| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcelval | Structured version Visualization version GIF version | ||
| Description: Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
| Ref | Expression |
|---|---|
| dstrvprob.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| dstrvprob.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orvcelel.1 | ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) |
| Ref | Expression |
|---|---|
| orvcelval | ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dstrvprob.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | dstrvprob.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 3 | orvcelel.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) | |
| 4 | 1, 2, 3 | orrvcval4 34432 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴})) |
| 5 | epelg 5524 | . . . . . 6 ⊢ (𝐴 ∈ 𝔅ℝ → (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 7 | 6 | rabbidv 3404 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = {𝑥 ∈ ℝ ∣ 𝑥 ∈ 𝐴}) |
| 8 | dfin5 3913 | . . . . 5 ⊢ (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥 ∈ 𝐴} | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥 ∈ 𝐴}) |
| 10 | elssuni 4891 | . . . . . . 7 ⊢ (𝐴 ∈ 𝔅ℝ → 𝐴 ⊆ ∪ 𝔅ℝ) | |
| 11 | unibrsiga 34152 | . . . . . . 7 ⊢ ∪ 𝔅ℝ = ℝ | |
| 12 | 10, 11 | sseqtrdi 3978 | . . . . . 6 ⊢ (𝐴 ∈ 𝔅ℝ → 𝐴 ⊆ ℝ) |
| 13 | 3, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 14 | sseqin2 4176 | . . . . 5 ⊢ (𝐴 ⊆ ℝ ↔ (ℝ ∩ 𝐴) = 𝐴) | |
| 15 | 13, 14 | sylib 218 | . . . 4 ⊢ (𝜑 → (ℝ ∩ 𝐴) = 𝐴) |
| 16 | 7, 9, 15 | 3eqtr2d 2770 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = 𝐴) |
| 17 | 16 | imaeq2d 6015 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴}) = (◡𝑋 “ 𝐴)) |
| 18 | 4, 17 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3396 ∩ cin 3904 ⊆ wss 3905 ∪ cuni 4861 class class class wbr 5095 E cep 5522 ◡ccnv 5622 “ cima 5626 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 𝔅ℝcbrsiga 34147 Probcprb 34374 rRndVarcrrv 34407 ∘RV/𝑐corvc 34423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-ioo 13270 df-topgen 17365 df-top 22797 df-bases 22849 df-esum 33994 df-siga 34075 df-sigagen 34105 df-brsiga 34148 df-meas 34162 df-mbfm 34216 df-prob 34375 df-rrv 34408 df-orvc 34424 |
| This theorem is referenced by: orvcelel 34437 dstrvval 34438 dstrvprob 34439 |
| Copyright terms: Public domain | W3C validator |