Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneifv4 Structured version   Visualization version   GIF version

Theorem ntrneifv4 41695
Description: The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
ntrneifv.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrneifv4 (𝜑 → (𝐼𝑆) = {𝑥𝐵𝑆 ∈ (𝑁𝑥)})
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝑆,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝑆(𝑖,𝑗,𝑘,𝑙)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneifv4
StepHypRef Expression
1 dfin5 3895 . 2 (𝐵 ∩ (𝐼𝑆)) = {𝑥𝐵𝑥 ∈ (𝐼𝑆)}
2 ntrnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
4 ntrnei.r . . . . . . 7 (𝜑𝐼𝐹𝑁)
52, 3, 4ntrneiiex 41686 . . . . . 6 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
6 elmapi 8637 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
75, 6syl 17 . . . . 5 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
8 ntrneifv.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
97, 8ffvelrnd 6962 . . . 4 (𝜑 → (𝐼𝑆) ∈ 𝒫 𝐵)
109elpwid 4544 . . 3 (𝜑 → (𝐼𝑆) ⊆ 𝐵)
11 sseqin2 4149 . . 3 ((𝐼𝑆) ⊆ 𝐵 ↔ (𝐵 ∩ (𝐼𝑆)) = (𝐼𝑆))
1210, 11sylib 217 . 2 (𝜑 → (𝐵 ∩ (𝐼𝑆)) = (𝐼𝑆))
134adantr 481 . . . 4 ((𝜑𝑥𝐵) → 𝐼𝐹𝑁)
14 simpr 485 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
158adantr 481 . . . 4 ((𝜑𝑥𝐵) → 𝑆 ∈ 𝒫 𝐵)
162, 3, 13, 14, 15ntrneiel 41691 . . 3 ((𝜑𝑥𝐵) → (𝑥 ∈ (𝐼𝑆) ↔ 𝑆 ∈ (𝑁𝑥)))
1716rabbidva 3413 . 2 (𝜑 → {𝑥𝐵𝑥 ∈ (𝐼𝑆)} = {𝑥𝐵𝑆 ∈ (𝑁𝑥)})
181, 12, 173eqtr3a 2802 1 (𝜑 → (𝐼𝑆) = {𝑥𝐵𝑆 ∈ (𝑁𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617
This theorem is referenced by:  ntrneiel2  41696
  Copyright terms: Public domain W3C validator