MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrmvd Structured version   Visualization version   GIF version

Theorem pmtrmvd 19374
Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrmvd ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = 𝑃)

Proof of Theorem pmtrmvd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
21pmtrf 19373 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)
3 ffn 6657 . . 3 ((𝑇𝑃):𝐷𝐷 → (𝑇𝑃) Fn 𝐷)
4 fndifnfp 7116 . . 3 ((𝑇𝑃) Fn 𝐷 → dom ((𝑇𝑃) ∖ I ) = {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧})
52, 3, 43syl 18 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧})
61pmtrfv 19370 . . . . . 6 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → ((𝑇𝑃)‘𝑧) = if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
76neeq1d 2987 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (((𝑇𝑃)‘𝑧) ≠ 𝑧 ↔ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧))
8 iffalse 4483 . . . . . . . 8 𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = 𝑧)
98necon1ai 2955 . . . . . . 7 (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃)
10 iftrue 4480 . . . . . . . . . 10 (𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = (𝑃 ∖ {𝑧}))
1110adantl 481 . . . . . . . . 9 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = (𝑃 ∖ {𝑧}))
12 1onn 8561 . . . . . . . . . . 11 1o ∈ ω
13 simpl3 1194 . . . . . . . . . . . 12 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑃 ≈ 2o)
14 df-2o 8392 . . . . . . . . . . . 12 2o = suc 1o
1513, 14breqtrdi 5134 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1o)
16 simpr 484 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑧𝑃)
17 dif1ennn 9078 . . . . . . . . . . 11 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
1812, 15, 16, 17mp3an2i 1468 . . . . . . . . . 10 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
19 en1uniel 8957 . . . . . . . . . 10 ((𝑃 ∖ {𝑧}) ≈ 1o (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
20 eldifsni 4741 . . . . . . . . . 10 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ≠ 𝑧)
2118, 19, 203syl 18 . . . . . . . . 9 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≠ 𝑧)
2211, 21eqnetrd 2995 . . . . . . . 8 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧)
2322ex 412 . . . . . . 7 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧))
249, 23impbid2 226 . . . . . 6 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃))
2524adantr 480 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃))
267, 25bitrd 279 . . . 4 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (((𝑇𝑃)‘𝑧) ≠ 𝑧𝑧𝑃))
2726rabbidva 3401 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧} = {𝑧𝐷𝑧𝑃})
28 incom 4158 . . . 4 (𝑃𝐷) = (𝐷𝑃)
29 dfin5 3905 . . . 4 (𝐷𝑃) = {𝑧𝐷𝑧𝑃}
3028, 29eqtri 2754 . . 3 (𝑃𝐷) = {𝑧𝐷𝑧𝑃}
3127, 30eqtr4di 2784 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧} = (𝑃𝐷))
32 simp2 1137 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃𝐷)
33 dfss2 3915 . . 3 (𝑃𝐷 ↔ (𝑃𝐷) = 𝑃)
3432, 33sylib 218 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑃𝐷) = 𝑃)
355, 31, 343eqtrd 2770 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {crab 3395  cdif 3894  cin 3896  wss 3897  ifcif 4474  {csn 4575   cuni 4858   class class class wbr 5093   I cid 5513  dom cdm 5619  suc csuc 6314   Fn wfn 6482  wf 6483  cfv 6487  ωcom 7802  1oc1o 8384  2oc2o 8385  cen 8872  pmTrspcpmtr 19359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-om 7803  df-1o 8391  df-2o 8392  df-en 8876  df-pmtr 19360
This theorem is referenced by:  pmtrfrn  19376  pmtrfb  19383  symggen  19388  pmtrdifellem2  19395  mdetralt  22529  mdetunilem7  22539  pmtrcnel  33065  pmtrcnel2  33066
  Copyright terms: Public domain W3C validator