MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrmvd Structured version   Visualization version   GIF version

Theorem pmtrmvd 19442
Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrmvd ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = 𝑃)

Proof of Theorem pmtrmvd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
21pmtrf 19441 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)
3 ffn 6711 . . 3 ((𝑇𝑃):𝐷𝐷 → (𝑇𝑃) Fn 𝐷)
4 fndifnfp 7173 . . 3 ((𝑇𝑃) Fn 𝐷 → dom ((𝑇𝑃) ∖ I ) = {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧})
52, 3, 43syl 18 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧})
61pmtrfv 19438 . . . . . 6 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → ((𝑇𝑃)‘𝑧) = if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
76neeq1d 2992 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (((𝑇𝑃)‘𝑧) ≠ 𝑧 ↔ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧))
8 iffalse 4514 . . . . . . . 8 𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = 𝑧)
98necon1ai 2960 . . . . . . 7 (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃)
10 iftrue 4511 . . . . . . . . . 10 (𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = (𝑃 ∖ {𝑧}))
1110adantl 481 . . . . . . . . 9 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = (𝑃 ∖ {𝑧}))
12 1onn 8657 . . . . . . . . . . 11 1o ∈ ω
13 simpl3 1194 . . . . . . . . . . . 12 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑃 ≈ 2o)
14 df-2o 8486 . . . . . . . . . . . 12 2o = suc 1o
1513, 14breqtrdi 5165 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1o)
16 simpr 484 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑧𝑃)
17 dif1ennn 9180 . . . . . . . . . . 11 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
1812, 15, 16, 17mp3an2i 1468 . . . . . . . . . 10 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
19 en1uniel 9048 . . . . . . . . . 10 ((𝑃 ∖ {𝑧}) ≈ 1o (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
20 eldifsni 4771 . . . . . . . . . 10 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ≠ 𝑧)
2118, 19, 203syl 18 . . . . . . . . 9 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≠ 𝑧)
2211, 21eqnetrd 3000 . . . . . . . 8 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧)
2322ex 412 . . . . . . 7 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧))
249, 23impbid2 226 . . . . . 6 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃))
2524adantr 480 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃))
267, 25bitrd 279 . . . 4 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (((𝑇𝑃)‘𝑧) ≠ 𝑧𝑧𝑃))
2726rabbidva 3427 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧} = {𝑧𝐷𝑧𝑃})
28 incom 4189 . . . 4 (𝑃𝐷) = (𝐷𝑃)
29 dfin5 3939 . . . 4 (𝐷𝑃) = {𝑧𝐷𝑧𝑃}
3028, 29eqtri 2759 . . 3 (𝑃𝐷) = {𝑧𝐷𝑧𝑃}
3127, 30eqtr4di 2789 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧} = (𝑃𝐷))
32 simp2 1137 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃𝐷)
33 dfss2 3949 . . 3 (𝑃𝐷 ↔ (𝑃𝐷) = 𝑃)
3432, 33sylib 218 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑃𝐷) = 𝑃)
355, 31, 343eqtrd 2775 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  {crab 3420  cdif 3928  cin 3930  wss 3931  ifcif 4505  {csn 4606   cuni 4888   class class class wbr 5124   I cid 5552  dom cdm 5659  suc csuc 6359   Fn wfn 6531  wf 6532  cfv 6536  ωcom 7866  1oc1o 8478  2oc2o 8479  cen 8961  pmTrspcpmtr 19427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-2o 8486  df-en 8965  df-pmtr 19428
This theorem is referenced by:  pmtrfrn  19444  pmtrfb  19451  symggen  19456  pmtrdifellem2  19463  mdetralt  22551  mdetunilem7  22561  pmtrcnel  33105  pmtrcnel2  33106
  Copyright terms: Public domain W3C validator