Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneifv4 | Structured version Visualization version GIF version |
Description: The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
ntrneifv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrneifv4 | ⊢ (𝜑 → (𝐼‘𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3866 | . 2 ⊢ (𝐵 ∩ (𝐼‘𝑆)) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐼‘𝑆)} | |
2 | ntrnei.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | ntrnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
4 | ntrnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
5 | 2, 3, 4 | ntrneiiex 41152 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
6 | elmapi 8438 | . . . . . 6 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
8 | ntrneifv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
9 | 7, 8 | ffvelrnd 6843 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑆) ∈ 𝒫 𝐵) |
10 | 9 | elpwid 4505 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) ⊆ 𝐵) |
11 | sseqin2 4120 | . . 3 ⊢ ((𝐼‘𝑆) ⊆ 𝐵 ↔ (𝐵 ∩ (𝐼‘𝑆)) = (𝐼‘𝑆)) | |
12 | 10, 11 | sylib 221 | . 2 ⊢ (𝜑 → (𝐵 ∩ (𝐼‘𝑆)) = (𝐼‘𝑆)) |
13 | 4 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
14 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
15 | 8 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
16 | 2, 3, 13, 14, 15 | ntrneiel 41157 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑥))) |
17 | 16 | rabbidva 3390 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ (𝐼‘𝑆)} = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) |
18 | 1, 12, 17 | 3eqtr3a 2817 | 1 ⊢ (𝜑 → (𝐼‘𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 Vcvv 3409 ∩ cin 3857 ⊆ wss 3858 𝒫 cpw 4494 class class class wbr 5032 ↦ cmpt 5112 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ∈ cmpo 7152 ↑m cmap 8416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-map 8418 |
This theorem is referenced by: ntrneiel2 41162 |
Copyright terms: Public domain | W3C validator |