pcid 16203 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℙ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℤ) → (𝑞 pCnt (𝑞↑(𝑞 pCnt (♯‘𝐵)))) = (𝑞 pCnt (♯‘𝐵)))
6453, 62, 63syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑞 pCnt (𝑞↑(𝑞 pCnt (♯‘𝐵)))) = (𝑞 pCnt (♯‘𝐵)))
6559, 64eqtrd 2856 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘(Base‘(𝐺s (𝑆𝑞))))) = (𝑞 pCnt (♯‘𝐵)))
6665oveq2d 7166 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘(Base‘(𝐺s (𝑆𝑞)))))) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
6758, 66eqtr4d 2859 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (♯‘(Base‘(𝐺s (𝑆𝑞)))) = (𝑞↑(𝑞 pCnt (♯‘(Base‘(𝐺s (𝑆𝑞)))))))
6850subggrp 18276 . . . . . . . . . . . 12 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝐺s (𝑆𝑞)) ∈ Grp)
6937, 68syl 17 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐺s (𝑆𝑞)) ∈ Grp)
7011adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → 𝐵 ∈ Fin)
718subgss 18274 . . . . . . . . . . . . . 14 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝑆𝑞) ⊆ 𝐵)
7237, 71syl 17 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑆𝑞) ⊆ 𝐵)
7370, 72ssfid 8735 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ Fin)
7455, 73eqeltrrd 2914 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (Base‘(𝐺s (𝑆𝑞))) ∈ Fin)
7548pgpfi2 18725 . . . . . . . . . . 11 (((𝐺s (𝑆𝑞)) ∈ Grp ∧ (Base‘(𝐺s (𝑆𝑞))) ∈ Fin) → (𝑞 pGrp (𝐺s (𝑆𝑞)) ↔ (𝑞 ∈ ℙ ∧ (♯‘(Base‘(𝐺s (𝑆𝑞)))) = (𝑞↑(𝑞 pCnt (♯‘(Base‘(𝐺s (𝑆𝑞)))))))))
7669, 74, 75syl2anc 586 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝑞 pGrp (𝐺s (𝑆𝑞)) ↔ (𝑞 ∈ ℙ ∧ (♯‘(Base‘(𝐺s (𝑆𝑞)))) = (𝑞↑(𝑞 pCnt (♯‘(Base‘(𝐺s (𝑆𝑞)))))))))
7753, 67, 76mpbir2and 711 . . . . . . . . 9 ((𝜑𝑞𝐴) → 𝑞 pGrp (𝐺s (𝑆𝑞)))
7848, 49, 52, 77, 74pgpfac 19200 . . . . . . . 8 ((𝜑𝑞𝐴) → ∃𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ((𝐺s (𝑆𝑞))dom DProd 𝑠 ∧ ((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞)))))
79 ssrab2 4056 . . . . . . . . . . . . . 14 {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ (SubGrp‘(𝐺s (𝑆𝑞)))
80 sswrd 13863 . . . . . . . . . . . . . 14 ({𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ (SubGrp‘(𝐺s (𝑆𝑞))) → Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ Word (SubGrp‘(𝐺s (𝑆𝑞))))
8179, 80ax-mp 5 . . . . . . . . . . . . 13 Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ Word (SubGrp‘(𝐺s (𝑆𝑞)))
8281sseli 3963 . . . . . . . . . . . 12 (𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} → 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞))))
8337adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
8483adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
8550subgdmdprd 19150 . . . . . . . . . . . . . . . . . . 19 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → ((𝐺s (𝑆𝑞))dom DProd 𝑠 ↔ (𝐺dom DProd 𝑠 ∧ ran 𝑠 ⊆ 𝒫 (𝑆𝑞))))
8683, 85syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) → ((𝐺s (𝑆𝑞))dom DProd 𝑠 ↔ (𝐺dom DProd 𝑠 ∧ ran 𝑠 ⊆ 𝒫 (𝑆𝑞))))
8786simprbda 501 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → 𝐺dom DProd 𝑠)
8886simplbda 502 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → ran 𝑠 ⊆ 𝒫 (𝑆𝑞))
8950, 84, 87, 88subgdprd 19151 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → ((𝐺s (𝑆𝑞)) DProd 𝑠) = (𝐺 DProd 𝑠))
9055ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → (𝑆𝑞) = (Base‘(𝐺s (𝑆𝑞))))
9190eqcomd 2827 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → (Base‘(𝐺s (𝑆𝑞))) = (𝑆𝑞))
9289, 91eqeq12d 2837 . . . . . . . . . . . . . . 15 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → (((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞))) ↔ (𝐺 DProd 𝑠) = (𝑆𝑞)))
9392biimpd 231 . . . . . . . . . . . . . 14 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → (((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞))) → (𝐺 DProd 𝑠) = (𝑆𝑞)))
9493, 87jctild 528 . . . . . . . . . . . . 13 ((((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) ∧ (𝐺s (𝑆𝑞))dom DProd 𝑠) → (((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞))) → (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))))
9594expimpd 456 . . . . . . . . . . . 12 (((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺s (𝑆𝑞)))) → (((𝐺s (𝑆𝑞))dom DProd 𝑠 ∧ ((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞)))) → (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))))
9682, 95sylan2 594 . . . . . . . . . . 11 (((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )}) → (((𝐺s (𝑆𝑞))dom DProd 𝑠 ∧ ((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞)))) → (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))))
97 oveq2 7158 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑦 → ((𝐺s (𝑆𝑞)) ↾s 𝑟) = ((𝐺s (𝑆𝑞)) ↾s 𝑦))
9897eleq1d 2897 . . . . . . . . . . . . . . 15 (𝑟 = 𝑦 → (((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )))
9998cbvrabv 3492 . . . . . . . . . . . . . 14 {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} = {𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )}
10050subsubg 18296 . . . . . . . . . . . . . . . . . . 19 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑦 ⊆ (𝑆𝑞))))
10137, 100syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐴) → (𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑦 ⊆ (𝑆𝑞))))
102101simprbda 501 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞)))) → 𝑦 ∈ (SubGrp‘𝐺))
1031023adant3 1128 . . . . . . . . . . . . . . . 16 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → 𝑦 ∈ (SubGrp‘𝐺))
104373ad2ant1 1129 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
105101simplbda 502 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞)))) → 𝑦 ⊆ (𝑆𝑞))
1061053adant3 1128 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → 𝑦 ⊆ (𝑆𝑞))
107 ressabs 16557 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑞) ∈ (SubGrp‘𝐺) ∧ 𝑦 ⊆ (𝑆𝑞)) → ((𝐺s (𝑆𝑞)) ↾s 𝑦) = (𝐺s 𝑦))
108104, 106, 107syl2anc 586 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → ((𝐺s (𝑆𝑞)) ↾s 𝑦) = (𝐺s 𝑦))
109 simp3 1134 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp ))
110108, 109eqeltrrd 2914 . . . . . . . . . . . . . . . 16 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → (𝐺s 𝑦) ∈ (CycGrp ∩ ran pGrp ))
111 oveq2 7158 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑦 → (𝐺s 𝑟) = (𝐺s 𝑦))
112111eleq1d 2897 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑦 → ((𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ (𝐺s 𝑦) ∈ (CycGrp ∩ ran pGrp )))
113112, 38elrab2 3683 . . . . . . . . . . . . . . . 16 (𝑦𝐶 ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (𝐺s 𝑦) ∈ (CycGrp ∩ ran pGrp )))
114103, 110, 113sylanbrc 585 . . . . . . . . . . . . . . 15 (((𝜑𝑞𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∧ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) → 𝑦𝐶)
115114rabssdv 4051 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → {𝑦 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )} ⊆ 𝐶)
11699, 115eqsstrid 4015 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ 𝐶)
117 sswrd 13863 . . . . . . . . . . . . 13 ({𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ 𝐶 → Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ Word 𝐶)
118116, 117syl 17 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆ Word 𝐶)
119118sselda 3967 . . . . . . . . . . 11 (((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )}) → 𝑠 ∈ Word 𝐶)
