| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 13996 |
. . . 4
⊢ (𝜑 → (1...(♯‘𝐵)) ∈ Fin) |
| 2 | | ablfac.a |
. . . . 5
⊢ 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} |
| 3 | | prmnn 16698 |
. . . . . . . 8
⊢ (𝑤 ∈ ℙ → 𝑤 ∈
ℕ) |
| 4 | 3 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ∈ ℕ) |
| 5 | | prmz 16699 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℙ → 𝑤 ∈
ℤ) |
| 6 | | ablfac.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 7 | | ablgrp 19771 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 8 | | ablfac.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐺) |
| 9 | 8 | grpbn0 18954 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| 10 | 6, 7, 9 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ≠ ∅) |
| 11 | | ablfac.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 12 | | hashnncl 14389 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ Fin →
((♯‘𝐵) ∈
ℕ ↔ 𝐵 ≠
∅)) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
| 14 | 10, 13 | mpbird 257 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ) |
| 15 | | dvdsle 16334 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ) → (𝑤 ∥
(♯‘𝐵) →
𝑤 ≤ (♯‘𝐵))) |
| 16 | 5, 14, 15 | syl2anr 597 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ℙ) → (𝑤 ∥ (♯‘𝐵) → 𝑤 ≤ (♯‘𝐵))) |
| 17 | 16 | 3impia 1117 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ≤ (♯‘𝐵)) |
| 18 | 14 | nnzd 12620 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝐵) ∈
ℤ) |
| 19 | 18 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ) |
| 20 | | fznn 13614 |
. . . . . . . 8
⊢
((♯‘𝐵)
∈ ℤ → (𝑤
∈ (1...(♯‘𝐵)) ↔ (𝑤 ∈ ℕ ∧ 𝑤 ≤ (♯‘𝐵)))) |
| 21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → (𝑤 ∈ (1...(♯‘𝐵)) ↔ (𝑤 ∈ ℕ ∧ 𝑤 ≤ (♯‘𝐵)))) |
| 22 | 4, 17, 21 | mpbir2and 713 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ∈ (1...(♯‘𝐵))) |
| 23 | 22 | rabssdv 4055 |
. . . . 5
⊢ (𝜑 → {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵))) |
| 24 | 2, 23 | eqsstrid 4002 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ (1...(♯‘𝐵))) |
| 25 | 1, 24 | ssfid 9278 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 26 | | dfin5 3939 |
. . . . . . . 8
⊢ (Word
𝐶 ∩ (𝑊‘(𝑆‘𝑞))) = {𝑦 ∈ Word 𝐶 ∣ 𝑦 ∈ (𝑊‘(𝑆‘𝑞))} |
| 27 | | ablfac.o |
. . . . . . . . . . . . . 14
⊢ 𝑂 = (od‘𝐺) |
| 28 | | ablfac.s |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
| 29 | 2 | ssrab3 4062 |
. . . . . . . . . . . . . . 15
⊢ 𝐴 ⊆
ℙ |
| 30 | 29 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ℙ) |
| 31 | 8, 27, 28, 6, 11, 30 | ablfac1b 20058 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 32 | 8 | fvexi 6895 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 ∈ V |
| 33 | 32 | rabex 5314 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V |
| 34 | 33, 28 | dmmpti 6687 |
. . . . . . . . . . . . . 14
⊢ dom 𝑆 = 𝐴 |
| 35 | 34 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom 𝑆 = 𝐴) |
| 36 | 31, 35 | dprdf2 19995 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
| 37 | 36 | ffvelcdmda 7079 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑆‘𝑞) ∈ (SubGrp‘𝐺)) |
| 38 | | ablfac.c |
. . . . . . . . . . . 12
⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp
)} |
| 39 | | ablfac.w |
. . . . . . . . . . . 12
⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) |
| 40 | 8, 38, 6, 11, 27, 2, 28, 39 | ablfaclem1 20073 |
