![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneifv4 | Structured version Visualization version GIF version |
Description: The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
ntrneifv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrneifv4 | ⊢ (𝜑 → (𝐼‘𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3954 | . 2 ⊢ (𝐵 ∩ (𝐼‘𝑆)) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐼‘𝑆)} | |
2 | ntrnei.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | ntrnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
4 | ntrnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
5 | 2, 3, 4 | ntrneiiex 43780 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
6 | elmapi 8870 | . . . . . 6 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
8 | ntrneifv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
9 | 7, 8 | ffvelcdmd 7091 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑆) ∈ 𝒫 𝐵) |
10 | 9 | elpwid 4606 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) ⊆ 𝐵) |
11 | sseqin2 4213 | . . 3 ⊢ ((𝐼‘𝑆) ⊆ 𝐵 ↔ (𝐵 ∩ (𝐼‘𝑆)) = (𝐼‘𝑆)) | |
12 | 10, 11 | sylib 217 | . 2 ⊢ (𝜑 → (𝐵 ∩ (𝐼‘𝑆)) = (𝐼‘𝑆)) |
13 | 4 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
14 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
15 | 8 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
16 | 2, 3, 13, 14, 15 | ntrneiel 43785 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑥))) |
17 | 16 | rabbidva 3426 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐼‘𝑆)} = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) |
18 | 1, 12, 17 | 3eqtr3a 2790 | 1 ⊢ (𝜑 → (𝐼‘𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 Vcvv 3462 ∩ cin 3945 ⊆ wss 3946 𝒫 cpw 4597 class class class wbr 5145 ↦ cmpt 5228 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 ∈ cmpo 7418 ↑m cmap 8847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-map 8849 |
This theorem is referenced by: ntrneiel2 43790 |
Copyright terms: Public domain | W3C validator |