| Step | Hyp | Ref
| Expression |
| 1 | | pmtrfval.t |
. . . 4
⊢ 𝑇 = (pmTrsp‘𝐷) |
| 2 | 1 | pmtrf 19441 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) |
| 3 | | ffn 6711 |
. . 3
⊢ ((𝑇‘𝑃):𝐷⟶𝐷 → (𝑇‘𝑃) Fn 𝐷) |
| 4 | | fndifnfp 7173 |
. . 3
⊢ ((𝑇‘𝑃) Fn 𝐷 → dom ((𝑇‘𝑃) ∖ I ) = {𝑧 ∈ 𝐷 ∣ ((𝑇‘𝑃)‘𝑧) ≠ 𝑧}) |
| 5 | 2, 3, 4 | 3syl 18 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → dom ((𝑇‘𝑃) ∖ I ) = {𝑧 ∈ 𝐷 ∣ ((𝑇‘𝑃)‘𝑧) ≠ 𝑧}) |
| 6 | 1 | pmtrfv 19438 |
. . . . . 6
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑧) = if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) |
| 7 | 6 | neeq1d 2992 |
. . . . 5
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → (((𝑇‘𝑃)‘𝑧) ≠ 𝑧 ↔ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧)) |
| 8 | | iffalse 4514 |
. . . . . . . 8
⊢ (¬
𝑧 ∈ 𝑃 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = 𝑧) |
| 9 | 8 | necon1ai 2960 |
. . . . . . 7
⊢ (if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧 → 𝑧 ∈ 𝑃) |
| 10 | | iftrue 4511 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑃 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = ∪ (𝑃 ∖ {𝑧})) |
| 11 | 10 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = ∪ (𝑃 ∖ {𝑧})) |
| 12 | | 1onn 8657 |
. . . . . . . . . . 11
⊢
1o ∈ ω |
| 13 | | simpl3 1194 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ 2o) |
| 14 | | df-2o 8486 |
. . . . . . . . . . . 12
⊢
2o = suc 1o |
| 15 | 13, 14 | breqtrdi 5165 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ suc 1o) |
| 16 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝑃) |
| 17 | | dif1ennn 9180 |
. . . . . . . . . . 11
⊢
((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) |
| 18 | 12, 15, 16, 17 | mp3an2i 1468 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) |
| 19 | | en1uniel 9048 |
. . . . . . . . . 10
⊢ ((𝑃 ∖ {𝑧}) ≈ 1o → ∪ (𝑃
∖ {𝑧}) ∈ (𝑃 ∖ {𝑧})) |
| 20 | | eldifsni 4771 |
. . . . . . . . . 10
⊢ (∪ (𝑃
∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → ∪ (𝑃 ∖ {𝑧}) ≠ 𝑧) |
| 21 | 18, 19, 20 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ≠ 𝑧) |
| 22 | 11, 21 | eqnetrd 3000 |
. . . . . . . 8
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝑃) → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧) |
| 23 | 22 | ex 412 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑧 ∈ 𝑃 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧)) |
| 24 | 9, 23 | impbid2 226 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃)) |
| 25 | 24 | adantr 480 |
. . . . 5
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → (if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃)) |
| 26 | 7, 25 | bitrd 279 |
. . . 4
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → (((𝑇‘𝑃)‘𝑧) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃)) |
| 27 | 26 | rabbidva 3427 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → {𝑧 ∈ 𝐷 ∣ ((𝑇‘𝑃)‘𝑧) ≠ 𝑧} = {𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃}) |
| 28 | | incom 4189 |
. . . 4
⊢ (𝑃 ∩ 𝐷) = (𝐷 ∩ 𝑃) |
| 29 | | dfin5 3939 |
. . . 4
⊢ (𝐷 ∩ 𝑃) = {𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃} |
| 30 | 28, 29 | eqtri 2759 |
. . 3
⊢ (𝑃 ∩ 𝐷) = {𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃} |
| 31 | 27, 30 | eqtr4di 2789 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → {𝑧 ∈ 𝐷 ∣ ((𝑇‘𝑃)‘𝑧) ≠ 𝑧} = (𝑃 ∩ 𝐷)) |
| 32 | | simp2 1137 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ⊆ 𝐷) |
| 33 | | dfss2 3949 |
. . 3
⊢ (𝑃 ⊆ 𝐷 ↔ (𝑃 ∩ 𝐷) = 𝑃) |
| 34 | 32, 33 | sylib 218 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑃 ∩ 𝐷) = 𝑃) |
| 35 | 5, 31, 34 | 3eqtrd 2775 |
1
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → dom ((𝑇‘𝑃) ∖ I ) = 𝑃) |