Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneifv4 Structured version   Visualization version   GIF version

Theorem ntrneifv4 44074
Description: The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
ntrneifv.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrneifv4 (𝜑 → (𝐼𝑆) = {𝑥𝐵𝑆 ∈ (𝑁𝑥)})
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝑆,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝑆(𝑖,𝑗,𝑘,𝑙)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneifv4
StepHypRef Expression
1 dfin5 3922 . 2 (𝐵 ∩ (𝐼𝑆)) = {𝑥𝐵𝑥 ∈ (𝐼𝑆)}
2 ntrnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
4 ntrnei.r . . . . . . 7 (𝜑𝐼𝐹𝑁)
52, 3, 4ntrneiiex 44065 . . . . . 6 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
6 elmapi 8822 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
75, 6syl 17 . . . . 5 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
8 ntrneifv.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
97, 8ffvelcdmd 7057 . . . 4 (𝜑 → (𝐼𝑆) ∈ 𝒫 𝐵)
109elpwid 4572 . . 3 (𝜑 → (𝐼𝑆) ⊆ 𝐵)
11 sseqin2 4186 . . 3 ((𝐼𝑆) ⊆ 𝐵 ↔ (𝐵 ∩ (𝐼𝑆)) = (𝐼𝑆))
1210, 11sylib 218 . 2 (𝜑 → (𝐵 ∩ (𝐼𝑆)) = (𝐼𝑆))
134adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝐼𝐹𝑁)
14 simpr 484 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
158adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝑆 ∈ 𝒫 𝐵)
162, 3, 13, 14, 15ntrneiel 44070 . . 3 ((𝜑𝑥𝐵) → (𝑥 ∈ (𝐼𝑆) ↔ 𝑆 ∈ (𝑁𝑥)))
1716rabbidva 3412 . 2 (𝜑 → {𝑥𝐵𝑥 ∈ (𝐼𝑆)} = {𝑥𝐵𝑆 ∈ (𝑁𝑥)})
181, 12, 173eqtr3a 2788 1 (𝜑 → (𝐼𝑆) = {𝑥𝐵𝑆 ∈ (𝑁𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cin 3913  wss 3914  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801
This theorem is referenced by:  ntrneiel2  44075
  Copyright terms: Public domain W3C validator