Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcelval | Structured version Visualization version GIF version |
Description: Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
Ref | Expression |
---|---|
dstrvprob.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
dstrvprob.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orvcelel.1 | ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) |
Ref | Expression |
---|---|
orvcelval | ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstrvprob.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | dstrvprob.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | orvcelel.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) | |
4 | 1, 2, 3 | orrvcval4 32672 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴})) |
5 | epelg 5519 | . . . . . 6 ⊢ (𝐴 ∈ 𝔅ℝ → (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴)) |
7 | 6 | rabbidv 3411 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = {𝑥 ∈ ℝ ∣ 𝑥 ∈ 𝐴}) |
8 | dfin5 3905 | . . . . 5 ⊢ (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥 ∈ 𝐴} | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥 ∈ 𝐴}) |
10 | elssuni 4884 | . . . . . . 7 ⊢ (𝐴 ∈ 𝔅ℝ → 𝐴 ⊆ ∪ 𝔅ℝ) | |
11 | unibrsiga 32393 | . . . . . . 7 ⊢ ∪ 𝔅ℝ = ℝ | |
12 | 10, 11 | sseqtrdi 3981 | . . . . . 6 ⊢ (𝐴 ∈ 𝔅ℝ → 𝐴 ⊆ ℝ) |
13 | 3, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
14 | sseqin2 4161 | . . . . 5 ⊢ (𝐴 ⊆ ℝ ↔ (ℝ ∩ 𝐴) = 𝐴) | |
15 | 13, 14 | sylib 217 | . . . 4 ⊢ (𝜑 → (ℝ ∩ 𝐴) = 𝐴) |
16 | 7, 9, 15 | 3eqtr2d 2782 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = 𝐴) |
17 | 16 | imaeq2d 5993 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴}) = (◡𝑋 “ 𝐴)) |
18 | 4, 17 | eqtrd 2776 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 {crab 3403 ∩ cin 3896 ⊆ wss 3897 ∪ cuni 4851 class class class wbr 5089 E cep 5517 ◡ccnv 5613 “ cima 5617 ‘cfv 6473 (class class class)co 7329 ℝcr 10963 𝔅ℝcbrsiga 32388 Probcprb 32615 rRndVarcrrv 32648 ∘RV/𝑐corvc 32663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-pre-lttri 11038 ax-pre-lttrn 11039 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-ioo 13176 df-topgen 17243 df-top 22141 df-bases 22194 df-esum 32235 df-siga 32316 df-sigagen 32346 df-brsiga 32389 df-meas 32403 df-mbfm 32457 df-prob 32616 df-rrv 32649 df-orvc 32664 |
This theorem is referenced by: orvcelel 32677 dstrvval 32678 dstrvprob 32679 |
Copyright terms: Public domain | W3C validator |