Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgfv | Structured version Visualization version GIF version |
Description: The value of the neighborhoods (convergents) in terms of the the convergents (neighborhoods) function. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
neicvgfv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
neicvgfv | ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3895 | . 2 ⊢ (𝒫 𝐵 ∩ (𝑁‘𝑋)) = {𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ (𝑁‘𝑋)} | |
2 | neicvg.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | neicvg.p | . . . . . . 7 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
4 | neicvg.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
5 | neicvg.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
6 | neicvg.g | . . . . . . 7 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
7 | neicvg.h | . . . . . . 7 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
8 | neicvg.r | . . . . . . 7 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
9 | 2, 3, 4, 5, 6, 7, 8 | neicvgnex 41728 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
10 | elmapi 8637 | . . . . . 6 ⊢ (𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁:𝐵⟶𝒫 𝒫 𝐵) |
12 | neicvgfv.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
13 | 11, 12 | ffvelrnd 6962 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝒫 𝒫 𝐵) |
14 | 13 | elpwid 4544 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝒫 𝐵) |
15 | sseqin2 4149 | . . 3 ⊢ ((𝑁‘𝑋) ⊆ 𝒫 𝐵 ↔ (𝒫 𝐵 ∩ (𝑁‘𝑋)) = (𝑁‘𝑋)) | |
16 | 14, 15 | sylib 217 | . 2 ⊢ (𝜑 → (𝒫 𝐵 ∩ (𝑁‘𝑋)) = (𝑁‘𝑋)) |
17 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑁𝐻𝑀) |
18 | 12 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
19 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
20 | 2, 3, 4, 5, 6, 7, 17, 18, 19 | neicvgel1 41729 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑠 ∈ (𝑁‘𝑋) ↔ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋))) |
21 | 20 | rabbidva 3413 | . 2 ⊢ (𝜑 → {𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ (𝑁‘𝑋)} = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) |
22 | 1, 16, 21 | 3eqtr3a 2802 | 1 ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |