Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcelval Structured version   Visualization version   GIF version

Theorem orvcelval 32335
Description: Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvcelel.1 (𝜑𝐴 ∈ 𝔅)
Assertion
Ref Expression
orvcelval (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋𝐴))

Proof of Theorem orvcelval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstrvprob.1 . . 3 (𝜑𝑃 ∈ Prob)
2 dstrvprob.2 . . 3 (𝜑𝑋 ∈ (rRndVar‘𝑃))
3 orvcelel.1 . . 3 (𝜑𝐴 ∈ 𝔅)
41, 2, 3orrvcval4 32331 . 2 (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴}))
5 epelg 5487 . . . . . 6 (𝐴 ∈ 𝔅 → (𝑥 E 𝐴𝑥𝐴))
63, 5syl 17 . . . . 5 (𝜑 → (𝑥 E 𝐴𝑥𝐴))
76rabbidv 3404 . . . 4 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = {𝑥 ∈ ℝ ∣ 𝑥𝐴})
8 dfin5 3891 . . . . 5 (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥𝐴}
98a1i 11 . . . 4 (𝜑 → (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥𝐴})
10 elssuni 4868 . . . . . . 7 (𝐴 ∈ 𝔅𝐴 𝔅)
11 unibrsiga 32054 . . . . . . 7 𝔅 = ℝ
1210, 11sseqtrdi 3967 . . . . . 6 (𝐴 ∈ 𝔅𝐴 ⊆ ℝ)
133, 12syl 17 . . . . 5 (𝜑𝐴 ⊆ ℝ)
14 sseqin2 4146 . . . . 5 (𝐴 ⊆ ℝ ↔ (ℝ ∩ 𝐴) = 𝐴)
1513, 14sylib 217 . . . 4 (𝜑 → (ℝ ∩ 𝐴) = 𝐴)
167, 9, 153eqtr2d 2784 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = 𝐴)
1716imaeq2d 5958 . 2 (𝜑 → (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴}) = (𝑋𝐴))
184, 17eqtrd 2778 1 (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  {crab 3067  cin 3882  wss 3883   cuni 4836   class class class wbr 5070   E cep 5485  ccnv 5579  cima 5583  cfv 6418  (class class class)co 7255  cr 10801  𝔅cbrsiga 32049  Probcprb 32274  rRndVarcrrv 32307  RV/𝑐corvc 32322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ioo 13012  df-topgen 17071  df-top 21951  df-bases 22004  df-esum 31896  df-siga 31977  df-sigagen 32007  df-brsiga 32050  df-meas 32064  df-mbfm 32118  df-prob 32275  df-rrv 32308  df-orvc 32323
This theorem is referenced by:  orvcelel  32336  dstrvval  32337  dstrvprob  32338
  Copyright terms: Public domain W3C validator