. . . . . . . . . . 11
⊢ ((𝑆‘𝑞) ∈ (SubGrp‘𝐺) → (𝑊‘(𝑆‘𝑞)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞))}) |
| 41 | 37, 40 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑊‘(𝑆‘𝑞)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞))}) |
| 42 | | ssrab2 4060 |
. . . . . . . . . 10
⊢ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞))} ⊆ Word 𝐶 |
| 43 | 41, 42 | eqsstrdi 4008 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑊‘(𝑆‘𝑞)) ⊆ Word 𝐶) |
| 44 | | sseqin2 4203 |
. . . . . . . . 9
⊢ ((𝑊‘(𝑆‘𝑞)) ⊆ Word 𝐶 ↔ (Word 𝐶 ∩ (𝑊‘(𝑆‘𝑞))) = (𝑊‘(𝑆‘𝑞))) |
| 45 | 43, 44 | sylib 218 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (Word 𝐶 ∩ (𝑊‘(𝑆‘𝑞))) = (𝑊‘(𝑆‘𝑞))) |
| 46 | 26, 45 | eqtr3id 2785 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → {𝑦 ∈ Word 𝐶 ∣ 𝑦 ∈ (𝑊‘(𝑆‘𝑞))} = (𝑊‘(𝑆‘𝑞))) |
| 47 | 46, 41 | eqtrd 2771 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → {𝑦 ∈ Word 𝐶 ∣ 𝑦 ∈ (𝑊‘(𝑆‘𝑞))} = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞))}) |
| 48 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘(𝐺
↾s (𝑆‘𝑞))) = (Base‘(𝐺 ↾s (𝑆‘𝑞))) |
| 49 | | eqid 2736 |
. . . . . . . . 9
⊢ {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} = {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp
)} |
| 50 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝐺 ↾s (𝑆‘𝑞)) = (𝐺 ↾s (𝑆‘𝑞)) |
| 51 | 50 | subgabl 19822 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Abel ∧ (𝑆‘𝑞) ∈ (SubGrp‘𝐺)) → (𝐺 ↾s (𝑆‘𝑞)) ∈ Abel) |
| 52 | 6, 37, 51 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝐺 ↾s (𝑆‘𝑞)) ∈ Abel) |
| 53 | 30 | sselda 3963 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ ℙ) |
| 54 | 50 | subgbas 19118 |
. . . . . . . . . . . . . 14
⊢ ((𝑆‘𝑞) ∈ (SubGrp‘𝐺) → (𝑆‘𝑞) = (Base‘(𝐺 ↾s (𝑆‘𝑞)))) |
| 55 | 37, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑆‘𝑞) = (Base‘(𝐺 ↾s (𝑆‘𝑞)))) |
| 56 | 55 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(𝑆‘𝑞)) = (♯‘(Base‘(𝐺 ↾s (𝑆‘𝑞))))) |
| 57 | 8, 27, 28, 6, 11, 30 | ablfac1a 20057 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(𝑆‘𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵)))) |
| 58 | 56, 57 | eqtr3d 2773 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(Base‘(𝐺 ↾s (𝑆‘𝑞)))) = (𝑞↑(𝑞 pCnt (♯‘𝐵)))) |
| 59 | 58 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞 pCnt (♯‘(Base‘(𝐺 ↾s (𝑆‘𝑞))))) = (𝑞 pCnt (𝑞↑(𝑞 pCnt (♯‘𝐵))))) |
| 60 | 14 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘𝐵) ∈ ℕ) |
| 61 | 53, 60 | pccld 16875 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈
ℕ0) |
| 62 | 61 | nn0zd 12619 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℤ) |
| 63 | | pcid 16898 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℙ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℤ) → (𝑞 pCnt (𝑞↑(𝑞 pCnt (♯‘𝐵)))) = (𝑞 pCnt (♯‘𝐵))) |
| 64 | 53, 62, 63 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞 pCnt (𝑞↑(𝑞 pCnt (♯‘𝐵)))) = (𝑞 pCnt (♯‘𝐵))) |
| 65 | 59, 64 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞 pCnt (♯‘(Base‘(𝐺 ↾s (𝑆‘𝑞))))) = (𝑞 pCnt (♯‘𝐵))) |
| 66 | 65 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞↑(𝑞 pCnt (♯‘(Base‘(𝐺 ↾s (𝑆‘𝑞)))))) = (𝑞↑(𝑞 pCnt (♯‘𝐵)))) |
| 67 | 58, 66 | eqtr4d 2774 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(Base‘(𝐺 ↾s (𝑆‘𝑞)))) = (𝑞↑(𝑞 pCnt (♯‘(Base‘(𝐺 ↾s (𝑆‘𝑞))))))) |
