| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneifv4 | Structured version Visualization version GIF version | ||
| Description: The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| ntrneifv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| ntrneifv4 | ⊢ (𝜑 → (𝐼‘𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin5 3905 | . 2 ⊢ (𝐵 ∩ (𝐼‘𝑆)) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐼‘𝑆)} | |
| 2 | ntrnei.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 3 | ntrnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 4 | ntrnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 5 | 2, 3, 4 | ntrneiiex 44179 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 6 | elmapi 8773 | . . . . . 6 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
| 8 | ntrneifv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 9 | 7, 8 | ffvelcdmd 7018 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑆) ∈ 𝒫 𝐵) |
| 10 | 9 | elpwid 4556 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) ⊆ 𝐵) |
| 11 | sseqin2 4170 | . . 3 ⊢ ((𝐼‘𝑆) ⊆ 𝐵 ↔ (𝐵 ∩ (𝐼‘𝑆)) = (𝐼‘𝑆)) | |
| 12 | 10, 11 | sylib 218 | . 2 ⊢ (𝜑 → (𝐵 ∩ (𝐼‘𝑆)) = (𝐼‘𝑆)) |
| 13 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
| 14 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 15 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
| 16 | 2, 3, 13, 14, 15 | ntrneiel 44184 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑥))) |
| 17 | 16 | rabbidva 3401 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐼‘𝑆)} = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) |
| 18 | 1, 12, 17 | 3eqtr3a 2790 | 1 ⊢ (𝜑 → (𝐼‘𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 class class class wbr 5089 ↦ cmpt 5170 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 |
| This theorem is referenced by: ntrneiel2 44189 |
| Copyright terms: Public domain | W3C validator |