12096, 119jctild 528 . . . . . . . . . 10 (((𝜑𝑞𝐴) ∧ 𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )}) → (((𝐺s (𝑆𝑞))dom DProd 𝑠 ∧ ((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞)))) → (𝑠 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞)))))
121120expimpd 456 . . . . . . . . 9 ((𝜑𝑞𝐴) → ((𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ∧ ((𝐺s (𝑆𝑞))dom DProd 𝑠 ∧ ((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞))))) → (𝑠 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞)))))
122121reximdv2 3271 . . . . . . . 8 ((𝜑𝑞𝐴) → (∃𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺s (𝑆𝑞))) ∣ ((𝐺s (𝑆𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ((𝐺s (𝑆𝑞))dom DProd 𝑠 ∧ ((𝐺s (𝑆𝑞)) DProd 𝑠) = (Base‘(𝐺s (𝑆𝑞)))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))))
12378, 122mpd 15 . . . . . . 7 ((𝜑𝑞𝐴) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞)))
124 rabn0 4339 . . . . . . 7 ({𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))} ≠ ∅ ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞)))
125123, 124sylibr 236 . . . . . 6 ((𝜑𝑞𝐴) → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑞))} ≠ ∅)
12647, 125eqnetrd 3083 . . . . 5 ((𝜑𝑞𝐴) → {𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞))} ≠ ∅)
127 rabn0 4339 . . . . 5 ({𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞))} ≠ ∅ ↔ ∃𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞)))
128126, 127sylib 220 . . . 4 ((𝜑𝑞𝐴) → ∃𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞)))
129128ralrimiva 3182 . . 3 (𝜑 → ∀𝑞𝐴𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞)))
130 eleq1 2900 . . . 4 (𝑦 = (𝑓𝑞) → (𝑦 ∈ (𝑊‘(𝑆𝑞)) ↔ (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))))
131130ac6sfi 8756 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑞𝐴𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆𝑞))) → ∃𝑓(𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))))
13225, 129, 131syl2anc 586 . 2 (𝜑 → ∃𝑓(𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))))
133 sneq 4571 . . . . . . . . 9 (𝑞 = 𝑦 → {𝑞} = {𝑦})
134 fveq2 6665 . . . . . . . . . 10 (𝑞 = 𝑦 → (𝑓𝑞) = (𝑓𝑦))
135134dmeqd 5769 . . . . . . . . 9 (𝑞 = 𝑦 → dom (𝑓𝑞) = dom (𝑓𝑦))
136133, 135xpeq12d 5581 . . . . . . . 8 (𝑞 = 𝑦 → ({𝑞} × dom (𝑓𝑞)) = ({𝑦} × dom (𝑓𝑦)))
137136cbviunv 4958 . . . . . . 7 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) = 𝑦𝐴 ({𝑦} × dom (𝑓𝑦))
138 snfi 8588 . . . . . . . . . 10 {𝑦} ∈ Fin
139 simprl 769 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → 𝑓:𝐴⟶Word 𝐶)
140139ffvelrnda 6846 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) ∧ 𝑦𝐴) → (𝑓𝑦) ∈ Word 𝐶)
141 wrdf 13860 . . . . . . . . . . . 12 ((𝑓𝑦) ∈ Word 𝐶 → (𝑓𝑦):(0..^(♯‘(𝑓𝑦)))⟶𝐶)
142 fdm 6517 . . . . . . . . . . . 12 ((𝑓𝑦):(0..^(♯‘(𝑓𝑦)))⟶𝐶 → dom (𝑓𝑦) = (0..^(♯‘(𝑓𝑦))))
143140, 141, 1423syl 18 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) ∧ 𝑦𝐴) → dom (𝑓𝑦) = (0..^(♯‘(𝑓𝑦))))
144 fzofi 13336 . . . . . . . . . . 11 (0..^(♯‘(𝑓𝑦))) ∈ Fin
145143, 144eqeltrdi 2921 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) ∧ 𝑦𝐴) → dom (𝑓𝑦) ∈ Fin)
146 xpfi 8783 . . . . . . . . . 10 (({𝑦} ∈ Fin ∧ dom (𝑓𝑦) ∈ Fin) → ({𝑦} × dom (𝑓𝑦)) ∈ Fin)
147138, 145, 146sylancr 589 . . . . . . . . 9 (((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) ∧ 𝑦𝐴) → ({𝑦} × dom (𝑓𝑦)) ∈ Fin)
148147ralrimiva 3182 . . . . . . . 8 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → ∀𝑦𝐴 ({𝑦} × dom (𝑓𝑦)) ∈ Fin)
149 iunfi 8806 . . . . . . . 8 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 ({𝑦} × dom (𝑓𝑦)) ∈ Fin) → 𝑦𝐴 ({𝑦} × dom (𝑓𝑦)) ∈ Fin)
15025, 148, 149syl2an2r 683 . . . . . . 7 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → 𝑦𝐴 ({𝑦} × dom (𝑓𝑦)) ∈ Fin)
151137, 150eqeltrid 2917 . . . . . 6 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) ∈ Fin)
152 hashcl 13711 . . . . . 6 ( 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) ∈ Fin → (♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))) ∈ ℕ0)
153 hashfzo0 13785 . . . . . 6 ((♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))) ∈ ℕ0 → (♯‘(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))) = (♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))
154151, 152, 1533syl 18 . . . . 5 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → (♯‘(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))) = (♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))
155 fzofi 13336 . . . . . 6 (0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) ∈ Fin
156 hashen 13701 . . . . . 6 (((0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) ∈ Fin ∧ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) ∈ Fin) → ((♯‘(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))) = (♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))) ↔ (0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) ≈ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))
157155, 151, 156sylancr 589 . . . . 5 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → ((♯‘(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))) = (♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))) ↔ (0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) ≈ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))
158154, 157mpbid 234 . . . 4 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → (0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) ≈ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))
159 bren 8512 . . . 4 ((0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) ≈ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) ↔ ∃ :(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))
160158, 159sylib 220 . . 3 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → ∃ :(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))
1616adantr 483 . . . . . 6 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → 𝐺 ∈ Abel)
16211adantr 483 . . . . . 6 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → 𝐵 ∈ Fin)
163 breq1 5062 . . . . . . . 8 (𝑤 = 𝑎 → (𝑤 ∥ (♯‘𝐵) ↔ 𝑎 ∥ (♯‘𝐵)))
164163cbvrabv 3492 . . . . . . 7 {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} = {𝑎 ∈ ℙ ∣ 𝑎 ∥ (♯‘𝐵)}
1652, 164eqtri 2844 . . . . . 6 𝐴 = {𝑎 ∈ ℙ ∣ 𝑎 ∥ (♯‘𝐵)}
166 fveq2 6665 . . . . . . . . . . 11 (𝑥 = 𝑐 → (𝑂𝑥) = (𝑂𝑐))
167166breq1d 5069 . . . . . . . . . 10 (𝑥 = 𝑐 → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂𝑐) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))))
168167cbvrabv 3492 . . . . . . . . 9 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑐𝐵 ∣ (𝑂𝑐) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}
169 id 22 . . . . . . . . . . . 12 (𝑝 = 𝑏𝑝 = 𝑏)
170 oveq1 7157 . . . . . . . . . . . 12 (𝑝 = 𝑏 → (𝑝 pCnt (♯‘𝐵)) = (𝑏 pCnt (♯‘𝐵)))
171169, 170oveq12d 7168 . . . . . . . . . . 11 (𝑝 = 𝑏 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑏↑(𝑏 pCnt (♯‘𝐵))))
172171breq2d 5071 . . . . . . . . . 10 (𝑝 = 𝑏 → ((𝑂𝑐) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂𝑐) ∥ (𝑏↑(𝑏 pCnt (♯‘𝐵)))))
173172rabbidv 3481 . . . . . . . . 9 (𝑝 = 𝑏 → {𝑐𝐵 ∣ (𝑂𝑐) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑐𝐵 ∣ (𝑂𝑐) ∥ (𝑏↑(𝑏 pCnt (♯‘𝐵)))})
174168, 173syl5eq 2868 . . . . . . . 8 (𝑝 = 𝑏 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑐𝐵 ∣ (𝑂𝑐) ∥ (𝑏↑(𝑏 pCnt (♯‘𝐵)))})
175174cbvmptv 5162 . . . . . . 7 (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) = (𝑏𝐴 ↦ {𝑐𝐵 ∣ (𝑂𝑐) ∥ (𝑏↑(𝑏 pCnt (♯‘𝐵)))})
