![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcelval | Structured version Visualization version GIF version |
Description: Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
Ref | Expression |
---|---|
dstrvprob.1 | β’ (π β π β Prob) |
dstrvprob.2 | β’ (π β π β (rRndVarβπ)) |
orvcelel.1 | β’ (π β π΄ β π β) |
Ref | Expression |
---|---|
orvcelval | β’ (π β (πβRV/π E π΄) = (β‘π β π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstrvprob.1 | . . 3 β’ (π β π β Prob) | |
2 | dstrvprob.2 | . . 3 β’ (π β π β (rRndVarβπ)) | |
3 | orvcelel.1 | . . 3 β’ (π β π΄ β π β) | |
4 | 1, 2, 3 | orrvcval4 34154 | . 2 β’ (π β (πβRV/π E π΄) = (β‘π β {π₯ β β β£ π₯ E π΄})) |
5 | epelg 5582 | . . . . . 6 β’ (π΄ β π β β (π₯ E π΄ β π₯ β π΄)) | |
6 | 3, 5 | syl 17 | . . . . 5 β’ (π β (π₯ E π΄ β π₯ β π΄)) |
7 | 6 | rabbidv 3427 | . . . 4 β’ (π β {π₯ β β β£ π₯ E π΄} = {π₯ β β β£ π₯ β π΄}) |
8 | dfin5 3953 | . . . . 5 β’ (β β© π΄) = {π₯ β β β£ π₯ β π΄} | |
9 | 8 | a1i 11 | . . . 4 β’ (π β (β β© π΄) = {π₯ β β β£ π₯ β π΄}) |
10 | elssuni 4940 | . . . . . . 7 β’ (π΄ β π β β π΄ β βͺ π β) | |
11 | unibrsiga 33875 | . . . . . . 7 β’ βͺ π β = β | |
12 | 10, 11 | sseqtrdi 4028 | . . . . . 6 β’ (π΄ β π β β π΄ β β) |
13 | 3, 12 | syl 17 | . . . . 5 β’ (π β π΄ β β) |
14 | sseqin2 4214 | . . . . 5 β’ (π΄ β β β (β β© π΄) = π΄) | |
15 | 13, 14 | sylib 217 | . . . 4 β’ (π β (β β© π΄) = π΄) |
16 | 7, 9, 15 | 3eqtr2d 2771 | . . 3 β’ (π β {π₯ β β β£ π₯ E π΄} = π΄) |
17 | 16 | imaeq2d 6063 | . 2 β’ (π β (β‘π β {π₯ β β β£ π₯ E π΄}) = (β‘π β π΄)) |
18 | 4, 17 | eqtrd 2765 | 1 β’ (π β (πβRV/π E π΄) = (β‘π β π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 {crab 3419 β© cin 3944 β wss 3945 βͺ cuni 4908 class class class wbr 5148 E cep 5580 β‘ccnv 5676 β cima 5680 βcfv 6547 (class class class)co 7417 βcr 11137 π βcbrsiga 33870 Probcprb 34097 rRndVarcrrv 34130 βRV/πcorvc 34145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-1st 7992 df-2nd 7993 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-ioo 13360 df-topgen 17424 df-top 22826 df-bases 22879 df-esum 33717 df-siga 33798 df-sigagen 33828 df-brsiga 33871 df-meas 33885 df-mbfm 33939 df-prob 34098 df-rrv 34131 df-orvc 34146 |
This theorem is referenced by: orvcelel 34159 dstrvval 34160 dstrvprob 34161 |
Copyright terms: Public domain | W3C validator |