Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgfv | Structured version Visualization version GIF version |
Description: The value of the neighborhoods (convergents) in terms of the the convergents (neighborhoods) function. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
neicvgfv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
neicvgfv | ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3867 | . 2 ⊢ (𝒫 𝐵 ∩ (𝑁‘𝑋)) = {𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ (𝑁‘𝑋)} | |
2 | neicvg.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | neicvg.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
4 | neicvg.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
5 | neicvg.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
6 | neicvg.g | . . . . . . 7 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
7 | neicvg.h | . . . . . . 7 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
8 | neicvg.r | . . . . . . 7 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
9 | 2, 3, 4, 5, 6, 7, 8 | neicvgnex 41195 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
10 | elmapi 8439 | . . . . . 6 ⊢ (𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁:𝐵⟶𝒫 𝒫 𝐵) |
12 | neicvgfv.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
13 | 11, 12 | ffvelrnd 6844 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝒫 𝒫 𝐵) |
14 | 13 | elpwid 4506 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝒫 𝐵) |
15 | sseqin2 4121 | . . 3 ⊢ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 ↔ (𝒫 𝐵 ∩ (𝑁‘𝑋)) = (𝑁‘𝑋)) | |
16 | 14, 15 | sylib 221 | . 2 ⊢ (𝜑 → (𝒫 𝐵 ∩ (𝑁‘𝑋)) = (𝑁‘𝑋)) |
17 | 8 | adantr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑁𝐻𝑀) |
18 | 12 | adantr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
19 | simpr 489 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
20 | 2, 3, 4, 5, 6, 7, 17, 18, 19 | neicvgel1 41196 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑠 ∈ (𝑁‘𝑋) ↔ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋))) |
21 | 20 | rabbidva 3391 | . 2 ⊢ (𝜑 → {𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ (𝑁‘𝑋)} = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) |
22 | 1, 16, 21 | 3eqtr3a 2818 | 1 ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 {crab 3075 Vcvv 3410 ∖ cdif 3856 ∩ cin 3858 ⊆ wss 3859 𝒫 cpw 4495 class class class wbr 5033 ↦ cmpt 5113 ∘ ccom 5529 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 ∈ cmpo 7153 ↑m cmap 8417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-map 8419 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |