![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneifv4 | Structured version Visualization version GIF version |
Description: The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021.) |
Ref | Expression |
---|---|
ntrnei.o | β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) |
ntrnei.f | β’ πΉ = (π« π΅ππ΅) |
ntrnei.r | β’ (π β πΌπΉπ) |
ntrneifv.s | β’ (π β π β π« π΅) |
Ref | Expression |
---|---|
ntrneifv4 | β’ (π β (πΌβπ) = {π₯ β π΅ β£ π β (πβπ₯)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3955 | . 2 β’ (π΅ β© (πΌβπ)) = {π₯ β π΅ β£ π₯ β (πΌβπ)} | |
2 | ntrnei.o | . . . . . . 7 β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) | |
3 | ntrnei.f | . . . . . . 7 β’ πΉ = (π« π΅ππ΅) | |
4 | ntrnei.r | . . . . . . 7 β’ (π β πΌπΉπ) | |
5 | 2, 3, 4 | ntrneiiex 43129 | . . . . . 6 β’ (π β πΌ β (π« π΅ βm π« π΅)) |
6 | elmapi 8845 | . . . . . 6 β’ (πΌ β (π« π΅ βm π« π΅) β πΌ:π« π΅βΆπ« π΅) | |
7 | 5, 6 | syl 17 | . . . . 5 β’ (π β πΌ:π« π΅βΆπ« π΅) |
8 | ntrneifv.s | . . . . 5 β’ (π β π β π« π΅) | |
9 | 7, 8 | ffvelcdmd 7086 | . . . 4 β’ (π β (πΌβπ) β π« π΅) |
10 | 9 | elpwid 4610 | . . 3 β’ (π β (πΌβπ) β π΅) |
11 | sseqin2 4214 | . . 3 β’ ((πΌβπ) β π΅ β (π΅ β© (πΌβπ)) = (πΌβπ)) | |
12 | 10, 11 | sylib 217 | . 2 β’ (π β (π΅ β© (πΌβπ)) = (πΌβπ)) |
13 | 4 | adantr 479 | . . . 4 β’ ((π β§ π₯ β π΅) β πΌπΉπ) |
14 | simpr 483 | . . . 4 β’ ((π β§ π₯ β π΅) β π₯ β π΅) | |
15 | 8 | adantr 479 | . . . 4 β’ ((π β§ π₯ β π΅) β π β π« π΅) |
16 | 2, 3, 13, 14, 15 | ntrneiel 43134 | . . 3 β’ ((π β§ π₯ β π΅) β (π₯ β (πΌβπ) β π β (πβπ₯))) |
17 | 16 | rabbidva 3437 | . 2 β’ (π β {π₯ β π΅ β£ π₯ β (πΌβπ)} = {π₯ β π΅ β£ π β (πβπ₯)}) |
18 | 1, 12, 17 | 3eqtr3a 2794 | 1 β’ (π β (πΌβπ) = {π₯ β π΅ β£ π β (πβπ₯)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 {crab 3430 Vcvv 3472 β© cin 3946 β wss 3947 π« cpw 4601 class class class wbr 5147 β¦ cmpt 5230 βΆwf 6538 βcfv 6542 (class class class)co 7411 β cmpo 7413 βm cmap 8822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-map 8824 |
This theorem is referenced by: ntrneiel2 43139 |
Copyright terms: Public domain | W3C validator |