![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgfv | Structured version Visualization version GIF version |
Description: The value of the neighborhoods (convergents) in terms of the convergents (neighborhoods) function. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
neicvgfv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
neicvgfv | ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3972 | . 2 ⊢ (𝒫 𝐵 ∩ (𝑁‘𝑋)) = {𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ (𝑁‘𝑋)} | |
2 | neicvg.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | neicvg.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
4 | neicvg.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
5 | neicvg.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
6 | neicvg.g | . . . . . . 7 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
7 | neicvg.h | . . . . . . 7 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
8 | neicvg.r | . . . . . . 7 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
9 | 2, 3, 4, 5, 6, 7, 8 | neicvgnex 44122 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
10 | elmapi 8894 | . . . . . 6 ⊢ (𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁:𝐵⟶𝒫 𝒫 𝐵) |
12 | neicvgfv.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
13 | 11, 12 | ffvelcdmd 7109 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝒫 𝒫 𝐵) |
14 | 13 | elpwid 4615 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝒫 𝐵) |
15 | sseqin2 4232 | . . 3 ⊢ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 ↔ (𝒫 𝐵 ∩ (𝑁‘𝑋)) = (𝑁‘𝑋)) | |
16 | 14, 15 | sylib 218 | . 2 ⊢ (𝜑 → (𝒫 𝐵 ∩ (𝑁‘𝑋)) = (𝑁‘𝑋)) |
17 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑁𝐻𝑀) |
18 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
19 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
20 | 2, 3, 4, 5, 6, 7, 17, 18, 19 | neicvgel1 44123 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑠 ∈ (𝑁‘𝑋) ↔ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋))) |
21 | 20 | rabbidva 3441 | . 2 ⊢ (𝜑 → {𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ (𝑁‘𝑋)} = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) |
22 | 1, 16, 21 | 3eqtr3a 2800 | 1 ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1538 ∈ wcel 2107 {crab 3434 Vcvv 3479 ∖ cdif 3961 ∩ cin 3963 ⊆ wss 3964 𝒫 cpw 4606 class class class wbr 5149 ↦ cmpt 5232 ∘ ccom 5694 ⟶wf 6562 ‘cfv 6566 (class class class)co 7435 ∈ cmpo 7437 ↑m cmap 8871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-ov 7438 df-oprab 7439 df-mpo 7440 df-1st 8019 df-2nd 8020 df-map 8873 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |