Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xppreima Structured version   Visualization version   GIF version

Theorem xppreima 30979
Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 6-Jun-2017.)
Assertion
Ref Expression
xppreima ((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) → (𝐹 “ (𝑌 × 𝑍)) = (((1st𝐹) “ 𝑌) ∩ ((2nd𝐹) “ 𝑍)))

Proof of Theorem xppreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 6462 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fncnvima2 6935 . . . . 5 (𝐹 Fn dom 𝐹 → (𝐹 “ (𝑌 × 𝑍)) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ∈ (𝑌 × 𝑍)})
31, 2sylbi 216 . . . 4 (Fun 𝐹 → (𝐹 “ (𝑌 × 𝑍)) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ∈ (𝑌 × 𝑍)})
43adantr 481 . . 3 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) → (𝐹 “ (𝑌 × 𝑍)) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ∈ (𝑌 × 𝑍)})
5 elxp6 7858 . . . . . . 7 ((𝐹𝑥) ∈ (𝑌 × 𝑍) ↔ ((𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩ ∧ ((1st ‘(𝐹𝑥)) ∈ 𝑌 ∧ (2nd ‘(𝐹𝑥)) ∈ 𝑍)))
6 fvco 6863 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((1st𝐹)‘𝑥) = (1st ‘(𝐹𝑥)))
7 fvco 6863 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((2nd𝐹)‘𝑥) = (2nd ‘(𝐹𝑥)))
86, 7opeq12d 4818 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩ = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
98eqeq2d 2751 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩ ↔ (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
106eleq1d 2825 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (((1st𝐹)‘𝑥) ∈ 𝑌 ↔ (1st ‘(𝐹𝑥)) ∈ 𝑌))
117eleq1d 2825 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (((2nd𝐹)‘𝑥) ∈ 𝑍 ↔ (2nd ‘(𝐹𝑥)) ∈ 𝑍))
1210, 11anbi12d 631 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍) ↔ ((1st ‘(𝐹𝑥)) ∈ 𝑌 ∧ (2nd ‘(𝐹𝑥)) ∈ 𝑍)))
139, 12anbi12d 631 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (((𝐹𝑥) = ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩ ∧ (((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍)) ↔ ((𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩ ∧ ((1st ‘(𝐹𝑥)) ∈ 𝑌 ∧ (2nd ‘(𝐹𝑥)) ∈ 𝑍))))
145, 13bitr4id 290 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ (𝑌 × 𝑍) ↔ ((𝐹𝑥) = ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩ ∧ (((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍))))
1514adantlr 712 . . . . 5 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ (𝑌 × 𝑍) ↔ ((𝐹𝑥) = ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩ ∧ (((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍))))
16 opfv 30978 . . . . . 6 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) = ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩)
1716biantrurd 533 . . . . 5 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → ((((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍) ↔ ((𝐹𝑥) = ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩ ∧ (((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍))))
