Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcelval Structured version   Visualization version   GIF version

Theorem orvcelval 32147
Description: Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvcelel.1 (𝜑𝐴 ∈ 𝔅)
Assertion
Ref Expression
orvcelval (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋𝐴))

Proof of Theorem orvcelval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstrvprob.1 . . 3 (𝜑𝑃 ∈ Prob)
2 dstrvprob.2 . . 3 (𝜑𝑋 ∈ (rRndVar‘𝑃))
3 orvcelel.1 . . 3 (𝜑𝐴 ∈ 𝔅)
41, 2, 3orrvcval4 32143 . 2 (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴}))
5 epelg 5461 . . . . . 6 (𝐴 ∈ 𝔅 → (𝑥 E 𝐴𝑥𝐴))
63, 5syl 17 . . . . 5 (𝜑 → (𝑥 E 𝐴𝑥𝐴))
76rabbidv 3390 . . . 4 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = {𝑥 ∈ ℝ ∣ 𝑥𝐴})
8 dfin5 3874 . . . . 5 (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥𝐴}
98a1i 11 . . . 4 (𝜑 → (ℝ ∩ 𝐴) = {𝑥 ∈ ℝ ∣ 𝑥𝐴})
10 elssuni 4851 . . . . . . 7 (𝐴 ∈ 𝔅𝐴 𝔅)
11 unibrsiga 31866 . . . . . . 7 𝔅 = ℝ
1210, 11sseqtrdi 3951 . . . . . 6 (𝐴 ∈ 𝔅𝐴 ⊆ ℝ)
133, 12syl 17 . . . . 5 (𝜑𝐴 ⊆ ℝ)
14 sseqin2 4130 . . . . 5 (𝐴 ⊆ ℝ ↔ (ℝ ∩ 𝐴) = 𝐴)
1513, 14sylib 221 . . . 4 (𝜑 → (ℝ ∩ 𝐴) = 𝐴)
167, 9, 153eqtr2d 2783 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴} = 𝐴)
1716imaeq2d 5929 . 2 (𝜑 → (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 E 𝐴}) = (𝑋𝐴))
184, 17eqtrd 2777 1 (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2110  {crab 3065  cin 3865  wss 3866   cuni 4819   class class class wbr 5053   E cep 5459  ccnv 5550  cima 5554  cfv 6380  (class class class)co 7213  cr 10728  𝔅cbrsiga 31861  Probcprb 32086  rRndVarcrrv 32119  RV/𝑐corvc 32134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-ioo 12939  df-topgen 16948  df-top 21791  df-bases 21843  df-esum 31708  df-siga 31789  df-sigagen 31819  df-brsiga 31862  df-meas 31876  df-mbfm 31930  df-prob 32087  df-rrv 32120  df-orvc 32135
This theorem is referenced by:  orvcelel  32148  dstrvval  32149  dstrvprob  32150
  Copyright terms: Public domain W3C validator