17628, 175eqtri 2844 . . . . . 6 𝑆 = (𝑏𝐴 ↦ {𝑐𝐵 ∣ (𝑂𝑐) ∥ (𝑏↑(𝑏 pCnt (♯‘𝐵)))})
177 breq2 5063 . . . . . . . . . 10 (𝑠 = 𝑡 → (𝐺dom DProd 𝑠𝐺dom DProd 𝑡))
178 oveq2 7158 . . . . . . . . . . 11 (𝑠 = 𝑡 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑡))
179178eqeq1d 2823 . . . . . . . . . 10 (𝑠 = 𝑡 → ((𝐺 DProd 𝑠) = 𝑔 ↔ (𝐺 DProd 𝑡) = 𝑔))
180177, 179anbi12d 632 . . . . . . . . 9 (𝑠 = 𝑡 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔) ↔ (𝐺dom DProd 𝑡 ∧ (𝐺 DProd 𝑡) = 𝑔)))
181180cbvrabv 3492 . . . . . . . 8 {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)} = {𝑡 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑡 ∧ (𝐺 DProd 𝑡) = 𝑔)}
182181mpteq2i 5151 . . . . . . 7 (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑡 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑡 ∧ (𝐺 DProd 𝑡) = 𝑔)})
18339, 182eqtri 2844 . . . . . 6 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑡 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑡 ∧ (𝐺 DProd 𝑡) = 𝑔)})
184 simprll 777 . . . . . 6 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → 𝑓:𝐴⟶Word 𝐶)
185 simprlr 778 . . . . . . 7 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))
186 2fveq3 6670 . . . . . . . . 9 (𝑞 = 𝑦 → (𝑊‘(𝑆𝑞)) = (𝑊‘(𝑆𝑦)))
187134, 186eleq12d 2907 . . . . . . . 8 (𝑞 = 𝑦 → ((𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)) ↔ (𝑓𝑦) ∈ (𝑊‘(𝑆𝑦))))
188187cbvralvw 3450 . . . . . . 7 (∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)) ↔ ∀𝑦𝐴 (𝑓𝑦) ∈ (𝑊‘(𝑆𝑦)))
189185, 188sylib 220 . . . . . 6 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → ∀𝑦𝐴 (𝑓𝑦) ∈ (𝑊‘(𝑆𝑦)))
190 simprr 771 . . . . . 6 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → :(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))
1918, 38, 161, 162, 27, 165, 176, 183, 184, 189, 137, 190ablfaclem2 19202 . . . . 5 ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞))) ∧ :(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)))) → (𝑊𝐵) ≠ ∅)
192191expr 459 . . . 4 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → (:(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) → (𝑊𝐵) ≠ ∅))
193192exlimdv 1930 . . 3 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → (∃ :(0..^(♯‘ 𝑞𝐴 ({𝑞} × dom (𝑓𝑞))))–1-1-onto 𝑞𝐴 ({𝑞} × dom (𝑓𝑞)) → (𝑊𝐵) ≠ ∅))
194160, 193mpd 15 . 2 ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞𝐴 (𝑓𝑞) ∈ (𝑊‘(𝑆𝑞)))) → (𝑊𝐵) ≠ ∅)
195132, 194exlimddv 1932 1 (𝜑 → (𝑊𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4561   ciun 4912   class class class wbr 5059  cmpt 5139   × cxp 5548  dom cdm 5550  ran crn 5551  wf 6346  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7150  cen 8500  Fincfn 8503  0cc0 10531  1c1 10532  cle 10670  cn 11632  0cn0 11891  cz 11975  ...cfz 12886  ..^cfzo 13027  cexp 13423  chash 13684  Word cword 13855  cdvds 15601  cprime 16009   pCnt cpc 16167  Basecbs 16477  s cress 16478  Grpcgrp 18097  SubGrpcsubg 18267  odcod 18646   pGrp cpgp 18648  Abelcabl 18901  CycGrpccyg 18990   DProd cdprd 19109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-rpss 7443  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8283  df-ec 8285  df-qs 8289  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-dvds 15602  df-gcd 15838  df-prm 16010  df-pc 16168  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-eqg 18272  df-ghm 18350  df-gim 18393  df-ga 18414  df-cntz 18441  df-oppg 18468  df-od 18650  df-gex 18651  df-pgp 18652  df-lsm 18755  df-pj1 18756  df-cmn 18902  df-abl 18903  df-cyg 18991  df-dprd 19111
This theorem is referenced by:  ablfac  19204
  Copyright terms: Public domain W3C validator