MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrmvd Structured version   Visualization version   GIF version

Theorem pmtrmvd 19133
Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrmvd ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = 𝑃)

Proof of Theorem pmtrmvd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
21pmtrf 19132 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)
3 ffn 6637 . . 3 ((𝑇𝑃):𝐷𝐷 → (𝑇𝑃) Fn 𝐷)
4 fndifnfp 7087 . . 3 ((𝑇𝑃) Fn 𝐷 → dom ((𝑇𝑃) ∖ I ) = {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧})
52, 3, 43syl 18 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧})
61pmtrfv 19129 . . . . . 6 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → ((𝑇𝑃)‘𝑧) = if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
76neeq1d 3001 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (((𝑇𝑃)‘𝑧) ≠ 𝑧 ↔ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧))
8 iffalse 4480 . . . . . . . 8 𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = 𝑧)
98necon1ai 2969 . . . . . . 7 (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃)
10 iftrue 4477 . . . . . . . . . 10 (𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = (𝑃 ∖ {𝑧}))
1110adantl 482 . . . . . . . . 9 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = (𝑃 ∖ {𝑧}))
12 1onn 8518 . . . . . . . . . . 11 1o ∈ ω
13 simpl3 1192 . . . . . . . . . . . 12 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑃 ≈ 2o)
14 df-2o 8345 . . . . . . . . . . . 12 2o = suc 1o
1513, 14breqtrdi 5128 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1o)
16 simpr 485 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑧𝑃)
17 dif1ennn 9003 . . . . . . . . . . 11 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
1812, 15, 16, 17mp3an2i 1465 . . . . . . . . . 10 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
19 en1uniel 8870 . . . . . . . . . 10 ((𝑃 ∖ {𝑧}) ≈ 1o (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
20 eldifsni 4735 . . . . . . . . . 10 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ≠ 𝑧)
2118, 19, 203syl 18 . . . . . . . . 9 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≠ 𝑧)
2211, 21eqnetrd 3009 . . . . . . . 8 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧)
2322ex 413 . . . . . . 7 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧))
249, 23impbid2 225 . . . . . 6 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃))
2524adantr 481 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃))
267, 25bitrd 278 . . . 4 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (((𝑇𝑃)‘𝑧) ≠ 𝑧𝑧𝑃))
2726rabbidva 3411 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧} = {𝑧𝐷𝑧𝑃})
28 incom 4146 . . . 4 (𝑃𝐷) = (𝐷𝑃)
29 dfin5 3905 . . . 4 (𝐷𝑃) = {𝑧𝐷𝑧𝑃}
3028, 29eqtri 2765 . . 3 (𝑃𝐷) = {𝑧𝐷𝑧𝑃}
3127, 30eqtr4di 2795 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧} = (𝑃𝐷))
32 simp2 1136 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃𝐷)
33 df-ss 3914 . . 3 (𝑃𝐷 ↔ (𝑃𝐷) = 𝑃)
3432, 33sylib 217 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑃𝐷) = 𝑃)
355, 31, 343eqtrd 2781 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2941  {crab 3404  cdif 3894  cin 3896  wss 3897  ifcif 4471  {csn 4571   cuni 4850   class class class wbr 5087   I cid 5506  dom cdm 5607  suc csuc 6290   Fn wfn 6460  wf 6461  cfv 6465  ωcom 7757  1oc1o 8337  2oc2o 8338  cen 8778  pmTrspcpmtr 19118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-om 7758  df-1o 8344  df-2o 8345  df-en 8782  df-pmtr 19119
This theorem is referenced by:  pmtrfrn  19135  pmtrfb  19142  symggen  19147  pmtrdifellem2  19154  mdetralt  21829  mdetunilem7  21839  pmtrcnel  31466  pmtrcnel2  31467
  Copyright terms: Public domain W3C validator