| 68 | 50 | subggrp 19117 |
. . . . . . . . . . . 12
⊢ ((𝑆‘𝑞) ∈ (SubGrp‘𝐺) → (𝐺 ↾s (𝑆‘𝑞)) ∈ Grp) |
| 69 | 37, 68 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝐺 ↾s (𝑆‘𝑞)) ∈ Grp) |
| 70 | 11 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝐵 ∈ Fin) |
| 71 | 8 | subgss 19115 |
. . . . . . . . . . . . . 14
⊢ ((𝑆‘𝑞) ∈ (SubGrp‘𝐺) → (𝑆‘𝑞) ⊆ 𝐵) |
| 72 | 37, 71 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑆‘𝑞) ⊆ 𝐵) |
| 73 | 70, 72 | ssfid 9278 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑆‘𝑞) ∈ Fin) |
| 74 | 55, 73 | eqeltrrd 2836 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (Base‘(𝐺 ↾s (𝑆‘𝑞))) ∈ Fin) |
| 75 | 48 | pgpfi2 19592 |
. . . . . . . . . . 11
⊢ (((𝐺 ↾s (𝑆‘𝑞)) ∈ Grp ∧ (Base‘(𝐺 ↾s (𝑆‘𝑞))) ∈ Fin) → (𝑞 pGrp (𝐺 ↾s (𝑆‘𝑞)) ↔ (𝑞 ∈ ℙ ∧
(♯‘(Base‘(𝐺 ↾s (𝑆‘𝑞)))) = (𝑞↑(𝑞 pCnt (♯‘(Base‘(𝐺 ↾s (𝑆‘𝑞))))))))) |
| 76 | 69, 74, 75 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞 pGrp (𝐺 ↾s (𝑆‘𝑞)) ↔ (𝑞 ∈ ℙ ∧
(♯‘(Base‘(𝐺 ↾s (𝑆‘𝑞)))) = (𝑞↑(𝑞 pCnt (♯‘(Base‘(𝐺 ↾s (𝑆‘𝑞))))))))) |
| 77 | 53, 67, 76 | mpbir2and 713 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑞 pGrp (𝐺 ↾s (𝑆‘𝑞))) |
| 78 | 48, 49, 52, 77, 74 | pgpfac 20072 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → ∃𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ((𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠 ∧ ((𝐺 ↾s (𝑆‘𝑞)) DProd 𝑠) = (Base‘(𝐺 ↾s (𝑆‘𝑞))))) |
| 79 | | ssrab2 4060 |
. . . . . . . . . . . . . 14
⊢ {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆
(SubGrp‘(𝐺
↾s (𝑆‘𝑞))) |
| 80 | | sswrd 14545 |
. . . . . . . . . . . . . 14
⊢ ({𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆
(SubGrp‘(𝐺
↾s (𝑆‘𝑞))) → Word {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆
Word (SubGrp‘(𝐺
↾s (𝑆‘𝑞)))) |
| 81 | 79, 80 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ Word
{𝑟 ∈
(SubGrp‘(𝐺
↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆
Word (SubGrp‘(𝐺
↾s (𝑆‘𝑞))) |
| 82 | 81 | sseli 3959 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} →
𝑠 ∈ Word
(SubGrp‘(𝐺
↾s (𝑆‘𝑞)))) |
| 83 | 37 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) → (𝑆‘𝑞) ∈ (SubGrp‘𝐺)) |
| 84 | 83 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) ∧ (𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠) → (𝑆‘𝑞) ∈ (SubGrp‘𝐺)) |
| 85 | 50 | subgdmdprd 20022 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆‘𝑞) ∈ (SubGrp‘𝐺) → ((𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠 ↔ (𝐺dom DProd 𝑠 ∧ ran 𝑠 ⊆ 𝒫 (𝑆‘𝑞)))) |
| 86 | 83, 85 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) → ((𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠 ↔ (𝐺dom DProd 𝑠 ∧ ran 𝑠 ⊆ 𝒫 (𝑆‘𝑞)))) |
| 87 | 86 | simprbda 498 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) ∧ (𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠) → 𝐺dom DProd 𝑠) |
| 88 | 86 | simplbda 499 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) ∧ (𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠) → ran 𝑠 ⊆ 𝒫 (𝑆‘𝑞)) |
| 89 | 50, 84, 87, 88 | subgdprd 20023 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) ∧ (𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠) → ((𝐺 ↾s (𝑆‘𝑞)) DProd 𝑠) = (𝐺 DProd 𝑠)) |
| 90 | 55 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) ∧ (𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠) → (𝑆‘𝑞) = (Base‘(𝐺 ↾s (𝑆‘𝑞)))) |
