MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrmvd Structured version   Visualization version   GIF version

Theorem pmtrmvd 18584
Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrmvd ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = 𝑃)

Proof of Theorem pmtrmvd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
21pmtrf 18583 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)
3 ffn 6514 . . 3 ((𝑇𝑃):𝐷𝐷 → (𝑇𝑃) Fn 𝐷)
4 fndifnfp 6938 . . 3 ((𝑇𝑃) Fn 𝐷 → dom ((𝑇𝑃) ∖ I ) = {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧})
52, 3, 43syl 18 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧})
61pmtrfv 18580 . . . . . 6 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → ((𝑇𝑃)‘𝑧) = if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
76neeq1d 3075 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (((𝑇𝑃)‘𝑧) ≠ 𝑧 ↔ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧))
8 iffalse 4476 . . . . . . . 8 𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = 𝑧)
98necon1ai 3043 . . . . . . 7 (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃)
10 iftrue 4473 . . . . . . . . . 10 (𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = (𝑃 ∖ {𝑧}))
1110adantl 484 . . . . . . . . 9 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = (𝑃 ∖ {𝑧}))
12 1onn 8265 . . . . . . . . . . 11 1o ∈ ω
13 simpl3 1189 . . . . . . . . . . . 12 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑃 ≈ 2o)
14 df-2o 8103 . . . . . . . . . . . 12 2o = suc 1o
1513, 14breqtrdi 5107 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1o)
16 simpr 487 . . . . . . . . . . 11 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → 𝑧𝑃)
17 dif1en 8751 . . . . . . . . . . 11 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
1812, 15, 16, 17mp3an2i 1462 . . . . . . . . . 10 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
19 en1uniel 8581 . . . . . . . . . 10 ((𝑃 ∖ {𝑧}) ≈ 1o (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
20 eldifsni 4722 . . . . . . . . . 10 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ≠ 𝑧)
2118, 19, 203syl 18 . . . . . . . . 9 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≠ 𝑧)
2211, 21eqnetrd 3083 . . . . . . . 8 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝑃) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧)
2322ex 415 . . . . . . 7 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑧𝑃 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧))
249, 23impbid2 228 . . . . . 6 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃))
2524adantr 483 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧𝑧𝑃))
267, 25bitrd 281 . . . 4 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → (((𝑇𝑃)‘𝑧) ≠ 𝑧𝑧𝑃))
2726rabbidva 3478 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧} = {𝑧𝐷𝑧𝑃})
28 incom 4178 . . . 4 (𝑃𝐷) = (𝐷𝑃)
29 dfin5 3944 . . . 4 (𝐷𝑃) = {𝑧𝐷𝑧𝑃}
3028, 29eqtri 2844 . . 3 (𝑃𝐷) = {𝑧𝐷𝑧𝑃}
3127, 30syl6eqr 2874 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → {𝑧𝐷 ∣ ((𝑇𝑃)‘𝑧) ≠ 𝑧} = (𝑃𝐷))
32 simp2 1133 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃𝐷)
33 df-ss 3952 . . 3 (𝑃𝐷 ↔ (𝑃𝐷) = 𝑃)
3432, 33sylib 220 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑃𝐷) = 𝑃)
355, 31, 343eqtrd 2860 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → dom ((𝑇𝑃) ∖ I ) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  {crab 3142  cdif 3933  cin 3935  wss 3936  ifcif 4467  {csn 4567   cuni 4838   class class class wbr 5066   I cid 5459  dom cdm 5555  suc csuc 6193   Fn wfn 6350  wf 6351  cfv 6355  ωcom 7580  1oc1o 8095  2oc2o 8096  cen 8506  pmTrspcpmtr 18569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-1o 8102  df-2o 8103  df-er 8289  df-en 8510  df-fin 8513  df-pmtr 18570
This theorem is referenced by:  pmtrfrn  18586  pmtrfb  18593  symggen  18598  pmtrdifellem2  18605  mdetralt  21217  mdetunilem7  21227  pmtrcnel  30733  pmtrcnel2  30734
  Copyright terms: Public domain W3C validator