Step | Hyp | Ref
| Expression |
1 | | pmtrfval.t |
. . . 4
⊢ 𝑇 = (pmTrsp‘𝐷) |
2 | 1 | pmtrf 19063 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) |
3 | | ffn 6600 |
. . 3
⊢ ((𝑇‘𝑃):𝐷⟶𝐷 → (𝑇‘𝑃) Fn 𝐷) |
4 | | fndifnfp 7048 |
. . 3
⊢ ((𝑇‘𝑃) Fn 𝐷 → dom ((𝑇‘𝑃) ∖ I ) = {𝑧 ∈ 𝐷 ∣ ((𝑇‘𝑃)‘𝑧) ≠ 𝑧}) |
5 | 2, 3, 4 | 3syl 18 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → dom ((𝑇‘𝑃) ∖ I ) = {𝑧 ∈ 𝐷 ∣ ((𝑇‘𝑃)‘𝑧) ≠ 𝑧}) |
6 | 1 | pmtrfv 19060 |
. . . . . 6
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑧) = if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) |
7 | 6 | neeq1d 3003 |
. . . . 5
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → (((𝑇‘𝑃)‘𝑧) ≠ 𝑧 ↔ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧)) |
8 | | iffalse 4468 |
. . . . . . . 8
⊢ (¬
𝑧 ∈ 𝑃 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = 𝑧) |
9 | 8 | necon1ai 2971 |
. . . . . . 7
⊢ (if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧 → 𝑧 ∈ 𝑃) |
10 | | iftrue 4465 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑃 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = ∪ (𝑃 ∖ {𝑧})) |
11 | 10 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = ∪ (𝑃 ∖ {𝑧})) |
12 | | 1onn 8470 |
. . . . . . . . . . 11
⊢
1o ∈ ω |
13 | | simpl3 1192 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ 2o) |
14 | | df-2o 8298 |
. . . . . . . . . . . 12
⊢
2o = suc 1o |
15 | 13, 14 | breqtrdi 5115 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ suc 1o) |
16 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝑃) |
17 | | dif1en 8945 |
. . . . . . . . . . 11
⊢
((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) |
18 | 12, 15, 16, 17 | mp3an2i 1465 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) |
19 | | en1uniel 8818 |
. . . . . . . . . 10
⊢ ((𝑃 ∖ {𝑧}) ≈ 1o → ∪ (𝑃
∖ {𝑧}) ∈ (𝑃 ∖ {𝑧})) |
20 | | eldifsni 4723 |
. . . . . . . . . 10
⊢ (∪ (𝑃
∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → ∪ (𝑃 ∖ {𝑧}) ≠ 𝑧) |
21 | 18, 19, 20 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ≠ 𝑧) |
22 | 11, 21 | eqnetrd 3011 |
. . . . . . . 8
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧) |
23 | 22 | ex 413 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑧 ∈ 𝑃 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧)) |
24 | 9, 23 | impbid2 225 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃)) |
25 | 24 | adantr 481 |
. . . . 5
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → (if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃)) |
26 | 7, 25 | bitrd 278 |
. . . 4
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → (((𝑇‘𝑃)‘𝑧) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃)) |
27 | 26 | rabbidva 3413 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → {𝑧 ∈ 𝐷 ∣ ((𝑇‘𝑃)‘𝑧) ≠ 𝑧} = {𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃}) |
28 | | incom 4135 |
. . . 4
⊢ (𝑃 ∩ 𝐷) = (𝐷 ∩ 𝑃) |
29 | | dfin5 3895 |
. . . 4
⊢ (𝐷 ∩ 𝑃) = {𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃} |
30 | 28, 29 | eqtri 2766 |
. . 3
⊢ (𝑃 ∩ 𝐷) = {𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃} |
31 | 27, 30 | eqtr4di 2796 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → {𝑧 ∈ 𝐷 ∣ ((𝑇‘𝑃)‘𝑧) ≠ 𝑧} = (𝑃 ∩ 𝐷)) |
32 | | simp2 1136 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ⊆ 𝐷) |
33 | | df-ss 3904 |
. . 3
⊢ (𝑃 ⊆ 𝐷 ↔ (𝑃 ∩ 𝐷) = 𝑃) |
34 | 32, 33 | sylib 217 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑃 ∩ 𝐷) = 𝑃) |
35 | 5, 31, 34 | 3eqtrd 2782 |
1
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → dom ((𝑇‘𝑃) ∖ I ) = 𝑃) |