| 91 | 90 | eqcomd 2742 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) ∧ (𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠) → (Base‘(𝐺 ↾s (𝑆‘𝑞))) = (𝑆‘𝑞)) |
| 92 | 89, 91 | eqeq12d 2752 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) ∧ (𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠) → (((𝐺 ↾s (𝑆‘𝑞)) DProd 𝑠) = (Base‘(𝐺 ↾s (𝑆‘𝑞))) ↔ (𝐺 DProd 𝑠) = (𝑆‘𝑞))) |
| 93 | 92 | biimpd 229 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) ∧ (𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠) → (((𝐺 ↾s (𝑆‘𝑞)) DProd 𝑠) = (Base‘(𝐺 ↾s (𝑆‘𝑞))) → (𝐺 DProd 𝑠) = (𝑆‘𝑞))) |
| 94 | 93, 87 | jctild 525 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) ∧ (𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠) → (((𝐺 ↾s (𝑆‘𝑞)) DProd 𝑠) = (Base‘(𝐺 ↾s (𝑆‘𝑞))) → (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞)))) |
| 95 | 94 | expimpd 453 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) → (((𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠 ∧ ((𝐺 ↾s (𝑆‘𝑞)) DProd 𝑠) = (Base‘(𝐺 ↾s (𝑆‘𝑞)))) → (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞)))) |
| 96 | 82, 95 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )}) →
(((𝐺 ↾s
(𝑆‘𝑞))dom DProd 𝑠 ∧ ((𝐺 ↾s (𝑆‘𝑞)) DProd 𝑠) = (Base‘(𝐺 ↾s (𝑆‘𝑞)))) → (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞)))) |
| 97 | | oveq2 7418 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑦 → ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) = ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑦)) |
| 98 | 97 | eleq1d 2820 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑦 → (((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔
((𝐺 ↾s
(𝑆‘𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp
))) |
| 99 | 98 | cbvrabv 3431 |
. . . . . . . . . . . . . 14
⊢ {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} = {𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp
)} |
| 100 | 50 | subsubg 19137 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆‘𝑞) ∈ (SubGrp‘𝐺) → (𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑦 ⊆ (𝑆‘𝑞)))) |
| 101 | 37, 100 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ 𝑦 ⊆ (𝑆‘𝑞)))) |
| 102 | 101 | simprbda 498 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) → 𝑦 ∈ (SubGrp‘𝐺)) |
| 103 | 102 | 3adant3 1132 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∧ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) →
𝑦 ∈
(SubGrp‘𝐺)) |
| 104 | 37 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∧ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) →
(𝑆‘𝑞) ∈ (SubGrp‘𝐺)) |
| 105 | 101 | simplbda 499 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞)))) → 𝑦 ⊆ (𝑆‘𝑞)) |
| 106 | 105 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∧ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) →
𝑦 ⊆ (𝑆‘𝑞)) |
| 107 | | ressabs 17274 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑆‘𝑞) ∈ (SubGrp‘𝐺) ∧ 𝑦 ⊆ (𝑆‘𝑞)) → ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑦) = (𝐺 ↾s 𝑦)) |
| 108 | 104, 106,
107 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∧ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) →
((𝐺 ↾s
(𝑆‘𝑞)) ↾s 𝑦) = (𝐺 ↾s 𝑦)) |
| 109 | | simp3 1138 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∧ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) →
((𝐺 ↾s
(𝑆‘𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp
