MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrmvd Structured version   Visualization version   GIF version

Theorem pmtrmvd 19353
Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrmvd ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = 𝑃)

Proof of Theorem pmtrmvd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
21pmtrf 19352 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)
3 ffn 6656 . . 3 ((𝑇𝑃):𝐷𝐷 → (𝑇𝑃) Fn 𝐷)
4 fndifnfp 7116 . . 3 ((𝑇𝑃) Fn 𝐷 → dom ((𝑇𝑃) ∖ I ) = {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧})
52, 3, 43syl 18 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧})
61pmtrfv 19349 . . . . . 6 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → ((𝑇𝑃)‘𝑧) = if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
76neeq1d 2984 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (((𝑇𝑃)‘𝑧) ≠ 𝑧 ↔ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧))
8 iffalse 4487 . . . . . . . 8 𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = 𝑧)
98necon1ai 2952 . . . . . . 7 (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃)
10 iftrue 4484 . . . . . . . . . 10 (𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = (𝑃 ∖ {𝑧}))
1110adantl 481 . . . . . . . . 9 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = (𝑃 ∖ {𝑧}))
12 1onn 8565 . . . . . . . . . . 11 1o ∈ ω
13 simpl3 1194 . . . . . . . . . . . 12 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑃 ≈ 2o)
14 df-2o 8396 . . . . . . . . . . . 12 2o = suc 1o
1513, 14breqtrdi 5136 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1o)
16 simpr 484 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑧𝑃)
17 dif1ennn 9085 . . . . . . . . . . 11 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
1812, 15, 16, 17mp3an2i 1468 . . . . . . . . . 10 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
19 en1uniel 8961 . . . . . . . . . 10 ((𝑃 ∖ {𝑧}) ≈ 1o (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
20 eldifsni 4744 . . . . . . . . . 10 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ≠ 𝑧)
2118, 19, 203syl 18 . . . . . . . . 9 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≠ 𝑧)
2211, 21eqnetrd 2992 . . . . . . . 8 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧)
2322ex 412 . . . . . . 7 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧))
249, 23impbid2 226 . . . . . 6 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃))
2524adantr 480 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃))
267, 25bitrd 279 . . . 4 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (((𝑇𝑃)‘𝑧) ≠ 𝑧𝑧𝑃))
2726rabbidva 3403 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧} = {𝑧𝐷𝑧𝑃})
28 incom 4162 . . . 4 (𝑃𝐷) = (𝐷𝑃)
29 dfin5 3913 . . . 4 (𝐷𝑃) = {𝑧𝐷𝑧𝑃}
3028, 29eqtri 2752 . . 3 (𝑃𝐷) = {𝑧𝐷𝑧𝑃}
3127, 30eqtr4di 2782 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧} = (𝑃𝐷))
32 simp2 1137 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃𝐷)
33 dfss2 3923 . . 3 (𝑃𝐷 ↔ (𝑃𝐷) = 𝑃)
3432, 33sylib 218 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑃𝐷) = 𝑃)
355, 31, 343eqtrd 2768 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3396  cdif 3902  cin 3904  wss 3905  ifcif 4478  {csn 4579   cuni 4861   class class class wbr 5095   I cid 5517  dom cdm 5623  suc csuc 6313   Fn wfn 6481  wf 6482  cfv 6486  ωcom 7806  1oc1o 8388  2oc2o 8389  cen 8876  pmTrspcpmtr 19338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1o 8395  df-2o 8396  df-en 8880  df-pmtr 19339
This theorem is referenced by:  pmtrfrn  19355  pmtrfb  19362  symggen  19367  pmtrdifellem2  19374  mdetralt  22511  mdetunilem7  22521  pmtrcnel  33044  pmtrcnel2  33045
  Copyright terms: Public domain W3C validator