18 fo1st 7844 . . . . . . . . . . 11 1st :V–onto→V
19 fofun 6687 . . . . . . . . . . 11 (1st :V–onto→V → Fun 1st )
2018, 19ax-mp 5 . . . . . . . . . 10 Fun 1st
21 funco 6472 . . . . . . . . . 10 ((Fun 1st ∧ Fun 𝐹) → Fun (1st𝐹))
2220, 21mpan 687 . . . . . . . . 9 (Fun 𝐹 → Fun (1st𝐹))
2322adantr 481 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → Fun (1st𝐹))
24 ssv 3950 . . . . . . . . . . . 12 (𝐹 “ dom 𝐹) ⊆ V
25 fof 6686 . . . . . . . . . . . . 13 (1st :V–onto→V → 1st :V⟶V)
26 fdm 6607 . . . . . . . . . . . . 13 (1st :V⟶V → dom 1st = V)
2718, 25, 26mp2b 10 . . . . . . . . . . . 12 dom 1st = V
2824, 27sseqtrri 3963 . . . . . . . . . . 11 (𝐹 “ dom 𝐹) ⊆ dom 1st
29 ssid 3948 . . . . . . . . . . . 12 dom 𝐹 ⊆ dom 𝐹
30 funimass3 6928 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ dom 𝐹 ⊆ dom 𝐹) → ((𝐹 “ dom 𝐹) ⊆ dom 1st ↔ dom 𝐹 ⊆ (𝐹 “ dom 1st )))
3129, 30mpan2 688 . . . . . . . . . . 11 (Fun 𝐹 → ((𝐹 “ dom 𝐹) ⊆ dom 1st ↔ dom 𝐹 ⊆ (𝐹 “ dom 1st )))
3228, 31mpbii 232 . . . . . . . . . 10 (Fun 𝐹 → dom 𝐹 ⊆ (𝐹 “ dom 1st ))
3332sselda 3926 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → 𝑥 ∈ (𝐹 “ dom 1st ))
34 dmco 6157 . . . . . . . . 9 dom (1st𝐹) = (𝐹 “ dom 1st )
3533, 34eleqtrrdi 2852 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → 𝑥 ∈ dom (1st𝐹))
36 fvimacnv 6927 . . . . . . . 8 ((Fun (1st𝐹) ∧ 𝑥 ∈ dom (1st𝐹)) → (((1st𝐹)‘𝑥) ∈ 𝑌𝑥 ∈ ((1st𝐹) “ 𝑌)))
3723, 35, 36syl2anc 584 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (((1st𝐹)‘𝑥) ∈ 𝑌𝑥 ∈ ((1st𝐹) “ 𝑌)))
38 fo2nd 7845 . . . . . . . . . . 11 2nd :V–onto→V
39 fofun 6687 . . . . . . . . . . 11 (2nd :V–onto→V → Fun 2nd )
4038, 39ax-mp 5 . . . . . . . . . 10 Fun 2nd
41 funco 6472 . . . . . . . . . 10 ((Fun 2nd ∧ Fun 𝐹) → Fun (2nd𝐹))
4240, 41mpan 687 . . . . . . . . 9 (Fun 𝐹 → Fun (2nd𝐹))
4342adantr 481 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → Fun (2nd𝐹))
44 fof 6686 . . . . . . . . . . . . 13 (2nd :V–onto→V → 2nd :V⟶V)
45 fdm 6607 . . . . . . . . . . . . 13 (2nd :V⟶V → dom 2nd = V)
4638, 44, 45mp2b 10 . . . . . . . . . . . 12 dom 2nd = V
4724, 46sseqtrri 3963 . . . . . . . . . . 11 (𝐹 “ dom 𝐹) ⊆ dom 2nd
48 funimass3 6928 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ dom 𝐹 ⊆ dom 𝐹) → ((𝐹 “ dom 𝐹) ⊆ dom 2nd ↔ dom 𝐹 ⊆ (𝐹 “ dom 2nd )))
4929, 48mpan2 688 . . . . . . . . . . 11 (Fun 𝐹 → ((𝐹 “ dom 𝐹) ⊆ dom 2nd ↔ dom 𝐹 ⊆ (𝐹 “ dom 2nd )))
5047, 49mpbii 232 . . . . . . . . . 10 (Fun 𝐹 → dom 𝐹 ⊆ (𝐹 “ dom 2nd ))
5150sselda 3926 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → 𝑥 ∈ (𝐹 “ dom 2nd ))
52 dmco 6157 . . . . . . . . 9 dom (2nd𝐹) = (𝐹 “ dom 2nd )
5351, 52eleqtrrdi 2852 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → 𝑥 ∈ dom (2nd𝐹))
54 fvimacnv 6927 . . . . . . . 8 ((Fun (2nd𝐹) ∧ 𝑥 ∈ dom (2nd𝐹)) → (((2nd𝐹)‘𝑥) ∈ 𝑍𝑥 ∈ ((2nd𝐹) “ 𝑍)))
5543, 53, 54syl2anc 584 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (((2nd𝐹)‘𝑥) ∈ 𝑍𝑥 ∈ ((2nd𝐹) “ 𝑍)))
5637, 55anbi12d 631 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍) ↔ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))))
5756adantlr 712 . . . . 5 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → ((((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍) ↔ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))))
5815, 17, 573bitr2d 307 . . . 4 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ (𝑌 × 𝑍) ↔ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))))
5958rabbidva 3411 . . 3 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ∈ (𝑌 × 𝑍)} = {𝑥 ∈ dom 𝐹 ∣ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))})
604, 59eqtrd 2780 . 2 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) → (𝐹 “ (𝑌 × 𝑍)) = {𝑥 ∈ dom 𝐹 ∣ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))})
61 dfin5 3900 . . . 4 (dom 𝐹 ∩ ((1st𝐹) “ 𝑌)) = {𝑥 ∈ dom 𝐹𝑥 ∈ ((1st𝐹) “ 𝑌)}
62 dfin5 3900 . . . 4 (dom 𝐹 ∩ ((2nd𝐹) “ 𝑍)) = {𝑥 ∈ dom 𝐹𝑥 ∈ ((2nd𝐹) “ 𝑍)}
6361, 62ineq12i 4150 . . 3 ((dom 𝐹 ∩ ((1st𝐹) “ 𝑌)) ∩ (dom 𝐹 ∩ ((2nd𝐹) “ 𝑍))) = ({𝑥 ∈ dom 𝐹𝑥 ∈ ((1st𝐹) “ 𝑌)} ∩ {𝑥 ∈ dom 𝐹𝑥 ∈ ((2nd𝐹) “ 𝑍)})
64 cnvimass 5988 . . . . . 6 ((1st𝐹) “ 𝑌) ⊆ dom (1st𝐹)
65 dmcoss 5879 . . . . . 6 dom (1st𝐹) ⊆ dom 𝐹
6664, 65sstri 3935 . . . . 5 ((1st𝐹) “ 𝑌) ⊆ dom 𝐹
67 sseqin2 4155 . . . . 5 (((1st𝐹) “ 𝑌) ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ ((1st𝐹) “ 𝑌)) = ((1st𝐹) “ 𝑌))
6866, 67mpbi 229 . . . 4 (dom 𝐹 ∩ ((1st𝐹) “ 𝑌)) = ((1st𝐹) “ 𝑌)
69 cnvimass 5988 . . . . . 6 ((2nd𝐹) “ 𝑍) ⊆ dom (2nd𝐹)
70 dmcoss 5879 . . . . . 6 dom (2nd𝐹) ⊆ dom 𝐹
7169, 70sstri 3935 . . . . 5 ((2nd𝐹) “ 𝑍) ⊆ dom 𝐹
72 sseqin2 4155 . . . . 5 (((2nd𝐹) “ 𝑍) ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ ((2nd𝐹) “ 𝑍)) = ((2nd𝐹) “ 𝑍))
7371, 72mpbi 229 . . . 4 (dom 𝐹 ∩ ((2nd𝐹) “ 𝑍)) = ((2nd𝐹) “ 𝑍)
7468, 73ineq12i 4150 . . 3 ((dom 𝐹 ∩ ((1st𝐹) “ 𝑌)) ∩ (dom 𝐹 ∩ ((2nd𝐹) “ 𝑍))) = (((1st𝐹) “ 𝑌) ∩ ((2nd𝐹) “ 𝑍))
75 inrab 4246 . . 3 ({𝑥 ∈ dom 𝐹𝑥 ∈ ((1st𝐹) “ 𝑌)} ∩ {𝑥 ∈ dom 𝐹𝑥 ∈ ((2nd𝐹) “ 𝑍)}) = {𝑥 ∈ dom 𝐹 ∣ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))}
7663, 74, 753eqtr3ri 2777 . 2 {𝑥 ∈ dom 𝐹 ∣ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))} = (((1st𝐹) “ 𝑌) ∩ ((2nd𝐹) “ 𝑍))
7760, 76eqtrdi 2796 1 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) → (𝐹 “ (𝑌 × 𝑍)) = (((1st𝐹) “ 𝑌) ∩ ((2nd𝐹) “ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  {crab 3070  Vcvv 3431  cin 3891  wss 3892  cop 4573   × cxp 5588  ccnv 5589  dom cdm 5590  ran crn 5591  cima 5593  ccom 5594  Fun wfun 6426   Fn wfn 6427  wf 6428  ontowfo 6430  cfv 6432  1st c1st 7822  2nd c2nd 7823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fo 6438  df-fv 6440  df-1st 7824  df-2nd 7825
This theorem is referenced by:  xppreima2  30984
  Copyright terms: Public domain W3C validator