)) |
| 110 | 108, 109 | eqeltrrd 2836 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∧ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) →
(𝐺 ↾s
𝑦) ∈ (CycGrp ∩ ran
pGrp )) |
| 111 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = 𝑦 → (𝐺 ↾s 𝑟) = (𝐺 ↾s 𝑦)) |
| 112 | 111 | eleq1d 2820 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑦 → ((𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔
(𝐺 ↾s
𝑦) ∈ (CycGrp ∩ ran
pGrp ))) |
| 113 | 112, 38 | elrab2 3679 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐶 ↔ (𝑦 ∈ (SubGrp‘𝐺) ∧ (𝐺 ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp
))) |
| 114 | 103, 110,
113 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∧ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )) →
𝑦 ∈ 𝐶) |
| 115 | 114 | rabssdv 4055 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → {𝑦 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑦) ∈ (CycGrp ∩ ran pGrp )} ⊆
𝐶) |
| 116 | 99, 115 | eqsstrid 4002 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆
𝐶) |
| 117 | | sswrd 14545 |
. . . . . . . . . . . . 13
⊢ ({𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆
𝐶 → Word {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆
Word 𝐶) |
| 118 | 116, 117 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → Word {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ⊆
Word 𝐶) |
| 119 | 118 | sselda 3963 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )}) →
𝑠 ∈ Word 𝐶) |
| 120 | 96, 119 | jctild 525 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ 𝐴) ∧ 𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )}) →
(((𝐺 ↾s
(𝑆‘𝑞))dom DProd 𝑠 ∧ ((𝐺 ↾s (𝑆‘𝑞)) DProd 𝑠) = (Base‘(𝐺 ↾s (𝑆‘𝑞)))) → (𝑠 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞))))) |
| 121 | 120 | expimpd 453 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → ((𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ∧
((𝐺 ↾s
(𝑆‘𝑞))dom DProd 𝑠 ∧ ((𝐺 ↾s (𝑆‘𝑞)) DProd 𝑠) = (Base‘(𝐺 ↾s (𝑆‘𝑞))))) → (𝑠 ∈ Word 𝐶 ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞))))) |
| 122 | 121 | reximdv2 3151 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (∃𝑠 ∈ Word {𝑟 ∈ (SubGrp‘(𝐺 ↾s (𝑆‘𝑞))) ∣ ((𝐺 ↾s (𝑆‘𝑞)) ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} ((𝐺 ↾s (𝑆‘𝑞))dom DProd 𝑠 ∧ ((𝐺 ↾s (𝑆‘𝑞)) DProd 𝑠) = (Base‘(𝐺 ↾s (𝑆‘𝑞)))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞)))) |
| 123 | 78, 122 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞))) |
| 124 | | rabn0 4369 |
. . . . . . 7
⊢ ({𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞))} ≠ ∅ ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞))) |
| 125 | 123, 124 | sylibr 234 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑞))} ≠ ∅) |
| 126 | 47, 125 | eqnetrd 3000 |
. . . . 5
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → {𝑦 ∈ Word 𝐶 ∣ 𝑦 ∈ (𝑊‘(𝑆‘𝑞))} ≠ ∅) |
| 127 | | rabn0 4369 |
. . . . 5
⊢ ({𝑦 ∈ Word 𝐶 ∣ 𝑦 ∈ (𝑊‘(𝑆‘𝑞))} ≠ ∅ ↔ ∃𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆‘𝑞))) |
| 128 | 126, 127 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → ∃𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆‘𝑞))) |
| 129 | 128 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑞 ∈ 𝐴 ∃𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆‘𝑞))) |
| 130 | | eleq1 2823 |
. . . 4
⊢ (𝑦 = (𝑓‘𝑞) → (𝑦 ∈ (𝑊‘(𝑆‘𝑞)) ↔ (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) |
| 131 | 130 | ac6sfi 9297 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ ∀𝑞 ∈ 𝐴 ∃𝑦 ∈ Word 𝐶𝑦 ∈ (𝑊‘(𝑆‘𝑞))) → ∃𝑓(𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) |
| 132 | 25, 129, 131 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) |
| 133 | | sneq 4616 |
. . . . . . . . 9
⊢ (𝑞 = 𝑦 → {𝑞} = {𝑦}) |
| 134 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑦 → (𝑓‘𝑞) = (𝑓‘𝑦)) |
| 135 | 134 | dmeqd 5890 |
. . . . . . . . 9
⊢ (𝑞 = 𝑦 → dom (𝑓‘𝑞) = dom (𝑓‘𝑦)) |
| 136 | 133, 135 | xpeq12d 5690 |
. . . . . . . 8
⊢ (𝑞 = 𝑦 → ({𝑞} × dom (𝑓‘𝑞)) = ({𝑦} × dom (𝑓‘𝑦))) |
| 137 | 136 | cbviunv 5021 |
. . . . . . 7
⊢ ∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)) = ∪
𝑦 ∈ 𝐴 ({𝑦} × dom (𝑓‘𝑦)) |
| 138 | | snfi 9062 |
. . . . . . . . . 10
⊢ {𝑦} ∈ Fin |
| 139 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) → 𝑓:𝐴⟶Word 𝐶) |
| 140 | 139 | ffvelcdmda 7079 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ∈ Word 𝐶) |
| 141 | | wrdf 14541 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑦) ∈ Word 𝐶 → (𝑓‘𝑦):(0..^(♯‘(𝑓‘𝑦)))⟶𝐶) |
| 142 | | fdm 6720 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑦):(0..^(♯‘(𝑓‘𝑦)))⟶𝐶 → dom (𝑓‘𝑦) = (0..^(♯‘(𝑓‘𝑦)))) |
| 143 | 140, 141,
142 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) ∧ 𝑦 ∈ 𝐴) → dom (𝑓‘𝑦) = (0..^(♯‘(𝑓‘𝑦)))) |
| 144 | | fzofi 13997 |
. . . . . . . . . . 11
⊢
(0..^(♯‘(𝑓‘𝑦))) ∈ Fin |
| 145 | 143, 144 | eqeltrdi 2843 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) ∧ 𝑦 ∈ 𝐴) → dom (𝑓‘𝑦) ∈ Fin) |
| 146 | | xpfi 9335 |
. . . . . . . . . 10
⊢ (({𝑦} ∈ Fin ∧ dom (𝑓‘𝑦) ∈ Fin) → ({𝑦} × dom (𝑓‘𝑦)) ∈ Fin) |
| 147 | 138, 145,
146 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) ∧ 𝑦 ∈ 𝐴) → ({𝑦} × dom (𝑓‘𝑦)) ∈ Fin) |
| 148 | 147 | ralrimiva 3133 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) → ∀𝑦 ∈ 𝐴 ({𝑦} × dom (𝑓‘𝑦)) ∈ Fin) |
| 149 | | iunfi 9360 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 ({𝑦} × dom (𝑓‘𝑦)) ∈ Fin) → ∪ 𝑦 ∈ 𝐴 ({𝑦} × dom (𝑓‘𝑦)) ∈ Fin) |
| 150 | 25, 148, 149 | syl2an2r 685 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) → ∪ 𝑦 ∈ 𝐴 ({𝑦} × dom (𝑓‘𝑦)) ∈ Fin) |
| 151 | 137, 150 | eqeltrid 2839 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) → ∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)) ∈ Fin) |
| 152 | | hashcl 14379 |
. . . . . 6
⊢ (∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)) ∈ Fin → (♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))) ∈
ℕ0) |
| 153 | | hashfzo0 14453 |
. . . . . 6
⊢
((♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))) ∈ ℕ0 →
(♯‘(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))) = (♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) |
| 154 | 151, 152,
153 | 3syl 18 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) →
(♯‘(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))) = (♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) |
| 155 | | fzofi 13997 |
. . . . . 6
⊢
(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) ∈ Fin |
| 156 | | hashen 14370 |
. . . . . 6
⊢
(((0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) ∈ Fin ∧ ∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)) ∈ Fin) →
((♯‘(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))) = (♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))) ↔ (0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) ≈ ∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) |
