| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgfv | Structured version Visualization version GIF version | ||
| Description: The value of the neighborhoods (convergents) in terms of the convergents (neighborhoods) function. (Contributed by RP, 27-Jun-2021.) |
| Ref | Expression |
|---|---|
| neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
| neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
| neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
| neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
| neicvgfv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| neicvgfv | ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin5 3922 | . 2 ⊢ (𝒫 𝐵 ∩ (𝑁‘𝑋)) = {𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ (𝑁‘𝑋)} | |
| 2 | neicvg.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 3 | neicvg.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
| 4 | neicvg.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 5 | neicvg.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 6 | neicvg.g | . . . . . . 7 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
| 7 | neicvg.h | . . . . . . 7 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
| 8 | neicvg.r | . . . . . . 7 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | neicvgnex 44107 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 10 | elmapi 8822 | . . . . . 6 ⊢ (𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁:𝐵⟶𝒫 𝒫 𝐵) |
| 12 | neicvgfv.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 13 | 11, 12 | ffvelcdmd 7057 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝒫 𝒫 𝐵) |
| 14 | 13 | elpwid 4572 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝒫 𝐵) |
| 15 | sseqin2 4186 | . . 3 ⊢ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 ↔ (𝒫 𝐵 ∩ (𝑁‘𝑋)) = (𝑁‘𝑋)) | |
| 16 | 14, 15 | sylib 218 | . 2 ⊢ (𝜑 → (𝒫 𝐵 ∩ (𝑁‘𝑋)) = (𝑁‘𝑋)) |
| 17 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑁𝐻𝑀) |
| 18 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
| 19 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
| 20 | 2, 3, 4, 5, 6, 7, 17, 18, 19 | neicvgel1 44108 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑠 ∈ (𝑁‘𝑋) ↔ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋))) |
| 21 | 20 | rabbidva 3412 | . 2 ⊢ (𝜑 → {𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ (𝑁‘𝑋)} = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) |
| 22 | 1, 16, 21 | 3eqtr3a 2788 | 1 ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 class class class wbr 5107 ↦ cmpt 5188 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |