Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcelval | Structured version Visualization version GIF version |
Description: Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
Ref | Expression |
---|---|
dstrvprob.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
dstrvprob.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orvcelel.1 | ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) |
Ref | Expression |
---|---|
orvcelval | ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstrvprob.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | dstrvprob.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | orvcelel.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) | |
4 | 1, 2, 3 | orrvcval4 32331 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴})) |
5 | epelg 5487 | . . . . . 6 ⊢ (𝐴 ∈ 𝔅ℝ → (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴)) |
7 | 6 | rabbidv 3404 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = {𝑥 ∈ ℝ ∣ 𝑥 ∈ 𝐴}) |
8 | dfin5 3891 | . . . . 5 ⊢ (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥 ∈ 𝐴} | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥 ∈ 𝐴}) |
10 | elssuni 4868 | . . . . . . 7 ⊢ (𝐴 ∈ 𝔅ℝ → 𝐴 ⊆ ∪ 𝔅ℝ) | |
11 | unibrsiga 32054 | . . . . . . 7 ⊢ ∪ 𝔅ℝ = ℝ | |
12 | 10, 11 | sseqtrdi 3967 | . . . . . 6 ⊢ (𝐴 ∈ 𝔅ℝ → 𝐴 ⊆ ℝ) |
13 | 3, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
14 | sseqin2 4146 | . . . . 5 ⊢ (𝐴 ⊆ ℝ ↔ (ℝ ∩ 𝐴) = 𝐴) | |
15 | 13, 14 | sylib 217 | . . . 4 ⊢ (𝜑 → (ℝ ∩ 𝐴) = 𝐴) |
16 | 7, 9, 15 | 3eqtr2d 2784 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = 𝐴) |
17 | 16 | imaeq2d 5958 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴}) = (◡𝑋 “ 𝐴)) |
18 | 4, 17 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {crab 3067 ∩ cin 3882 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 E cep 5485 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 𝔅ℝcbrsiga 32049 Probcprb 32274 rRndVarcrrv 32307 ∘RV/𝑐corvc 32322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ioo 13012 df-topgen 17071 df-top 21951 df-bases 22004 df-esum 31896 df-siga 31977 df-sigagen 32007 df-brsiga 32050 df-meas 32064 df-mbfm 32118 df-prob 32275 df-rrv 32308 df-orvc 32323 |
This theorem is referenced by: orvcelel 32336 dstrvval 32337 dstrvprob 32338 |
Copyright terms: Public domain | W3C validator |