| 157 | 155, 151,
156 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) →
((♯‘(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))) = (♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))) ↔ (0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) ≈ ∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) |
| 158 | 154, 157 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) → (0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) ≈ ∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))) |
| 159 | | bren 8974 |
. . . 4
⊢
((0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) ≈ ∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)) ↔ ∃ℎ ℎ:(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))–1-1-onto→∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))) |
| 160 | 158, 159 | sylib 218 |
. . 3
⊢ ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) → ∃ℎ ℎ:(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))–1-1-onto→∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))) |
| 161 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞))) ∧ ℎ:(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))–1-1-onto→∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) → 𝐺 ∈ Abel) |
| 162 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞))) ∧ ℎ:(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))–1-1-onto→∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) → 𝐵 ∈ Fin) |
| 163 | | breq1 5127 |
. . . . . . . 8
⊢ (𝑤 = 𝑎 → (𝑤 ∥ (♯‘𝐵) ↔ 𝑎 ∥ (♯‘𝐵))) |
| 164 | 163 | cbvrabv 3431 |
. . . . . . 7
⊢ {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} = {𝑎 ∈ ℙ ∣ 𝑎 ∥ (♯‘𝐵)} |
| 165 | 2, 164 | eqtri 2759 |
. . . . . 6
⊢ 𝐴 = {𝑎 ∈ ℙ ∣ 𝑎 ∥ (♯‘𝐵)} |
| 166 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑐 → (𝑂‘𝑥) = (𝑂‘𝑐)) |
| 167 | 166 | breq1d 5134 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑐 → ((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂‘𝑐) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))))) |
| 168 | 167 | cbvrabv 3431 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑐 ∈ 𝐵 ∣ (𝑂‘𝑐) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} |
| 169 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑏 → 𝑝 = 𝑏) |
| 170 | | oveq1 7417 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑏 → (𝑝 pCnt (♯‘𝐵)) = (𝑏 pCnt (♯‘𝐵))) |
| 171 | 169, 170 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑏 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑏↑(𝑏 pCnt (♯‘𝐵)))) |
| 172 | 171 | breq2d 5136 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑏 → ((𝑂‘𝑐) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂‘𝑐) ∥ (𝑏↑(𝑏 pCnt (♯‘𝐵))))) |
| 173 | 172 | rabbidv 3428 |
. . . . . . . . 9
⊢ (𝑝 = 𝑏 → {𝑐 ∈ 𝐵 ∣ (𝑂‘𝑐) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑐 ∈ 𝐵 ∣ (𝑂‘𝑐) ∥ (𝑏↑(𝑏 pCnt (♯‘𝐵)))}) |
| 174 | 168, 173 | eqtrid 2783 |
. . . . . . . 8
⊢ (𝑝 = 𝑏 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑐 ∈ 𝐵 ∣ (𝑂‘𝑐) ∥ (𝑏↑(𝑏 pCnt (♯‘𝐵)))}) |
| 175 | 174 | cbvmptv 5230 |
. . . . . . 7
⊢ (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) = (𝑏 ∈ 𝐴 ↦ {𝑐 ∈ 𝐵 ∣ (𝑂‘𝑐) ∥ (𝑏↑(𝑏 pCnt (♯‘𝐵)))}) |
| 176 | 28, 175 | eqtri 2759 |
. . . . . 6
⊢ 𝑆 = (𝑏 ∈ 𝐴 ↦ {𝑐 ∈ 𝐵 ∣ (𝑂‘𝑐) ∥ (𝑏↑(𝑏 pCnt (♯‘𝐵)))}) |
| 177 | | breq2 5128 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → (𝐺dom DProd 𝑠 ↔ 𝐺dom DProd 𝑡)) |
| 178 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑡)) |
| 179 | 178 | eqeq1d 2738 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → ((𝐺 DProd 𝑠) = 𝑔 ↔ (𝐺 DProd 𝑡) = 𝑔)) |
| 180 | 177, 179 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔) ↔ (𝐺dom DProd 𝑡 ∧ (𝐺 DProd 𝑡) = 𝑔))) |
| 181 | 180 | cbvrabv 3431 |
. . . . . . . 8
⊢ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)} = {𝑡 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑡 ∧ (𝐺 DProd 𝑡) = 𝑔)} |
| 182 | 181 | mpteq2i 5222 |
. . . . . . 7
⊢ (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑡 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑡 ∧ (𝐺 DProd 𝑡) = 𝑔)}) |
| 183 | 39, 182 | eqtri 2759 |
. . . . . 6
⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑡 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑡 ∧ (𝐺 DProd 𝑡) = 𝑔)}) |
| 184 | | simprll 778 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞))) ∧ ℎ:(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))–1-1-onto→∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) → 𝑓:𝐴⟶Word 𝐶) |
| 185 | | simprlr 779 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞))) ∧ ℎ:(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))–1-1-onto→∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) → ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞))) |
| 186 | | 2fveq3 6886 |
. . . . . . . . 9
⊢ (𝑞 = 𝑦 → (𝑊‘(𝑆‘𝑞)) = (𝑊‘(𝑆‘𝑦))) |
| 187 | 134, 186 | eleq12d 2829 |
. . . . . . . 8
⊢ (𝑞 = 𝑦 → ((𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)) ↔ (𝑓‘𝑦) ∈ (𝑊‘(𝑆‘𝑦)))) |
| 188 | 187 | cbvralvw 3224 |
. . . . . . 7
⊢
(∀𝑞 ∈
𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)) ↔ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ (𝑊‘(𝑆‘𝑦))) |
| 189 | 185, 188 | sylib 218 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞))) ∧ ℎ:(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))–1-1-onto→∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) → ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ (𝑊‘(𝑆‘𝑦))) |
| 190 | | simprr 772 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞))) ∧ ℎ:(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))–1-1-onto→∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) → ℎ:(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))–1-1-onto→∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))) |
| 191 | 8, 38, 161, 162, 27, 165, 176, 183, 184, 189, 137, 190 | ablfaclem2 20074 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞))) ∧ ℎ:(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))–1-1-onto→∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)))) → (𝑊‘𝐵) ≠ ∅) |
| 192 | 191 | expr 456 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) → (ℎ:(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))–1-1-onto→∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)) → (𝑊‘𝐵) ≠ ∅)) |
| 193 | 192 | exlimdv 1933 |
. . 3
⊢ ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) → (∃ℎ ℎ:(0..^(♯‘∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞))))–1-1-onto→∪ 𝑞 ∈ 𝐴 ({𝑞} × dom (𝑓‘𝑞)) → (𝑊‘𝐵) ≠ ∅)) |
| 194 | 160, 193 | mpd 15 |
. 2
⊢ ((𝜑 ∧ (𝑓:𝐴⟶Word 𝐶 ∧ ∀𝑞 ∈ 𝐴 (𝑓‘𝑞) ∈ (𝑊‘(𝑆‘𝑞)))) → (𝑊‘𝐵) ≠ ∅) |
| 195 | 132, 194 | exlimddv 1935 |
1
⊢ (𝜑 → (𝑊‘𝐵) ≠ ∅) |