Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcelval Structured version   Visualization version   GIF version

Theorem orvcelval 34460
Description: Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvcelel.1 (𝜑𝐴 ∈ 𝔅)
Assertion
Ref Expression
orvcelval (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋𝐴))

Proof of Theorem orvcelval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstrvprob.1 . . 3 (𝜑𝑃 ∈ Prob)
2 dstrvprob.2 . . 3 (𝜑𝑋 ∈ (rRndVar‘𝑃))
3 orvcelel.1 . . 3 (𝜑𝐴 ∈ 𝔅)
41, 2, 3orrvcval4 34456 . 2 (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴}))
5 epelg 5539 . . . . . 6 (𝐴 ∈ 𝔅 → (𝑥 E 𝐴𝑥𝐴))
63, 5syl 17 . . . . 5 (𝜑 → (𝑥 E 𝐴𝑥𝐴))
76rabbidv 3413 . . . 4 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = {𝑥 ∈ ℝ ∣ 𝑥𝐴})
8 dfin5 3922 . . . . 5 (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥𝐴}
98a1i 11 . . . 4 (𝜑 → (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥𝐴})
10 elssuni 4901 . . . . . . 7 (𝐴 ∈ 𝔅𝐴 𝔅)
11 unibrsiga 34176 . . . . . . 7 𝔅 = ℝ
1210, 11sseqtrdi 3987 . . . . . 6 (𝐴 ∈ 𝔅𝐴 ⊆ ℝ)
133, 12syl 17 . . . . 5 (𝜑𝐴 ⊆ ℝ)
14 sseqin2 4186 . . . . 5 (𝐴 ⊆ ℝ ↔ (ℝ ∩ 𝐴) = 𝐴)
1513, 14sylib 218 . . . 4 (𝜑 → (ℝ ∩ 𝐴) = 𝐴)
167, 9, 153eqtr2d 2770 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = 𝐴)
1716imaeq2d 6031 . 2 (𝜑 → (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴}) = (𝑋𝐴))
184, 17eqtrd 2764 1 (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3405  cin 3913  wss 3914   cuni 4871   class class class wbr 5107   E cep 5537  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387  cr 11067  𝔅cbrsiga 34171  Probcprb 34398  rRndVarcrrv 34431  RV/𝑐corvc 34447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-ioo 13310  df-topgen 17406  df-top 22781  df-bases 22833  df-esum 34018  df-siga 34099  df-sigagen 34129  df-brsiga 34172  df-meas 34186  df-mbfm 34240  df-prob 34399  df-rrv 34432  df-orvc 34448
This theorem is referenced by:  orvcelel  34461  dstrvval  34462  dstrvprob  34463
  Copyright terms: Public domain W3C validator