![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneifv4 | Structured version Visualization version GIF version |
Description: The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
ntrneifv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrneifv4 | ⊢ (𝜑 → (𝐼‘𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3775 | . 2 ⊢ (𝐵 ∩ (𝐼‘𝑆)) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐼‘𝑆)} | |
2 | ntrnei.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | ntrnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
4 | ntrnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
5 | 2, 3, 4 | ntrneiiex 39144 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
6 | elmapi 8115 | . . . . . 6 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
8 | ntrneifv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
9 | 7, 8 | ffvelrnd 6584 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑆) ∈ 𝒫 𝐵) |
10 | 9 | elpwid 4359 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) ⊆ 𝐵) |
11 | sseqin2 4013 | . . 3 ⊢ ((𝐼‘𝑆) ⊆ 𝐵 ↔ (𝐵 ∩ (𝐼‘𝑆)) = (𝐼‘𝑆)) | |
12 | 10, 11 | sylib 210 | . 2 ⊢ (𝜑 → (𝐵 ∩ (𝐼‘𝑆)) = (𝐼‘𝑆)) |
13 | 4 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
14 | simpr 478 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
15 | 8 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
16 | 2, 3, 13, 14, 15 | ntrneiel 39149 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑥))) |
17 | 16 | rabbidva 3370 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐼‘𝑆)} = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) |
18 | 1, 12, 17 | 3eqtr3a 2855 | 1 ⊢ (𝜑 → (𝐼‘𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3091 Vcvv 3383 ∩ cin 3766 ⊆ wss 3767 𝒫 cpw 4347 class class class wbr 4841 ↦ cmpt 4920 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 ↦ cmpt2 6878 ↑𝑚 cmap 8093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-1st 7399 df-2nd 7400 df-map 8095 |
This theorem is referenced by: ntrneiel2 39154 |
Copyright terms: Public domain | W3C validator |